
Control Flow-Guided SMT Solving for Program Verification∗

Jianhui Chen

School of Software, Tsinghua University

Key Laboratory for Information System Security, MoE

Beijing National Research Center for Information Science

and Technology

Beijing, China

chenjian16@mails.tsinghua.edu.cn

Fei He
†

School of Software, Tsinghua University

Key Laboratory for Information System Security, MoE

Beijing National Research Center for Information Science

and Technology

Beijing, China

hefei@tsinghua.edu.cn

ABSTRACT
Satisfiability modulo theories (SMT) solvers have been widely ap-

plied as the reasoning engine for diverse software analysis and

verification technologies. The efficiency of the SMT solver has sig-

nificant effects on the performance of these technologies. However,

the current SMT solvers are designed for the general purpose of

constraint solving. Many useful knowledge of programs cannot be

utilized during the SMT solving. As a result, the SMT solver may

spend a lot of effort to explore redundant search space. In this paper,

we propose a novel approach for utilizing control-flow knowledge

in SMT solving. With this technique, the search space can be con-

siderably reduced and the efficiency of SMT solving is observably

improved. We conducted extensive experiments on credible bench-

marks, the results show orders of magnitude improvements of our

approach.

CCS CONCEPTS
• Theory of computation → Logic and verification; • Soft-
ware and its engineering→ Formal software verification;

KEYWORDS
Program verification, Satisfiability modulo theory, Control-flow

graph

ACM Reference Format:
Jianhui Chen and Fei He. 2018. Control Flow-Guided SMT Solving for

Program Verification. In Proceedings of the 2018 33rd ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE ’18), Septem-
ber 3–7, 2018, Montpellier, France. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3238147.3238218

∗
This work was partially funded by the NSF of China under Grant No. 61672310 and

Grant No. 61527812, the National Science and Technology Major Project under Grant

No. 2016ZX01038101.

†
Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’18, September 3–7, 2018, Montpellier, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5937-5/18/09. . . $15.00

https://doi.org/10.1145/3238147.3238218

1 INTRODUCTION
Satisfiability modulo theories (SMT) are applied in diverse soft-

ware engineering technologies, such as software verification [4, 22],

static program analysis [12, 36], symbolic execution [26], test-case

generation [37] and so on. A powerful SMT solver is a crucial factor

to improve the efficiency of these technologies. However, the SMT

solvers are designed for the general purpose of constraint solv-

ing [16]. Domain-specific knowledge cannot be efficiently utilized

in nowadays SMT solvers. On the other hand, domain knowledge

may be quite useful for pruning the search space, and thus improv-

ing the efficiency of SMT solvers.

Control-flow graph (CFG) is a graph representation of programs.

It is simple but informative. Many domain knowledge about pro-

grams is implied in this representation. For example, let π be a

program execution, if π passes a basic block, it passes all statements

in this block; reversely, if it does not pass a block, all statements in

that block are not executed by π . This is straightforward from the

CFG. However, after the program is encoded into the SMT formula,

the SMT solver is unaware of this knowledge. Moreover, consider

an if-statement, an execution can never pass both of its branches.

Again, the SMT solver is unaware of this. As a result, the SMT

solver may spend a lot of effort to explore redundant space, which

could have been pruned if the control-flow knowledge is known.

One may consider to specify the control-flow knowledge as SMT

constraints. However, specifying these knowledge may introduce

additional variables and thus increases the problem complexity.

We have a simpler and smarter solution. The basic idea is to use a

decision order to guide the SMT solving. The decision order decides

at each search step which variable should be taken for assignment.

It determines the search direction in the SMT solving. We propose

to infer a decision order from the control-flow graph of the program,

and then use this order to guide the search process of SMT solving.

We propose two heuristics for arranging the decision order.

Firstly, we recognize the importance of branching conditions that

dominate the control flows of the program, and assign the corre-

sponding variables higher priorities in the decision order. Secondly,

we follow the domination relation of the control flow graph to

arrange the order of branching variables. In this way, we propose

a lightweight technique to utilize control-flow knowledge in SMT

solving. It can take full advantage of the built-in features of the

SMT solver.

Moreover, we propose an enhanced CNF conversion procedure.

After the program is encoded into the SMT formula, the ite terms

keep the control-flow information of the original program. The

351

https://doi.org/10.1145/3238147.3238218
https://doi.org/10.1145/3238147.3238218

ASE ’18, September 3–7, 2018, Montpellier, France Jianhui Chen and Fei He

conventional approach breaks the nested structures of ite terms,

and thus lose the control-flow information. We propose a new ite
rewriting algorithm, with which the nested structure of ite terms is

kept in some form of CNF formulas. With our enhanced approach,

the generated CNF contains fewer clauses and fewer variables. The

efficiency is thus improved.

To the best of our knowledge, this is the first attempt at im-

proving SMT solving by using domain knowledge of programs.

There are some works on domain knowledge-guided SAT solv-

ing [6, 40, 43, 44]. In [44], the structure information of transition

systems is utilized to guide the SAT solvers. In [40], the variable

dependency information of the model is utilized to guide the SAT

solvers. The paper [43] considers the iterative SAT solving for

bounded model checking. The information from the previous un-

satisfiability core is utilized to refine the decision ordering for the

current SAT instance. All these techniques are designed for SAT

solvers, and the domain knowledge comes from the model checking.

In this paper, we consider SMT solving for program verification.

The domain knowledge is different, and the application target is

also different.

We realized a prototype of our approach on top of CBMC and Z3.

We conducted extensive experiments on 2897 credible benchmarks.

All benchmarks are obtained from SV-COMP’17
1
. Up to 1411 SMT

instances are generated. Experimental results show that the control-

flow knowledge can significantly improve the efficiency of SMT

solving. The average speedup is 3.34 times for all instances, and

8.22 times for satisfiable instances.

In summary, our main contributions include:

• Wepropose a novel approach for utilizing control flow knowl-

edge in SMT solving. This approach is lightweight, and can

take full advantage of the built-in features of SMT solvers.

• We propose an enhanced CNF conversion procedure, with

which the control-flow information can be kept in the CNF

formulas.

• We implement our approach on the top of CBMC and Z3, and

conduct extensive experiments to evaluate its effectiveness

and efficiency. Results show promising performance of our

approach.

The rest of this paper is organized as follows. Section 2 introduces

some background knowledge. Section 3 uses a simple example to

motivate our approach. Section 4 presents our control-flow guided

SMT solving approach. Experiments are reported in Section 5, re-

lated works are discussed in Section 6. Finally, Section 7 concludes

this paper.

2 PRELIMINARIES
2.1 Notations
In first-order logic (FOL), a term can be a variable, a constant, or

a n-ary function applied to n terms. An atom is ⊤, ⊥, or a n-ary
predicate applied to n terms. A literal is an atom or its negation. A

FOL formula is built from literals using the Boolean connectives

and quantifiers. An interpretation (or model)M consists of a non-

empty set of objects called the domain ofM , written dom(M); a map

from each variable and each constant, respectively, to an object

1
https://sv-comp.sosy-lab.org/2017/

in dom(M); and an interpretation for each function symbol and

each predicate symbol, respectively. Given a formula Φ, we sayM
satisfies Φ, writtenM |= Φ, if Φ is true in the modelM .

A first-order theory T is defined by a signature and a set of

axioms, where the signature defines a set of constant, function and

predicate symbols allowed inT , and the axioms define the intended

meanings. A T -model is a model that satisfies all axioms of T . A
formula Φ is T -satisfiable if there exists a T -model M such that

M |= Φ. A formula Φ is T -valid ifM |= F for all T -modelsM .

2.2 Control Flow Graph
A control flow graph (CFG) is a graphical representation of com-

putation and control flow in the program. Let a basic block be a

straight-line sequence of instructions without any jumps or jump

targets. Especially, jump targets start a block and jumps end a block.

A control flow graph (CFG) is a directed graph, where nodes are

basic blocks and edges represent jumps in the control flow. Two

specially designated blocks, ENTRY and EXIT, may be used in a CFG

to represent the entry and exit points of the program.

Let c be the condition of a branch-statement. The c is called a

branching condition. And two branches of the branch-statement is

called c branch and ¬c branch, respectively. Given a basic block, its

block condition is a predicate such that the block is executable iff

the block condition is satisfiable.

2.3 Program Verification
Recent advances in model checking [6], static analysis [36], abstract

interpretation [12] predicate abstraction [4, 22], etc, promoted pro-

gram verification to a practical technique for correctness assurance

of programs. Loops are the main hurdle for program verification.

There are mainly two approaches for handling loops in a program:

loop invariant [39] and loop unwinding [34]. The former approach

uses a loop invariant, which holds at the beginning of each iteration

of the loop, to represent the behaviors of the loop. However, it relies

on the user to provide the loop invariant. Automatic generation

of loop invariants have been extensively studied, but the existing

techniques are still not practical enough [1]. The more popular

approach for handling loops is by unwinding. With this technique,

each loop is unwound to a predefined depth. As a result, the loops

are replaced by nested if-statements. This technique is good at

bug finding. Other techniques, like k-induction [17], enhances this

approach by enabling the correctness proving of programs.

Many of state-of-the-art program verification techniques are

based on the satisfiability modulo theories (SMT) solvers [5]. These

solvers are used as the reasoning engine. In this paper, we assume

all programs have been processed by the loop invariant or loop

unwinding technique, and are thus free of loops. The loop-free

programs are converted to their static single assignment (SSA)

forms [13]. With the SSA form, the correctness of a program can

easily be encoded as a set of SMT formulas [18]. These formulas

are called the verification condition of the program with respect to

the property. The validity of the verification condition implies the

correctness of the program.

352

Control Flow-Guided SMT Solving for Program Verification ASE ’18, September 3–7, 2018, Montpellier, France

SMT formula Φ

SAT Solver

UNSAT SAT

Theory Solver

ℬ Φ is unsat

let 𝑀 be a satisfying
model

add a T-conflict clause to Φ

𝑀 is 𝑇-sat

𝑀 is 𝑇-unsat

ℬ Φ is sat

Figure 1: DPLL(T)

2.4 Satisfiability Modulo Theories
Satisfiability modulo theories (SMT) extends SAT with the ability to

reason with first-order theories. We assume all theories discussed

in this paper are decidable, and for each theory T , there is a T -
solver that can check the T -satisfiability of conjunctions of literals

in T . In practice, theories are not isolated. For example, software

verification needs theories of uninterpreted function, arithmetic,

array, bitvectors, and so on. Nelson-Oppen proposed a combination

method [33] to deal with FOL formulas in multiple theories.

DPLL(T) extends DPLL algorithm [14] to incorporate reasoning

about theories. It uses an SAT solver to cope with the Boolean struc-

ture and theory solvers for deciding satisfiability in background

theories. The basic idea of DPLL(T) is illustrated in Fig. 1. Given

an SMT formula Φ, each of its atoms is first replaced with a fresh

Boolean variable, called the Boolean abstraction. Denote the result-
ing formula as B(Φ). The Boolean abstraction gives us a lazy way

to solve the SMT formulas. DPLL(T) uses an SAT solver to find

assignments for B(Φ) and then uses a theory solver to check the

T -satisfiability of the found assignments. The Boolean abstraction

is an over-approximation of the original formula with respect to its

satisfiability. If B(Φ) is unsatisfiable, then so is Φ, but the reverse
may not hold.

The high-level view of a practical DPLL(T) algorithm is shown

in Alg. 1. At this level, the algorithm is the same as that of a conflict-

driven clause learning-based SAT solver [7]. The differences lie in

the implementations of propagate_and_check(), resolve_conflict()
and decide(). The method propagate_and_check() repeatedly ap-

plies unit propagation and theory propagation to force values to

as many as possible literals. It also checks the T -consistency of

the current model. The method returns 0 if it encounters a con-

flict or T -inconsistency, and 1 otherwise. In case of conflict or

T -inconsistency, the method resolve_conflict() is invoked to learn

conflict clauses and add them to the clause database. The method

decide() decides the next unassigned Boolean variable and guess

its value. If there is no unassigned variable, the current model is

complete, and is thus a satisfying model.

Many heuristics are developed for selecting the next unassigned

variable and deciding its value. A commonly used branching heuris-

tic is the VSIDS branching heuristic, which is employed as the

default heuristic in many well-known solvers [8, 15, 32]. DPLL(T)

is essentially a depth-first search algorithm. We may guide the

searching process of DPLL(T) by enforcing a variable order in the

decide() method.

Algorithm 1 DPLL(T)

Input: An SMT formula Φ
Output: SAT or UNSAT

1: while true do
2: while !propagate_and_check() do
3: if decision_level == 0 then return UNSAT;

4: else resolve_conflict();
5: if !decide() then return SAT;

3 MOTIVATIONS
In this section, we use a simple example to motivate our approach.

We show that some important control-flow knowledge is neglected

by the SMT solver, and utilizing this knowledge can make great

gains.

Consider a simple program shown in the left of Fig. 2. Its main

part is a two-tier nested if-statements. Control-flow graph of this

program is shown in Fig. 3, where ellipse nodes represent Entry
and Exit, and rectangle nodes represent blocks. We ignore the

detailed forms of the branching conditions in the program, and

simply represent them as c0 and c1, respectively. The property is to

verify that x = y holds at the end of this program.

Verification Condition. The original program is firstly converted

into the single static assignment (SSA) form,where for each assignment-

statement, a new variable is introduced for the right-hand-side

variable. After this conversion, there is at most one assignment

for each variable. The SSA form of the program example is shown

in the right of Fig. 2. Note that ite(bool , ·, ·) is a ternary function

that returns its second or third argument depending on if its first

argument is true or not. Also note that the nested structure of the

original if-statement is kept in the formula as a nested ite structure.
The verification condition (VC) is

VC ≜ Enc ∧ Cor (1)

where Enc is the encoding of the program, and Cor the correctness
condition. For the motivating example, we have

Enc ≡ (x4 = ite(c0, 1, ite(c1, 2, 3)))∧(y4 = ite(c0, 1, ite(c1, 2, 3)))

and

Cor ≡ (x4 , y4)

The program is correct with respect to the property if and only if

VC is unsatisfiable.

Conjunctive Normal Form. We rely on an SMT solver to check the

satisfiability of VC. The formula need be converted to conjunctive
normal form (CNF). A conjunctive normal form is a conjunction

of clauses, and each clause is a disjunction of literals. For ease of

understanding, we usually write a clause as a logical entailment,

since it can be converted to a clause directly, i.e.,A1∧ · · ·∧Ak → B
can be converted to ¬A1 ∨ · · · ∨ ¬Ak ∨ B, where A1, . . . ,Ak and B
are literals. In the remainder of the paper, we also write a CNF as a

set of clauses, and a clause as a set of literals.

Most SMT solvers adopt the Tseitin’s transformationmethod [42]

to perform the CNF conversion, which adds a new variable for

each subformula of the original formula. Consider the motivating

353

ASE ’18, September 3–7, 2018, Montpellier, France Jianhui Chen and Fei He

if(c0)

 x=1;y=1;

else

 if(c1)

 x=2;y=2;

 else

 x=3;y=3;

assert(x==y);

if(c0)

 x1=1;y1=1;

else

 if(c1)

 x2=2;y2=2;

 else

 x3=3;y3=3;

x4=ite(c0,x1,ite(c1,x2,x3));

y4=ite(c0,y1,ite(c1,y2,y3));

assert(x4==y4);

SSA Program

Figure 2: Example

example, the CNF of Enc, written CNF(Enc), is the conjunction of

the following clauses:

c0 → x4 = 1

¬c0 → x4 = tx

c1 → tx = 2

¬c1 → tx = 3

c0 → y4 = 1

¬c0 → y4 = ty

c1 → ty = 2

¬c1 → ty = 3

(2)

Note that the auxiliary variables tx and ty are introduced for the in-

ner ite function ofVCx4 andVCy4 , respectively.Moreover,CNF(VC) ≡
CNF(Enc) ∧ CNF(Cor), where CNF(Cor) ≡ x4 , y4.

The Tseitin’s method guarantees that the converted formula is

equi-satisfiable to the original formula. In other words, the verifica-

tion condition VC is satisfiable iff CNF(VC) is satisfiable.

DPLL(T) . DPLL(T) is the standard technique underlying modern

SMT solvers. It starts by replacing each atom of the formula with a

fresh Boolean variable, called Boolean abstraction. In the following,

we use vl to represent the Boolean variable for the atom l . The
Boolean abstraction of CNF(Enc), written B(CNF(Enc)), is

vc0 → vx4=1

¬vc0 → vx4=tx
vc1 → vtx=2

¬vc1 → vtx=3

vc0 → vy4=1

¬vc0 → vy4=ty
vc1 → vty=2

¬vc1 → vty=3

(3)

Moreover, B(CNF(VC)) ≡ B(CNF(Enc)) ∧ B(CNF(Cor)), where
B(CNF(Cor)) ≡ ¬vx4=y4 .

3.1 Control-Flow Knowledge is Neglected
The first knowledge is about the execution of statements in the

same block. Considering the Boolean formula (3), all variables are

independent each other. The variables vx4=1 and vy4=1 can be as-

signed with different values by DPLL(T). However, if we look at

the original program in Fig. 2, clearly the statements “x=1” and

“y=1” are in the same basic block. For any execution, either these

two statements are both executed, or neither. Corresponding to the

Boolean formula (3), the Boolean variables vx4=1 and vy4=1 must

be assigned with the same Boolean value. Similarly, the Boolean

variables vx4=2 and vy4=2, the Boolean variables vx4=3 and vy4=3
must be assigned with the same Boolean values, too. This is an

important knowledge about the control flow of the program, which

is, however, neglected by the SMT solver.

x=1;

y=1;

if(c0)

x=2;

y=2;

if(c1)

x=3;

y=3;

true

false

true

false

assert(x==y);

Figure 3: Control flow graph of the example

The second knowledge is about the execution of multiple blocks.

The example program has three blocks (at line 2, 5 and 7), with

conditions of c0, ¬c0 ∧ c1, and ¬c0 ∧ ¬c1, respectively. Apparently,
their conditions are mutually exclusive, hence only one of these

blocks can be executed in one program execution. This important

knowledge is also neglected by the SMT solver. For example, as-

sume the c0 is true, only statements “x=1”, “y=1”, and “assert(x==y)”

are executed, the program’s correctness is relevant to these three

statements only. For the Boolean formula (3), the first two clauses

encode the c0 branch, and the last six clauses encode the ¬c0 branch.
We expect the last six clauses need not be considered in DPLL(T),

as soon as vc0 is assigned true. The actual situation is that the third

and fourth clauses can be dropped from DPLL(T) (since they are

satisfied), whereas the last four clauses cannot. The SMT solver still

makes some efforts to consider different assignments of Boolean

variables in these clauses (i.e., to explore the corresponding blocks)

in the subsequent search process.

3.2 Applying Control-Flow Knowledge Makes
Great Gains

Considering a basic block with n statements, let Φ be the formula

that encodes this block, and B(Φ) the Boolean abstraction of Φ,
there are at least n Boolean variables in B(Φ). DPLL(T) treats all
these variables as independent individuals, and needs explore their

2
n
assignments. In contrast, with the control-flow knowledge about

the execution of statements in the same block, only 2 assignments

of these n variables (both true or both false) need be explored.

Moreover, considering a program with m mutually exclusive

blocks. Without the control-flow knowledge, the SMT solver needs

to explore all combinations of thesem blocks. The search space, in

this case, is the Cartesian product of thesem blocks. In contrast,

with the control-flow knowledge about the execution of multiple

blocks, each time we explore one block only. The search space is

the addition of these m blocks. The search space is thus greatly

reduced.

4 CONTROL FLOW-GUIDED SMT SOLVING
To utilize the control-flow knowledge, one may consider adding

constraints to the original formula. However, specifying these con-

straints may introduce additional variables and thus increases the

354

Control Flow-Guided SMT Solving for Program Verification ASE ’18, September 3–7, 2018, Montpellier, France

Verifier Solver

SMT Formula + Order

A satisfied model / Unsat

Figure 4: Overview of our approach

problem complexity. We have a simpler and smarter solution. The

basic idea is to infer a variable order from the control-flow of the

program, and then use this order to guide the search process of

DPLL(T) (more clearly, by enforcing this order in decide() of Alg. 1).
Our approach can take full advantage of the built-in features of

DPLL(T). It provides a lightweight technique for utilizing control-

flow information. Fig. 4 shows an overview of our approach. At

the verifier side, except the SMT formula that encodes the verifi-

cation problem, a decision order on the variables is also generated

(Section 4.1). This order records the control-flow information of

the program. An SMT solving involves two steps: CNF conversion

and DPLL(T) . We propose techniques to enhance both steps: a

technique for guiding the DPLL(T) with an order (Section 4.2), and

an enhanced CNF conversion technique (Section 4.3).

4.1 Decision Order
Let Φ be a formula, B(Φ) the Boolean abstraction of Φ, andV the set

of Boolean variables in B(Φ). We distinguish the Boolean variables

for branching conditions, and call them branching variables. Let
V b ⊆ V be the set of branching variables in B(Φ). We intend to

define a partial order ≼ overV . We call this order the decision order.
Let v1,v2 be two variables in V , if v1 ≼ v2, we say v1 is prior to v2
in ≼.

In the CFG of a program, a node d1 is said to dominate another
node d2, if every path from Entry to d2 must go through d1. Con-
sidering the CFG in Fig. 3, the c0 node dominates all nodes in the

graph except of Entry and itself; the c1 node dominates two of its

successor nodes.

Remark that the branching conditions dominate the control flow

of the program. We have the following heuristic.

Heuristic 1. Branching variables are prior to all other variables
in V , i.e., ∀v1 ∈ V b ,v2 ∈ V \V b .v1 ≼ v2.

Recall the problem discussed in Section 3.1: the statements “x=1”

and “y=1” are in the same block, while the Boolean variables vx4=1
andvy4=1 can be assigned to different values. With Heuristic 1, this

is not going to happen. If vc0 = true, by Boolean propagation (on

the first two clauses of the formula (3)), both vx4=1 and vy4=1 are
forced to be true; if vc0 = f alse , the first two clauses are trivially

satisfied, and the Boolean variables vx4=1 and vy4=1 need not be

considered in the subsequent process of DPLL(T).

To further define the order among branching variables, we have

the following heuristic:

Heuristic 2. Given two branching variables v1,v2 ∈ V b , v1 is
prior to v2, if v1 dominates v2.

The underlying principle of Heuristic 2 is straightforward. Con-

sidering the CFG in Fig. 3, if c0 is true, the whole false branch of c0,

c0

c1

true

false

true false

Figure 5: Branching graph

no matter c1 holding or not, can be excluded from the consideration.

In contrast, deciding a value of c1 cannot drop any branch of c0.
This paper consider loop-free programs only. Thus there can

never be two nodes d1 and d2 in the CFG, such that both d1 ≼ d2
and d2 ≼ d1. In other words, the induced order by Heuristic 2 is a

partial order.

4.1.1 Inferring the Order. The control-flow graph has all the infor-

mation that we need. Inferring the decision order from the CFG of

a given program is quite easy.

Given a CFG, we construct a so-called branching graph by elimi-

nating all statements information but keeping the branching con-

ditions in the graph. Let d be a node, except of Entry and Exit,
of the CFG, we use label(d) to denote the statements labeled on d ,
parent(d) the parent nodes of d , and child(d) the child nodes of d .
If the last statement of label(d) is a branch-statement, we delete

all information in label(d) but keep the branching condition. If the

last statement in label(d) is not a branch-statement, indicating that

d has only one child node, we connect all its parent nodes to this

single child node, and then delete d .
The resulting branching graph is a directed graph where nodes

are branching conditions, and edges are control flows. All control

flows are kept in the branching graph. The branching graph of the

motivating example is shown in Fig. 5. Comparing the branching

graph (in Fig. 5) to the CFG (in Fig. 3), four nodes are deleted, the

labels of two nodes are changed. Note that the Boolean values

associated with edges are all kept.

Apparently, the branching graph induce a partial order that

agrees with Heuristic 2. We use this graph to guide the search of

DPLL(T).

4.1.2 Storing the Order. We design a mechanism to implicitly store

the branching graph. The edges of the graph are recorded in the

identifiers of variables, which won’t affect the semantics of the

formula. As a result, when an SMT solver is invoked, the only input

is the SMT formula file (in SMT-Lib-v.2.0 format). No additional file

need be provided.

All condition variables are indexed by the order of their appear-

ances in the program. Let v be a condition variable. The identifier

of v is a series of numbers, separated by “_”, with the first number

being the index of v , and others being indexes of v’s parents in the

branching graph. For example, the condition variable vc0 ’s iden-
tifier is “0”, indicating that c0 is indexed by 0, and has no parent;

the condition variable vc1 ’s identifier is “1_0”, indicating that c1 is
indexed by 1, and its single parent is indexed by 0 (i.e. c0).

355

ASE ’18, September 3–7, 2018, Montpellier, France Jianhui Chen and Fei He

Algorithm 2 decide()

Input: The current node cur in the branching graph

Output: An unassigned variable v and a Boolean value value
1: if cur == Exit then
2: (v,value) = decide_nonbranching_variables();
3: while var (cur) is an assigned variable do
4: let t be the assigned value to cur ;
5: cur = next(cur , t);
6: (v,value) = (var (cur), rand(0, 1));
7: return (v,value);

When an SMT solver is invoked, it first parses the SMT formula,

and restore the branching graph from the variables’ identifiers.

Then it uses this branching graph to guide its DPLL(T) procedure.

4.2 Control Flow-Guided DPLL(T)
To guide the SMT solving, we enforce a decision order in the decide()
operator of DPLL(T).

Our implementation of decide() is shown in Alg. 2. Assume there

is a branching graph, and cur is its current node that represents the
last assigned branching variable. Let d be a node, and t a Boolean
value, we provide two methods for manipulating the branching

graph: var (d) returns the branching variable that d represents, and

next(d, t) returns the next node following the t-edge of d . If cur
is the Exit node, indicating that all of the branching variables

have been assigned to a value, the algorithm relies on the method

decide_nonbranching_variables() to select the next variable and de-

cide its value, which implements the default branching heuristics

in conventional SMT solver [3, 15]. Otherwise, if the variable that

cur represents has been assigned a value, the algorithm follows

its value and move to the next node. This moving process repeats

until we get an unassigned branching variable. Then we return this

variable and a randomly decided value.

Moreover, the resolve_conflict()method inAlg. 1 needs be slightly

modified. In case of backtracking, if the target variable is a branch-

ing variable, we need to correspondingly modify cur to the node

that represents the backtracked variable and flip its assigned value.

4.3 Enhanced CNF Conversion
Recall the problem about the execution of mutually exclusive blocks

(see Section 3.1). After the CNF conversion, the conditions of blocks

are divided into parts. Even two blocks are mutually exclusive, the

SMT solver cannot drop the opposite one.

To solve this problem, we need to enhance the CNF conversion

procedure. For the motivating example, the CNF(Enc) is expected
to be the conjunction of the following clauses:

c0 → x4 = 1

¬c0 ∧ c1 → x4 = 2

¬c0 ∧ ¬c1 → x4 = 3

c0 → y4 = 1

¬c0 ∧ c1 → y4 = 2

¬c0 ∧ ¬c1 → y4 = 3

(4)

Compared to (2), which is obtained by the conventional approach,

the block conditions are specified in (4) as the premises of clauses.

As a result, if the condition predicate of one block is true, by mutual

exclusion of block conditions, the clauses corresponding to other

blocks are trivially satisfied. In the above CNF formula (4), the

Algorithm 3 rewrite_ite()

Input: A SMT formula Φ
Output: A rewritten formula Ψ without ite functions
1: Ψ = Φ;
2: let ites be the set of ite-terms in Φ;
3: for each ite ∈ ites do
4: let д, l , r be three real parameters of ite;
5: replace ite in Ψ with (д → rewrite_ite(l)) ∧ (¬д →

rewrite_ite(r));
6: return Ψ;

first two clauses represent the c0 branch, and the last four clauses

represent the ¬c0 branch. Assume vc0 is true, thus ¬vc0 ∧ c1 and
¬vc0 ∧¬c1 are false, the last four clauses are hence trivially satisfied.
The atoms in these four clauses, for instance, x4 = 2, y4 = 2 and so

on, need not be considered again in DPLL(T). In this way, we avoid

DPLL(T) to explore the ¬c0 branch.
The key to getting the above CNF is the ite rewriting procedure,

which rewrites ite terms into those with only Boolean connectives.

Remark that all branching conditions of the verification condition

formula are stored in the ite terms. The conventional rewriting al-

gorithm breaks the nested structures of ite terms, and thus splits the

block conditions into parts. We want a new ite rewriting algorithm

that keeps the block condition as a whole.

Our new ite rewriting algorithm is shown in Alg. 3. The algo-

rithm finds all ite terms in Φ. Each ite term is a ternary function

with three parameters. We store these three parameters in д, l and
r , respectively. The semantics of the ite function is that if д is

true, it returns l , and otherwise returns r , which is equivalent to

(д → l) ∧ (¬д → r). Note that l and r may also contain ite terms.

The algorithm need be applied to l and r recursively. Finally, Ψ con-

tains no ite term. Our algorithm can collaborate with the Tseitin’s

algorithm directly since the rewritten ite formulas are already in

the form of a conjunction of clauses (Section 3).

Comparing our ite rewriting algorithm to the conventional one,

the conventional rewriting algorithms introduce an auxiliary vari-

able for each ite-term. The most benefit of the conventional ap-

proach is that all generated clauses contains only two literals for

generating binary clauses [41] as more as possible. Binary clauses

are good for Boolean propagations. However, the main problem

here is not Boolean propagation but the theory propagation. With

our CNF formula, there are some results that can be forced by apply-

ing Boolean propagation only. However, With their CNF formula, in

many cases, must the theory solver be involved can we deduce the

same result. Moreover, with our enhanced approach, the number

of clauses is fewer. Besides, our algorithm needs not to introduce

auxiliary variables for each ite term. The total number of variables

is also reduced.

5 IMPLEMENTATION AND EXPERIMENTAL
EVALUATION

In this section, we discuss the implementation and evaluation of

our control flow-guided SMT solving tactic. During the evaluation,

we mainly consider the following research questions:

356

Control Flow-Guided SMT Solving for Program Verification ASE ’18, September 3–7, 2018, Montpellier, France

1

10

100

1 10 100

C
o
n

tr
o
l

fl
o
w

-g
u

id
ed

 /
 s

Baseline / s

(600)

(600)

Figure 6: SMT solving time on all benchmarks.

RQ1. How can we evaluate the performance of our tactic credi-

bly?

RQ2. How does the performance vary between our tactic and

the original method on credible benchmarks?

RQ3. Does our tactic affect the performance of the SMT solver

in a way as we expected?

5.1 Implementation
We implement our control flow-guided SMT solving tactic (pre-

sented in section 4) in CBMC [11, 27] and Z3 [15]. CBMC is a

well-known bounded model checking tool for C/C++ programs and

Z3 is an efficient SMT solver. Both CBMC and Z3 are open-source

projects. In our implementation, CBMC is responsible for gener-

ating SMT formulae that encode the verification conditions of the

programs. Our decision order inferring algorithm is implemented

in CBMC, since the control-flow information can be directly ob-

tained after CBMC parses the programs. Our control flow-guided

DPLL(T) algorithm and the enhanced CNF conversion algorithm

are implemented in Z3. The SMT files transferred between CBMC

and Z3 are in the SMT-LIB-v.2.0 format.

5.2 Experiment Setup
All experiments are conducted on the ReachSafety benchmarks in

SV-COMP’17. This benchmark set contains up to 2897 C programs.

All these programs have already been preprocessed for verification.

We use CBMC to generate SMT formulas from the benchmark

programs. Let k be the unroll bound of CBMC.With different values

of k , CBMC generates different SMT formulas. We ask the CBMC

to generate as many as possible SMT formulas within 5 minutes. If

the unroll bound reaches 2000, the generation process also stops.

Consider a falsified program, let k∗ be the minimal value of k such

that a counterexample can be revealed from the program. Then, for

all generated SMT formulas for this program, they are unsatisfiable

for k < k∗, and satisfiable for k ≥ k∗. In order to balance the

number of satisfiable and unsatisfiable instances, we drop some SMT

instances with a rather small k . Finally, excluding the exceptional
cases (timeout, internal error, etc), there are totally 1411 programs

with which CBMC successfully generates SMT instances. All of

1

10

100

1 10 100

C
o
n

tr
o
l

fl
o
w

-g
u

id
ed

 /
 s

Baseline / s

(600)

(600)

Figure 7: SMT solving time on satisfiable benchmarks.

0

10000

20000

30000

1 101 201 301 401 501 601 701 801 901

A
cc

u
m

u
la

te
d

 t
im

es
 /

 s

#Accumulated solved benchmarks

Baseline Control flow-guided

Figure 8: Accumulated SMT solving time on all benchmarks.

these SMT files are plain text files in SMT-LIB-v.2.0 format. The

largest SMT files occupy hundreds of MB.

We compare the performance of our control flow-guided SMT

solving tactic to that of the default heuristic in Z3. The original Z3

with the default heuristic is considered as the baseline. The plus

of Z3 and our tactic is called Z3+. Timeout for each instance is set

to 10 minutes. Note that some preamble tactics (for example, the

simplifying tactic, the variable eliminating tactic, etc) are realized

in Z3, with which some of these SMT instances can be immediately

solved, without calling the DPLL(T) procedure. There are also some

instances that are too hard to be solved by either Z3+ or the baseline

in the time limit. We drop the above two kinds of exceptional

benchmarks. Finally, we got 948 SMT instances, where 314 instances

are satisfiable and 634 ones are unsatisfiable. We believe these

benchmarks are sufficient to evaluate the performance of our tactic

credibly.

5.3 Experimental Results
Figure 6 show the SMT solving time of the baseline and our control

flow-guided tactic on all benchmarks. The figure demonstrates

that our tactic is superior to the baseline on the majority of the

357

ASE ’18, September 3–7, 2018, Montpellier, France Jianhui Chen and Fei He

0

5000

10000

15000

20000

1 51 101 151 201 251 301

A
cc

u
m

u
la

te
d

 t
im

es
 /

 s

#Accumulated solved benchmarks

Baseline Control flow-guided

Figure 9: Accumulated SMT solving time on satisfiable
benchmarks.

benchmarks. Especially, our tactic can speed up the SMT solver

by orders of magnitude on about a quarter of the benchmarks,

and there are a very little of benchmarks on which our tactic is

notably inferior to the baseline. The accumulated SMT solving time

for solved benchmarks is shown in Figure 8. In general, our tactic

uses only 30.0 percents of time of the baseline to resolve the same

number of the benchmarks.

We also present the SMT solving time of the satisfiable bench-

marks in Figure 7. On satisfiable benchmarks, our tactic is superior

to the baseline for most of the benchmarks. There are only a hand-

ful of benchmarks that cost our tactic more time. Besides, nearly

half of the benchmarks are sped up by orders of magnitude. The

accumulated SMT solving time for all satisfiable benchmarks is

shown in Figure 9. Our tactic costs only 12.2 percents of time of

the baseline to resolve the same benchmark group.

The accumulated SMT solving time for solved unsatisfiable bench-

marks is shown in Figure 10. The curves for both the baseline and

our tactic are substantially identical. Our tactic saved about 25.2

percents of the SMT solving time for this group of benchmarks.

Summary of the experimental results for SMT solving time is

presented in Table 1. The CPU time is the total running time of

each tool on the whole benchmark set. Our tactic costs half the

CPU time to finish all the benchmarks and only spends a quarter

of CPU time to finish the satisfiable benchmarks compared to the

baseline. The score time is the accumulated time for solving a certain

quantity of benchmarks, where the quantity is equal to the maximal

number of benchmark that the baseline can solve. All of the score
times are indicated by the straight dash line in the curve diagrams

like Figure 8. The ratio of the score time of the baseline and our

tactic indicates the speed-up times of our tactic for solving the

same group of benchmarks. To summarize, our tactic speeds up

the solver by 3.34 times for all benchmarks and 8.22 times for

satisfiable benchmarks. Also, the number of timeout cases with our

tactic is much fewer than that with the baseline. In conclusion, our

control flow-guided SMT solving tactic can significantly improve

the performance of the SMT solver.

0

5000

10000

15000

20000

1 101 201 301 401 501 601

A
cc

u
m

u
la

te
d

 t
im

es
 /

 s

#Accumulated solved benchmarks

Baseline Control flow-guided

Figure 10: Accumulated SMT solving time on unsatisfiable
benchmarks.

Table 1: Summary of experimental result

Sub

CPU Time / s Score Time / s #Timeout

z3 z3+ Lift z3 z3+ Lift z3 z3+

sat 34573 8135 4.25 16573 2016 8.22 30 4
unsat 25994 19619 1.32 12794 9567 1.33 22 4
all 60568 27754 2.18 29368 8803 3.34 52 8

5.4 Result Analysis
The experimental results illustrate remarkable improvements of

our tactic over the baseline. Also note that the improvement of

our tactic on unsatisfiable benchmarks is not as significant as that

on satisfiable benchmarks. In other words, the utility of our tac-

tic is limited for the unsatisfiable instances. Recall that DPLL(T)

is basically an exhaustive search procedure. For an unsatisfiable

formula, no matter our tactic or the baseline they have to explore

the whole search space to prove its unsatisfiability. The efficiency

of the control flow-guided approach is thus greatly limited. In fact,

the unsatisfiable cases are hard to be optimized for most of the

existing heuristic methods.

Furthermore, during the DPLL(T) search procedure, the algo-

rithm stops as long as a satisfiable variable assignments is found.

If the current variable assignments conflict, a conflict clause is

learned and the search procedure backtracks. To a certain extent,

the number of conflict clauses indicates the try times in the search

procedure of DPLL(T) . Figure 11 shows the number of conflict

clauses learned during the DPLL(T) . As we can see, on the majority

of the benchmarks, the number of the conflict clauses learned with

our tactic is fewer than that with the baseline, especially for the

satisfiable benchmarks. These results indicate that our tactic can

guide DPLL(T) to find a satisfiable solution with fewer try times in

the search procedure.

5.5 Threats to Validity
The main internal threats to the validity of our approach are that

whether the performance improvements are mainly due to our

control flow-guided tactic, and that whether the implementation

358

Control Flow-Guided SMT Solving for Program Verification ASE ’18, September 3–7, 2018, Montpellier, France

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

C
o
n

tr
o
l

fl
o
w

-g
u

id
ed

Baseline

sat

unsat

Figure 11: #Conflict clauses learned during DPLL(T) .

of our tactic is credible. Firstly, we only implemented two algo-

rithms in Z3, i.e., the branching heuristic and the enhanced CNF

conversion algorithm. They are simple and barely coupled with

other modules. Meanwhile, we have implemented our algorithm as

clearly as we can. Secondly, the adding of the control-flow infor-

mation won’t affect the performance of the original solver, since

we implicitly record the decision order in the SMT file by naming

the SMT variables in a special fashion, which doesn’t have any

effect on the semantics of the SMT formula. Last but not the least,

we conduct experiments on a large number of benchmarks from

SV-COMP’17. The experimental results show the remarkable per-

formance of our technique. Additionally, the analysis of the number

of conflict clauses further demonstrates that our tactic does acceler-

ate the search procedure, which conforms to our expectations. We

are thus confident in the effectiveness of our tactic.

Another threat to the validity of our approach is that whether

our approach can be generalized to other solvers other than Z3.

Actually, our tactic is based on the DPLL(T) framework, it has

nothing to do with the specific features of the Z3 solver itself. Thus,

our tactic can be implemented in any DPLL(T) -based SMT solver

for program analysis.

One more threat is that whether our approach can be generalized

to other program analysis techniques, except BMC. The answer

is also yes. Actually, we use CBMC in our experiments only to

generate SMT instances, and nothing more. Our tactic can be eas-

ily applied to other program analysis techniques only if they are

SMT-based, i.e., they encode the verification conditions as the SMT

formulas and then rely on an SMT solver to solve these formulas.

6 RELATEDWORK
There is a large body of work on improving the performance of the

DPLL-based constraint solvers, like SAT and SMT solvers. Below,

we compare our approach with the most closely related works.

Since our approach is based on the branching heuristic (also named

the decision ordering) of the DPLL backtrack search procedure, we

discuss this aspect first.

6.1 Branching Heuristics
One of the most famous branching heuristics is VSIDS [30, 32]. It

increases the ranking values of each literal in a newly inferred con-

flict clause, and also decays these values periodically. The ordering

is based on these ranking values. There are also other branching

heuristics utilize the information from the backtrack search proce-

dure, like MOM heuristic [20, 38], Jeroslow-Wang heuristics [25],

literal count heuristics [31], etc. However, all of these branching

heuristics are designed for the general satisfiability problems, which

can only utilize the information from the DPLL procedure, and

almost do not care about the domain-specific knowledge from orig-

inal problems modeled by the satisfiability problems. Our seman-

tic branching heuristic is combined with one of the most efficient

heuristics (VSIDS-based), but focus on the satisfiability problems de-

rived from the program analysis problem. With the domain-specific

knowledge of program analysis, our heuristic can lead to more

efficient constraint solving.

There is also some work on refining the decision ordering by the

domain-specific knowledge of circuits or models. The most closely

related work is [44], where Yin et al. refine the decision ordering

for the satisfiability problem from transition system by giving the

higher priority to the transition variables over other variables. Be-

sides, all of the transition variables are ordered by the transition

relations in the models. As we discussed in section 1, the program

is more complex than the general transition systems. Furthermore,

this heuristic can hardly work since all of the program variables are

transition variables and the DPLL decision procedure is performed

on the predicates over the program variables instead of on the

program variables directly. Moreover, there are some other related

work refining the decision ordering by the knowledge of the transi-

tion systems. In [43], Wang et al. identify the important variables in

the unsat-core form the previous unsatisfiable BMC instances and

give priority to these important variables in decision ordering on

the current instance. Shtrichman and Ofer [40] suggests a static pre-

determining order following a forward or backward breadth-first

search on the variable dependency graph of the transition system.

In [23], Gupta et al. explore implications learned from the circuit

structure represented by BDDs to help the SAT solving. Since there

is less structure information in a CNF formula, Ostrowski et al.

[35] suggests recovering and exploiting structural knowledge by

a set of equations form initial SAT instance to eliminate clauses

and variables. All of the work are based on the domain-specific

knowledge of circuits or models, instead of the programs.

6.2 Utilizing Control-Flow Information
Our tactic is based on utilizing the control-flow information of the

program. We also compare our approach with the related work on

utilizing the control-flow information for program analysis. In [29],

Leino et al. split the monolithic VC of a program analysis procedure

into the conjunction of several smaller VCs according to the control-

flow information. The partition results in several smaller SMT query

which could be solvedmore efficiently than the original one. Cimatti

et al. [10] partitions the abstraction problem into the combination

of several smaller abstraction problems by exploiting the structure

of the program. These approaches improve the performance by the

heuristic of partition the monolithic problem into several smaller

359

ASE ’18, September 3–7, 2018, Montpellier, France Jianhui Chen and Fei He

problems utilizing the control-flow information. Our tactic also

utilized this heuristic since giving priority to the condition variable

is similar to splitting the whole program into several program paths

and then solving the path formula one by one.

Symbolic execution generates a verification condition for each

path of the program. For different paths (of the control flow of the

program), it generates different SMT formulas. In this respect, one

may say that the symbolic execution also utilizes the control flow

information of programs. However, symbolic execution utilizes this

information at the level of VC generation, while ours does at the

level of the SMT solver. With our approach, only one SMT formula

that encodes verification conditions of all paths of the program is

generated. Our tactic can use the many built-in features of the SMT

solver, including the conflict clause learning, value propagation

and so on. As a result, the intermediate results among verifying the

many paths of the program can be easily and automatically shared.

Belt et al. [2] and Feist et al. [19] proposed to utilize the control-

flow information and the domain-specific knowledge of symbolic

execution to reduce the times of the SMT query, respectively. For

the same reason, these work are also different from ours.

6.3 Theory-Aware Approach
The optimization of our tactic is based on pruning the conflict

assignments early. Some of the related work based on the theory-

aware approach also optimize the constraint solving procedure in

this way. The theory-aware approaches discover the constraints

from the underlying theory by a lightweight method and utilize

these constraints to help to prune the conflict assignments in DPLL

procedure. Berzish et al. [3] proposed a theory-aware branching

heuristic which prioritizes simpler branches over more complex

ones in string solvers. They also proposed a theory-aware case-

split to circumvent mutually exclusive assignments by the struc-

ture of string theory literals. Goldwasser et al. [21] proposed a

theory-aware branching heuristic for linear reals arithmetic based

on a geometric analysis over the linear constraints. The heuristic

suggests the values, which is consistent with the current partial

assignment, for the unassigned predicates of linear constraints.

Bruttomesso et al. [9] utilize the structural information like equali-

ties and arithmetic functions to help to reason at a higher level of

abstraction within the theory of bit-vectors. All of these theory-

aware approaches focus on the specific theory, such as string theory,

linear reals arithmetic theory, and bit-vector theory. However, our

tactic is a high-level approach based on refining branching heuris-

tic of DPLL procedure, which is independent of theories. In [28],

Kuehlmann et al. use circuit specific knowledge to guide the search

of SAT solving and help the solver reasoning on specific logic. This

work is only suitable for circuit problems. Besides the DPLL-based

solver, the other constraint solver can also utilize the theory-aware

approach to improve the performance significantly. For example,

Hooimeijer et al. [24] proposed a lazy backtracking search algo-

rithm for solving the regular expression constraints efficiently by

a follow graph and a constraint-path map generated from the con-

straint system. This work is specifically for solving the regular

expression constraints.

7 CONCLUSION AND FUTUREWORK
In this paper, we present control flow-guided SMT solving tactic

utilizing the control-flow information of the programs to refine

the DPLL(T) search procedure in SMT solvers. In our tactic, the

search space is reconstructed continuously and dynamically by the

control-flow information and thus a large number of redundant

search paths can be pruned. We implement our tactic in the modern

SMT solver Z3, and compare our tactic with the default heuristic

in Z3. The experiments on SV-COMP’17 benchmarks have shown

that our control flow-guided SMT solving tactic can significantly

speed up the SMT solving. Especially, our tactic achieves orders of

magnitude improvements on satisfiable benchmarks.

In algorithm 2, after a decision variable is selected, its value is

randomly determined. There also exist some strategies for deciding

a variable’s value in the existing SAT/SMT solvers. Again, these

strategies are not domain specific. We are planning to study to use

the program information to guide the SMT solver for determining

the variables’ values.

REFERENCES
[1] Mike Barnett, Manuel Fähndrich, K Rustan M Leino, Peter Müller, Wolfram

Schulte, and Herman Venter. 2011. Specification and verification: the Spec#

experience. Commun. ACM 54, 6 (2011), 81–91.

[2] Jason Belt, Xianghua Deng, et al. 2009. Sireum/Topi LDP: a lightweight semi-

decision procedure for optimizing symbolic execution-based analyses. In Proceed-
ings of the the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering.
ACM, 355–364.

[3] Murphy Berzish, Yunhui Zheng, and Vijay Ganesh. 2017. Z3str3: A string solver

with theory-aware branching. arXiv preprint arXiv:1704.07935 (2017).
[4] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M Erkan Keremoglu, and

Roberto Sebastiani. 2009. Software model checking via large-block encoding. In

Formal Methods in Computer-Aided Design, 2009. FMCAD 2009. IEEE, 25–32.
[5] Dirk Beyer, Matthias Dangl, and Philipp Wendler. 2018. A unifying view on

SMT-based software verification. Journal of Automated Reasoning 60, 3 (2018),

299–335.

[6] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Sym-

bolic model checking without BDDs. In International conference on tools and
algorithms for the construction and analysis of systems. Springer, 193–207.

[7] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. 2009. Conflict-

driven clause learning SAT solvers. Handbook of Satisfiability, Frontiers in Artificial
Intelligence and Applications (2009), 131–153.

[8] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Peter

Van Rossum, Stephan Schulz, and Roberto Sebastiani. 2005. The mathsat 3 system.

In International Conference on Automated Deduction. Springer, 315–321.
[9] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,

Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. 2007. A Lazy

and Layered SMT (BV) Solver for Hard Industrial Verification Problems. In

International Conference on Computer Aided Verification. Springer, 547–560.
[10] Alessandro Cimatti, Jori Dubrovin, Tommi Junttila, and Marco Roveri. 2009.

Structure-aware computation of predicate abstraction. In Formal Methods in
Computer-Aided Design, 2009. FMCAD 2009. IEEE, 9–16.

[11] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool for checking

ANSI-C programs. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 168–176.

[12] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or approximation

of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. ACM, 238–252.

[13] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth

Zadeck. 1989. An efficient method of computing static single assignment form.

In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 25–35.

[14] Martin Davis, George Logemann, and Donald Loveland. 1962. Amachine program

for theorem-proving. Commun. ACM 5, 7 (1962), 394–397.

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[16] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories:

introduction and applications. Commun. ACM 54, 9 (2011), 69–77.

360

Control Flow-Guided SMT Solving for Program Verification ASE ’18, September 3–7, 2018, Montpellier, France

[17] Alastair F Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer.

2011. Software verification using k-induction. In International Static Analysis
Symposium. Springer, 351–368.

[18] Herbert Enderton and Herbert B Enderton. 2001. A mathematical introduction to
logic. Academic press.

[19] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. 2016. Guided dynamic

symbolic execution using subgraph control-flow information. In International
Conference on Software Engineering and Formal Methods. Springer, 76–81.

[20] Jon William Freeman. 1995. Improvements to propositional satisfiability search
algorithms. Ph.D. Dissertation. University of Pennsylvania Philadelphia, PA.

[21] Dan Goldwasser, Ofer Strichman, and Shai Fine. 2008. A theory-based deci-

sion heuristic for DPLL (T). In Formal Methods in Computer-Aided Design, 2008.
FMCAD’08. IEEE, 1–8.

[22] Susanne Graf and Hassen Saïdi. 1997. Construction of abstract state graphs with

PVS. In International Conference on Computer Aided Verification. Springer, 72–83.
[23] Aarti Gupta, Malay Ganai, Chao Wang, Zijiang Yang, and Pranav Ashar. 2003.

Learning from BDDs in SAT-based bounded model checking. In Proceedings of
the 40th annual Design Automation Conference. ACM, 824–829.

[24] Pieter Hooimeijer and Westley Weimer. 2010. Solving string constraints lazily.

In Proceedings of the IEEE/ACM international conference on Automated software
engineering. ACM, 377–386.

[25] Robert G Jeroslow and Jinchang Wang. 1990. Solving propositional satisfiability

problems. Annals of mathematics and Artificial Intelligence 1, 1-4 (1990), 167–187.
[26] James C King. 1976. Symbolic execution and program testing. Commun. ACM

19, 7 (1976), 385–394.

[27] Daniel Kroening andMichael Tautschnig. 2014. CBMC–C boundedmodel checker.

In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 389–391.

[28] Andreas Kuehlmann, Malay K Ganai, and Viresh Paruthi. 2001. Circuit-based

Boolean reasoning. In Proceedings of the 38th annual Design Automation Confer-
ence. ACM, 232–237.

[29] K Rustan M Leino, Michał Moskal, and Wolfram Schulte. 2008. Verification

condition splitting. Submitted manuscript, September (2008).
[30] Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof Czar-

necki. 2015. Understanding VSIDS branching heuristics in conflict-driven clause-

learning SAT solvers. In Haifa Verification Conference. Springer, 225–241.

[31] Joao Marques-Silva. 1999. The impact of branching heuristics in propositional sat-

isfiability algorithms. In Portuguese Conference on Artificial Intelligence. Springer,
62–74.

[32] Matthew WMoskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. 2001. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
annual Design Automation Conference. ACM, 530–535.

[33] Greg Nelson and Derek C Oppen. 1980. Fast decision procedures based on

congruence closure. Journal of the ACM (JACM) 27, 2 (1980), 356–364.
[34] Alexandru Nicolau. 1988. Loop quantization: A generalized loop unwinding

technique. J. Parallel and Distrib. Comput. 5, 5 (1988), 568–586.
[35] Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais. 2002.

Recovering and exploiting structural knowledge from CNF formulas. In Interna-
tional Conference on Principles and Practice of Constraint Programming. Springer,
185–199.

[36] Marco Pistoia, Satish Chandra, Stephen J Fink, and Eran Yahav. 2007. A survey

of static analysis methods for identifying security vulnerabilities in software

systems. IBM Systems Journal 46, 2 (2007), 265–288.
[37] M Prasanna, S Sivanandam, R Venkatesan, and R Sundarrajan. 2005. A survey on

automatic test case generation. Academic Open Internet Journal 15, 6 (2005).
[38] Daniele Pretolani. 1996. Efficiency and stability of hypergraph SAT algorithms.

DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26 (1996),
479–498.

[39] Sriram Sankaranarayanan, Henny B Sipma, and Zohar Manna. 2004. Non-linear

loop invariant generation using Gröbner bases. ACM SIGPLAN Notices 39, 1
(2004), 318–329.

[40] Ofer Shtrichman. 2000. Tuning SAT checkers for bounded model checking. In

International Conference on Computer Aided Verification. Springer, 480–494.
[41] Niklas Sorensson and Niklas Een. 2005. Minisat v1. 13-a sat solver with conflict-

clause minimization. SAT 2005, 53 (2005), 1–2.

[42] G Tseitin. 1968. On the complexity of derivation in propositional calculus. Studies
in Constrained Mathematics and Mathematical Logic (1968).

[43] Chao Wang, HoonSang Jin, Gary D Hachtel, and Fabio Somenzi. 2004. Refining

the SAT decision ordering for bounded model checking. In Proceedings of the 41st
annual Design Automation Conference. ACM, 535–538.

[44] Liangze Yin, Fei He, and Ming Gu. 2013. Optimizing the sat decision ordering

of bounded model checking by structural information. In Theoretical aspects of
software engineering (tase), 2013 international symposium on. IEEE, 23–26.

361

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Control Flow Graph
	2.3 Program Verification
	2.4 Satisfiability Modulo Theories

	3 Motivations
	3.1 Control-Flow Knowledge is Neglected
	3.2 Applying Control-Flow Knowledge Makes Great Gains

	4 Control Flow-Guided SMT Solving
	4.1 Decision Order
	4.2 Control Flow-Guided DPLL(T)
	4.3 Enhanced CNF Conversion

	5 Implementation and Experimental Evaluation
	5.1 Implementation
	5.2 Experiment Setup
	5.3 Experimental Results
	5.4 Result Analysis
	5.5 Threats to Validity

	6 Related Work
	6.1 Branching Heuristics
	6.2 Utilizing Control-Flow Information
	6.3 Theory-Aware Approach

	7 Conclusion and Future work
	References

