
Proving Termination by k-Induction

Jianhui Chen
School of Software, Tsinghua University

Key Laboratory for Information System Security, MoE

Beijing National Research Center for Information Science

and Technology

Beijing, China

chenjian16@mails.tsinghua.edu.cn

Fei He∗

School of Software, Tsinghua University

Key Laboratory for Information System Security, MoE

Beijing National Research Center for Information Science

and Technology

Beijing, China

hefei@tsinghua.edu.cn

ABSTRACT

We propose a novel approach to proving the termination of imper-

ative programs by k-induction. By our approach, the termination
proving problem can be formalized as a k-inductive invariant syn-
thesis task. On the one hand, k-induction uses weaker invariants
than that required by the standard inductive approach. On the other

hand, the base case of k-induction, which unrolls the program, can
provide stronger pre-condition for invariant synthesis. As a result,

the termination arguments of our approach can be synthesized

more efficiently than the standard method. We implement a proto-

type of our k-inductive approach. The experimental results show
the significant effectiveness and efficiency of our approach.

CCS CONCEPTS

• Theory of computation → Logic and verification; • Soft-

ware and its engineering→ Formal software verification.

KEYWORDS

Proving Termination, k-Induction, Invariant Synthesis

ACM Reference Format:

Jianhui Chen and Fei He. 2020. Proving Termination by k -Induction. In 35th

IEEE/ACM International Conference on Automated Software Engineering (ASE

’20), September 21–25, 2020, Virtual Event, Australia. ACM, New York, NY,

USA, 5 pages. https://doi.org/10.1145/3324884.3418929

1 INTRODUCTION

Termination is a very important liveness property for software

verification. Most of the techniques for proving termination of

imperative programs are based on the notion of ranking function

[1, 2, 5, 16–18]. Thesemethods try to find an expressionwhose value

decreases strictly on each loop iteration. Its value is also bounded

by an invariant. As a result, the value of the expression cannot

decrease infinitely, and thus the number of the loop iterations must

be finite. We name the expression the explicit ranking function

(eRF). The invariant is called the support invariant. Sometimes,

∗Fei He is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3418929

such an expression can hardly be synthesized by the template-

based methods [2, 4, 17], e.g., linear or polynomial templates. For

example, the program in Figure 1 is terminating since the integer-

valued variable x eventually becomes 0. One of the eRFs for this
program is |x |. But it can not be synthesized by either linear or
polynomial templates.

Actually, we can employ another method to prove the termina-

tion of this program. This method is based on the so-called implicit

ranking function (iRF) [9]. It does not require an explicit expression

but just an invariant as the termination argument. To achieve this,

a counter variable i is inserted into the loop body of the program.
The counter variable i decreases by 1 after each loop iteration, e.g.,
line 6 of Figure 1. Suppose the program is terminating, the number

of the loop iterations should be finite. The maximal number of the

loop iteration is denoted asm(X). We assume that i is greater than
m(X) initially. As a result, i should always be greater than 0 in every
loop iteration. Once we find an invariant to guarantee i > 0 with in
the loop iteration, the termination of the program is proved. That

because if the loop is infinite, i should become less than 0 eventually,
and thus the contradiction arose. This proving procedure can be

formalized as a standard inductive verification condition presented

as follows. We call it the termination certificate (TC).

Pre(X) ∧ i > m(X) ⇒ Inv(X , i) (1)

Inv(X , i) ∧ G(X) ∧ T (X ,X ′) ∧ i ′ = i − 1⇒ Inv(X ′, i ′) (2)

Inv(X , i) ∧ G(X) ⇒ i > 0 (3)

In the above formulas, Pre(X) represents the precondition of the
loop. G(X) is the loop guard and T (X ,X ′) represents the loop body.

If we find an invariant Inv(X , i) making the TC of a program valid,
the termination of the program is proved. For example, Figure 2 is an

instantiation of the TC of the program in Figure 1. The precondition

Pre(X) is�. Them(X) is approximated by x and−x . We can find that

Inv(x, i) � i ≥ x ∧ i ≥ −x is a suitable invariant which makes the
TC valid. As a result, we can prove the termination of this program

by synthesizing such an invariant based on linear templates.

1 while (x � 0) {

2 if (x > 0)

3 x = x - 1;

4 else

5 x = x + 1;

6 //i = i - 1;

7 }

Figure 1: A progarm

� ∧ i > x ∧ i > −x ⇒ Inv(x , i) (4)

Inv(x , i) ∧ x � 0∧

x ′ = ite(x > 0, x−1, x + 1)∧

i′ = i − 1⇒ Inv(x ′, i′) (5)

Inv(x , i) ∧ x � 0⇒ i > 0 (6)

Figure 2: Termination certificate

1239

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Authorized licensed use limited to: Tsinghua University. Downloaded on January 11,2021 at 10:07:25 UTC from IEEE Xplore. Restrictions apply.

1 assume (i ≥ 0);

2 assume (i > -b);

3 while (a > 0) {

4 a = a - b;

5 b = a + 2b;

6 i = i - 1;

7 }

Figure 3: Example A

1 assume (i ≥ 0);

2 assume (i > -b);

3 while (a > 0) {

4 a = a - b;

5 b = a + 2b;

6 assume (a > 0);

7 a = a - b;

8 b = a + 2b;

9 i = i - 1; }

Figure 4: Transformed A

1 assume (i > x);

2 assume (y ≤ 0);

3 while (x ≥ 0) {

4 x = x + y;

5 y = y - 1;

6 i = i - 1;

7 }

Figure 5: Example B

1 assume (i > x);

2 assume (y ≤ 0);

3 assume (x ≥ 0);

4 x = x + y;

5 y = y - 1;

6 while (x ≥ 0) {

7 x = x + y;

8 y = y - 1;

9 i = i - 1; }

Figure 6: Transformed B

However, the iRF-based method heavily relies on invariant syn-

thesis. Sometimes, a strong invariant is required to ensure the

validity of the TC, but we can hardly synthesize it. k-Induction is an
efficient approach to proving inductive properties, which is widely

studied in formal verification of reachability problems [3, 6, 7, 10].

We employ k-induction to strengthen the iRF-based method. The
strengthening has several advantages. First, the step case of k-
induction uses significantly weaker invariants than that required

by the standard inductive approach. Moreover, the base case of k-
induction, which unrolls the program k times, provides a stronger
precondition for invariant synthesis. As a result, compared to the

standard inductive method, the invariant can be synthesized more

effectively and efficiently if k-induction is integrated. We show
these by some examples in Section 2.1.

In this paper, we propose the k-inductive termination certificate
to prove the termination of programs and present the k-inductive
algorithm of our approach. We implement our approach on top of

the tool FreqTerm [9]. It is a powerful tool that uses the standard

inductive iRF-based method to prove termination. We take it as the

baseline and evaluate our approach by the benchmarks mainly from

[9]. The experimental results show the significant effectiveness and

efficiency of our approach.

2 OUR APPROACH

2.1 Motivation Example

Comparing with the standard inductive approach, the k-inductive
approach uses significantly weaker invariants. Moreover, the pre-

condition for synthesizing invariants is stronger than the standard

inductive approach. Hence, we can synthesize invariant effectively

and efficiently. We show these by some simple examples (Figure 3-

6). In these examples, the green codes represent the approximation

ofm(X) and the blue codes is generated by k-induction unrolling.
Consider the program in Figure 3. It is terminating, although

not so obvious. Actually, we can employ the standard inductive

approach to prove termination of this program, but a very strong

invariant is required, i.e., (i ≥ 0∨ a ≤ 0) ∧ (i > 0∨ a ≤ b) ∧ i > −b.
Synthesizing such a complex invariant is rather difficult. However,

if k-induction is used and the loop is unrolled one more time in the
loop body, i.e., Figure 4, we can prove termination of this program

by a significantly weaker invariant, i.e., (i ≥ 0 ∨ a ≤ 0) ∧ i > −b. It
can be synthesized more easily. Furthermore, if we unroll the loop

three more times, we can even prove termination of this program

by a very weak invariant i ≥ 0 ∨ a ≤ 0. As we can see, integrating

the iRF-based method with k-induction can significantly weaken
the invariants that it requires, and the invariant synthesis will be

more efficient.

Another example program is shown in Figure 5. It is also a

terminating program since x eventually decreases to less than 0.
However, we can hardly prove termination of this program by

the standard inductive approach. That is because the invariants

implied by the precondition y ≤ 0 ∧ i > m(x,y) are too weak, e.g.,
y ≤ 0. Such an invariant cannot guarantee the value of x decreases
strictly. However, if we use k-induction and unroll the loop once
in front of the loop head, i.e., Figure 6, the precondition becomes

y ≤ 0 ∧ x ≥ 0 ∧ x ′ = x + y ∧ y′ = y − 1 ∧ i > m(x ′,y′). It
is strengthened and implies a stronger invariant y′ ≤ −1, which

ensures the value of x decreases strictly in the loop body. Then

we can find that Inv(i, x,y) � y ≤ −1 ∧ i ≥ x is an appropriate
invariant to make the TC valid. So, k-induction can also strengthen
the precondition for synthesizing invariants, and thus make the

invariant synthesis of the iRF-based method more effective.

2.2 K-Inductive Termination Certificate

In this section, we present our k-inductive approach formally. We
first introduce the k-inductive verification condition of termination
as follows. We call it the k-inductive termination certificate (k-TC).
It has a similar form as the standard TC.

Pre(X0, X1) ∧

k−1∧

i=1

(G(Xi) ∧ T (Xi , Xi+1)) ∧ ik > m(Xk) ⇒ Inv(Xk , ik) (7)

Inv(X0, i0) ∧

k∧

i=1

(G(Xi−1) ∧ T (Xi−1, Xi)) ∧ ik = i0 − 1⇒ Inv(Xk , ik) (8)

Inv(X , i) ∧ G(X) ⇒ i > 0 (9)

The formula (7) is the base case of thek-TC. It means the invariant
should cover (be implied by) the program state space after k − 1
times of loop iterations. The base case of the k-TC is a little different
from the standard k-inductive principle for reachability problems. It
just requires the invariant to be satisfied on the k-th step instead of
all of the first k steps. Comparing to formula (4) of standard TC, the
precondition of formula (7) is strengthened by the k times unrolling
of the loop. Figure 7(a) shows the effect of the strengthening. The

black ellipse represents the universal set, denoted as �. The gray

area represents the program state space after k times loop iterations,
i.e., denoted as ∪∞

k
Xi . The blue area represents the program state

space after k + 1 times loop iterations, i.e., denoted as ∪∞
k+1

Xi . It is

1240

Authorized licensed use limited to: Tsinghua University. Downloaded on January 11,2021 at 10:07:25 UTC from IEEE Xplore. Restrictions apply.

∪ାଵஶ ܺ ∪ஶ ܺݒ݊ܫ
⊤

(a) base case strengthening

ݔ ାଶݔାଵݔ
ݒ݊ܫ-2 ݒ݊ܫ-1

⊤

(b) step case strengthening

Figure 7: Strengthening of k-induction

clear that ∪∞
k+1

Xi ⊆ ∪
∞
k
Xi . As a result, the more times of unrolling,

the smaller the state space is, and the more easily we can synthesize

an invariant Inv to cover the state space.

The formula (8) is the step case of the k-TC. It means that from
any state in the invariant, after going through k times of loop
iterations, the reached state should also be included in the invariant.

The step case of the k-TC is also different from that of the standard
k-inductive principle. It does not need to assume the invariant
to be satisfied on every unrolling step. That is because proving

termination property does not need a globally satisfied invariant.

Precisely speaking, we just need an infinite often satisfied predicate,

which is denoted as Inv. We show this in our proof of Theorem 2.1.

Comparing to formula (5), the loop is unrolled k times in formula (8).
It is clear that a 1-inductive invariant is also k-inductive, but the
opposite does not hold. As shown in Figure 7(b), the gray ellipse is

the 1-invariant, it should cover the whole program state space. But

we can synthesize a 2-invariant (the blue ellipse) on the subset of

the program state space. As a result, with the step case unrolling,

we can use rather weak invariant to make the k-TC valid.
We have the following theorem to ensure the correctness of our

k-inductive approach.

Theorem 2.1 (Soundness). An imperative program P is termi-

nating if it has a valid k-inductive termination certificate.

Proof. We prove its contrapositive proposition, i.e., if the pro-

gram P is not terminating, it has no valid k-TC. We use proof by con-
tradiction. First, we insert the counter variable i into P and assume
P has a valid k-TC. Because P is not terminating, there exists an infi-
nite execution σ = s0, s1, s2, · · · such that (s0, s1) |= Pre(X0,X1) and
(sj , sj+1) |= G(X j) ∧ T (X j ,X j+1) for j ≥ 1. It is clear that the states
in σ satisfy formulas (7) and (8). So, for every j ≥ k ∧ j mod k ≡ 0,

the state sj |= Inv(X , i). However, the value of i is finite initially,
and it decreases by 1 after every k steps. Hence, i eventually be-
comes negative in the infinite execution σ . As a result, formula (9)
is invalid and a contradiction arises. �

Note that the standard TC is a special case of the k-TC, i.e., let
k be 1. Moreover, if there is an invariant for the standard TC, it is
also an invariant for the k-TC (k > 1). That is because a 1-inductive
invariant is also k-inductive for k > 1. As a result, the k-inductive
approach is at least as complete as the standard inductive approach.

Furthermore, we have shown that there exist some examples that

can only be solved by our k-inductive approach. In practice, our
k-inductive approach should be more powerful than the standard
inductive approach.

Algorithm 1: k-Inductive Algorithm.

input :A program P

output : {P is terminating, unknown}

1 for k ← 1, 2, 3, . . . do

2 Pk ← transform(P,k)

3 TCk ← boundApproxi(Pk) � TCk has an unkonwn Inv

4 Inv ← synthesizeInv(TCk)

5 if Inv � ∅ then
6 return P is terminating

7 return unknown

2.3 Algorithm

The algorithm of our approach is presented in Algorithm 1. In this

algorithm, we first transform the input program P by unrolling the

loop k times, and insert the statement of decreasing the counter
variable, i.e., i = i - 1, at the end of the loop body (line 2). Then,
we try to find out an approximation of the maximal times of loop

iterations, i.e.,m(X) (line 3). The approximation has the form of
i > expr1∧ i > expr2 · · · , where expri can be arbitrary expressions.
The syntax guided synthesis (SyGuS) method [8] can be used to help

us find out these expressions. Besides, we can also use the template-

based method to instantiate the approximation, and synthesize it

and the invariant simultaneously. After that, the k-inductive termi-
nation certificate TCk is generated from the transformed program

Pk and the approximation. Next, we try to synthesize an invari-

ant to ensure the validity of TCk (line 4). Since the k-TC can be
viewed as a set of constrained Horn clauses (CHCs). A Horn solver

can be used to solve it and get the invariant [13, 14]. Moreover,

the template-based method [4] can also be employed to synthesis

the invariant. The program is terminating if we find the invariant

within the time limit of the synthesis procedure. Otherwise, we

increase k by 1 and repeat the above procedure until the maximal
bound or the timeout is reached.

We employ the program in Figure 5 as an example to illustrate our

algorithm. The input P is the program in Figure 5 (without the gray

and green codes). At first, k is assigned to 1. Unrolling 1 time does
not change the input program. So, the transform procedure only

inserts the counting statement i = i - 1 into the loop of the input
program P . The output of this procedure is P1. Next, we generate the

approximation ofm(X) by the boundApproxi procedure. We sample
some expressions from P1 by the SyGuS method. For example, the

sampled expressions can be x and y, and we get an approximation
i > x ∧ i > y. The 1-inductive termination certificate TC1 is also
generated in this procedure. It is presented as follows.

y0 ≤ 0 ∧ x1 = x0 ∧ y1 = y0∧

i1 > x1 ∧ i1 > y1 ⇒ Inv(x1,y1, i1) (10)

Inv(x0,y0, i0) ∧ x0 ≥ 0 ∧ x1 = x0 + y0∧

y1 = y0 − 1 ∧ i1 = i0 − 1⇒ Inv(x1,y1, i1) (11)

Inv(x,y, i) ∧ x ≥ 0⇒ i > 0 (12)

The Pre(X0,X1) part of the example program is an assume state-
ment. It does not change the value of the variables. So we represent

it by the equations x1 = x0 and y1 = y0. Next, we try to synthesize
an invariant to make TC1 valid. However, the synthesis fails since

1241

Authorized licensed use limited to: Tsinghua University. Downloaded on January 11,2021 at 10:07:25 UTC from IEEE Xplore. Restrictions apply.

1

10

100

1 10 100

k-
in

du
ct

io
n

/ s

baseline / s

(a) Single benchmark

0

5000

10000

15000

20000

1 11 21 31 41 51 61 71 81 91 101

baseline k-induction

(b) Accumulated time

Figure 8: Experiment result

the precondition y0 ≤ 0 is not strong enough. As a result, we in-
crease k to 2 and continue our algorithm. The transform procedure
unrolls the loop of P two times and inserts the counting statement.

The output transformed program is P2. Next, in the boundApproxi

procedure, the approximation ofm(X) is still i > x ∧ i > y, and the
2-inductive termination certificate TC2 is generated as follows.

y0 ≤ 0 ∧ x1 = x0 ∧ y1 = y0∧

x1 ≥ 0 ∧ x2 = x1 + y1 ∧ y2 = y1 − 1∧

i2 > x2 ∧ i2 > y2 ⇒ Inv(x2,y2, i2) (13)

Inv(x0,y0, i0)∧

x0 ≥ 0 ∧ x1 = x0 + y0 ∧ y1 = y0 − 1∧

x1 ≥ 0 ∧ x2 = x1 + y1 ∧ y2 = y1 − 1∧

i2 = i0 − 1⇒ Inv(x2,y2, i2) (14)

Inv(x,y, i) ∧ x ≥ 0⇒ i > 0 (15)

Now, we can find an invariant Inv(x,y, i) � y ≤ −1∧ i > x to make
TC2 valid. That is because the strengthened precondition implies

y2 ≤ −1. It is strong enough to guarantee the termination of the

loop. As a result, our algorithm proves the termination of the input

program P by a 2-inductive termination certificate.

3 EVALUATION

We implement our k-inductive algorithm on top of the tool Fre-
qTerm [9]. It is an efficient tool to prove termination. It outperforms

other tools such as AProVE [11], Ultimate Automizer [12], and

HipTNT+ [15] on its termination benchmarks. FreqTerm proves

termination by the iRF and the standard inductive TC. In our exper-

iment, FreqTerm is considered as the baseline. The implementation

of our k-inductive algorithm is called KIndTerm. The benchmarks
are mainly from [9]. There are 171 terminating programs considered

by [9]. However, 79 of them require a lexicographic termination

argument which is currently not implemented in our approach. As

a result, our experiment is conducted on the remaining terminating

programs from [9] (92) and some terminating programs crafted by

ourselves (16). Totally, we have 108 benchmarks.

In our first experiment, the timeout for each tool is set to 600 sec-

onds. FreqTerm takes all of 600 seconds to solve each benchmark.

Our KIndTerm arranges the time as follows. The time limitation

for synthesizing 1-TC is set to 60 seconds, and the time limitation

for synthesizing k-TC (k > 1) is set to 180 seconds. Figure 8 present
the experimental results of FreqTerm and KIndTerm. There are

1

10

100

1 10 100

k-
in

du
ct

io
n

/ s

baseline / s

(a) Single benchmark

0

5000

10000

15000

20000

1 11 21 31 41 51 61 71 81 91 101

baseline k-induction

(b) Accumulated time

Figure 9: Best k values

totally 99 benchmarks solved by FreqTerm or KIndTerm. On the

other 9 benchmarks, both of the tools run out of the time. The scat-

terplot in Figure 8(a) presents the time spent on each benchmark

by FreqTerm (x-axis) and KIndTerm (y-axis) respectively. Our tool

KIndTerm can solve 96 benchmarks (12 timeout) while FreqTerm

can solve 82 benchmarks (26 timeout). The line chart in Figure 8(b)

shows the accumulated time cost of KIndTerm and FreqTerm to

solve all of the benchmarks. FreqTerm totally costs 19347s while

KIndTerm just costs 11183s. Our tool KIndTerm is 42.2 percent

faster than FreqTerm.

In another experiment, we try to use a series of k-TC (k =
1, 2, 3, · · ·) to solve each benchmark respectively. Then we find

out the best k value for each benchmark. The k-TC with the best
k value takes the least time to solve the benchmark. We compare
our approach with the best k value against the baseline. The result
is shown in Figure 9. On about one-third benchmarks, the 2-TC is

significantly faster than the baseline. A few benchmarks are solved

by 3- or 4-TC. But some of them are timeout in our first experiment

since too much time is spent on previous iterations with smaller k .
The incompleteness of the SyGuS method also limits the efficiency

of our approach. Because sometimes it can not find the existing

invariant for the current k value. Our approach with best k value
only costs 8344s on all benchmarks, including 4800s spent on the

timeout benchmarks. It is more than 2 times faster than FreqTerm.

4 CONCLUSION AND FUTUREWORK

In this paper, we propose a novel approach to proving the termi-

nation of imperative programs by k-induction. It strengthens the
standard inductive termination certificate of the iRF-based method.

Ourk-inductive method is more powerful than the standard method
both in theory and in practice. The experimental results also show

the significant effectiveness and efficiency of our approach. Besides

the SyGuS method, the template-based synthesis is also suitable

for synthesizing invariant of our k-TC. Moreover, the lexicographic
k-inductive termination certificate should be a good method to
handle the termination problem of programs with more complex

control-flow.

ACKNOWLEDGMENTS

This work was partially funded by the National Key R&D Program

of China (No. 2018YFB1308601), the NSF of China (No. 61672310

and No. 61527812), and the Guangdong Science and Technology

Department (No. 2018B010107004).

1242

Authorized licensed use limited to: Tsinghua University. Downloaded on January 11,2021 at 10:07:25 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] Amir M Ben-Amram and Samir Genaim. 2013. On the linear ranking problem

for integer linear-constraint loops. ACM SIGPLAN Notices 48, 1 (2013), 51–62.
[2] Aaron R Bradley, ZoharManna, andHenny B Sipma. 2005. Termination analysis of

integer linear loops. In International Conference on Concurrency Theory. Springer,
488–502.

[3] Martin Brain, Saurabh Joshi, Daniel Kroening, and Peter Schrammel. 2015. Safety
verification and refutation by k-invariants and k-induction. In International Static
Analysis Symposium. Springer, 145–161.

[4] Michael A Colón, Sriram Sankaranarayanan, and Henny B Sipma. 2003. Lin-
ear invariant generation using non-linear constraint solving. In International
Conference on Computer Aided Verification. Springer, 420–432.

[5] Michael AColóon andHenny B Sipma. 2001. Synthesis of linear ranking functions.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 67–81.

[6] Leonardo De Moura, Harald Rueß, and Maria Sorea. 2003. Bounded model check-
ing and induction: From refutation to verification. In International Conference on
Computer Aided Verification. Springer, 14–26.

[7] Alastair F Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer.
2011. Software verification using k-induction. In International Static Analysis
Symposium. Springer, 351–368.

[8] Grigory Fedyukovich, Samuel J Kaufman, and Rastislav Bodík. 2017. Sampling
invariants from frequency distributions. In 2017 Formal Methods in Computer
Aided Design (FMCAD). IEEE, 100–107.

[9] Grigory Fedyukovich, Yueling Zhang, and Aarti Gupta. 2018. Syntax-guided
termination analysis. In International Conference on Computer Aided Verification.
Springer, 124–143.

[10] Mikhail YR Gadelha, Hussama I Ismail, and Lucas C Cordeiro. 2017. Handling
loops in bounded model checking of C programs via k-induction. International
Journal on Software Tools for Technology Transfer 19, 1 (2017), 97–114.

[11] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs,
Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie
Swiderski, et al. 2014. Proving termination of programs automatically with
AProVE. In International Joint Conference on Automated Reasoning. Springer,
184–191.

[12] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2014. Termina-
tion analysis by learning terminating programs. In International Conference on
Computer Aided Verification. Springer, 797–813.

[13] Kryštof Hoder and Nikolaj Bjørner. 2012. Generalized property directed reach-
ability. In International Conference on Theory and Applications of Satisfiability
Testing. Springer, 157–171.

[14] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-based model
checking for recursive programs. Formal Methods in System Design 48, 3 (2016),
175–205.

[15] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. 2015. Termination and
non-termination specification inference. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 489–498.

[16] Jan Leike and Matthias Heizmann. 2014. Ranking templates for linear loops. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 172–186.

[17] Andreas Podelski and Andrey Rybalchenko. 2004. A complete method for the
synthesis of linear ranking functions. In International Workshop on Verification,
Model Checking, and Abstract Interpretation. Springer, 239–251.

[18] Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai. 2016. Synthesizing
ranking functions from bits and pieces. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 54–70.

1243

Authorized licensed use limited to: Tsinghua University. Downloaded on January 11,2021 at 10:07:25 UTC from IEEE Xplore. Restrictions apply.

