o B o

~

PMVERIFY: Robustness Verification for Checking
Crash Consistency of Non-volatile Memory

Abstract

The emerging non-volatile memory (NVM) technologies pro-
vide competitive performance with DRAM and ensure data
persistence in the event of system failure. However, it ex-
hibits weak behaviour on hardware architectures in terms of
the order in which stores are committed to NVMs, and there-
fore requires developers to manually flush pending writes.
To ensure correctness of this error-prone task, it is crucial
to develop a rigid method to check crash consistency of pro-
grams running on NVM devices. Most existing solutions are
based on testing and rely on user input to dynamically detect
such deficiencies. In this paper, we present a fully automated
method to statically verify robustness, a newly established
property for ensuring crash consistency of such programs.
The method is based on the observation that, reachability of
a post-crash non-volatile state under a given pre-crash exe-
cution can be reduced to validity of the pre-crash execution
with additional ordering constraints under memory consis-
tency model. Our robustness verification algorithm employs
a search-based framework to explore all partial executions
and states, and checks if any non-volatile state is reachable
under certain pre-crash execution. Once a reachable non-
volatile state is obtained, we further check its reachability
under memory consistency model. The algorithm is imple-
mented in a prototype tool PMVERIFY that leverages sym-
bolic encoding of the program and utilizes an SMT solver
to efficiently explore all executions and states. A dedicated
theory solver is integrated into the DPLL(T) framework to
optimize the robustness checking algorithm. Experiments on
the PMDK example benchmark show that PMVERIFY is the
first tool to establish robustness, and is competitive with the
state-of-the-art dynamic tool, PSAN, in terms of robustness
violation detection.

Keywords: persistent memory, non-volatile memory, robust-
ness, program verification, crash consistency

1 Introduction

Non-volatile memory (a.k.a. NVM, or persistent memory) is
a kind of non-conventional, byte-addressable storage device
that preserves its content after a power failure [35, 36]. It
enables direct access to persistent data using standard load
and store instructions, and thus avoids the overhead of OS
system calls. Due to its competitive performance with DRAM
and guarantee of data persistence, it has been widely used
in persistency-critical systems such as databases [4, 47, 49]
and file systems [8, 13, 33, 42, 58-61, 65].

However, modern processors have write-back caches that
induce non-determinism in the order stores are written to
memory. Since cache systems are volatile, it may lead to data
loss if some stores have not been committed to NVM when
a crash happens. The exact order in which stores are writ-
ten back to NVM, referred to as persist order, is constrained
by the cache coherence protocol. Similar to memory con-
sistency models which specify visibility order of memory
operations, in recent works the Intel-x86 [10, 37, 51-53] and
ARMv8 [10, 54] persistency models have been formalized
which prescribes the persist order. Both architectures exhibit
weak behaviours in terms of persist order.

As a simple example on Intel-x86, assume crash happens
after executing the two instructionsa = 1; b = 1. Upon
recovery, it is possible to observe the non-volatile state a =
0; b = 1 (we assume 0 is the initial value of a). In general,
persist order might differ from the order memory operations
are made visible. Figure 1 shows a possible execution of these
two instructions and relevant orders. Here the store a = 1
is issued and becomes visible first per program order, but
remains in caches. On the contrary, the store b = 1 is issued
later but leaves the cache before the system fails. The store
a = 1 in the volatile cache is thus lost due to the crash.

persist order

visibility order

Saee - - - - ®storea ®

Sb pe - - - - .StOI‘Eb.\“
\pr

1p,
v

\

Figure 1. A possible visibility and persist order of two stores
a = 1; b = 1; in a single thread. S,, S, are the points the
stores are made visible to all threads, and P,, P, are when
they are committed to NVM. ¢ signifies system failure.

Overall, persistent programming is an error-prone task.
It is the responsibility of the developers to avoid corrup-
tion of data residing on NVMs, since any inconsistency
would persist across reboots. This necessitates a clear under-
standing of the persistency semantics. Although instructions
(e.g. clflush and c1flushopt on Intel-x86) have been intro-
duced to constrain persist order of memory operations, the
fact that stores are committed to NVMs in an out-of-order

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

manner can be counter-intuitive. The matter becomes even
more intricate for a multi-threaded program.

To assist developers in correctly programming NVMs, re-
searchers primarily pursue two approaches. On the one hand,
high-level mechanisms such as transactions [6, 11, 18-20, 27,
54] and locks [5, 7, 26, 29, 44] have been developed to facilitate
the development of NVM programs. However, these mech-
anisms often introduce significant overhead. On the other
hand, another line of research focuses on enhancing the reli-
ability of NVM programs [9, 12, 16, 23, 34, 43, 45, 46, 48, 55].

An important property, known as crash consistency, has
been proposed to characterize the reliability of NVM pro-
grams. It ensures that the program state recovered from
NVM after a system failure is always consistent, thereby
enabling seamless resumption of program execution [55].
However, a considerable amount of existing tools require
specifications provided by users for accurate bug detection.
For instance, XFDetector [45] requires user annotation of
commit variables to avoid false alarms, while PMTest [46]
and PMDebugger [12] requires explicit annotation of order-
ing constraints in the program. [48] is able to prove correct-
ness of NVM programs in terms of persistency invariant,
a predicate that always holds on recovered state, but it is
also restricted to the specifications provided by the user. The
model checkers Jaaru [23] and Yat [43] do not require user
input, but they only detect observable bugs, i.e. segmentation
fault or assertion violation.

To circumvent the aforementioned difficulties in crash
consistency checking, Gorjiara et al. [22] proposed a novel
correctness criterion called robustness. Intuitively, a program
is robust if the state recovered from NVM after system failure
is guaranteed to be reachable under memory consistency
model !. For example, consider the program in Figure 1 and
the observed post-crash state a = @; b = 1. This state is
not reachable if we ignore the existence of NVM devices and
possible crashes, i.e. we only consider its normal executions.
Therefore, the program is non-robust.

An advantage of robustness is that user annotation is no
longer necessary for verification. In this setting, crash con-
sistency checking can be separated into two steps: (1) prove
the program is robust, and (2) verify program correctness
under memory consistency model. The latter problem is well-
studied and numerous methods for checking weak memory
consistency exist in the literature [3, 15, 24, 28, 39, 57, 62],
which could be reused on a robust program.

Since robustness acts as a bridge that reduces crash con-
sistency to memory consistency, in this paper, we focus on
developing a method for checking robustness of NVM pro-
grams. The tool PSaN developed in [22] employs a dynamic
algorithm to sample execution traces from the program, and

IThe definition of robustness in this paper is formulated differently from
the original definition in [22], where it is defined using the notion of strong
persistency model instead of reachability of recovered state.

Anonymous Authors

checks these traces for robustness violation. While able to
find robustness violation, it relies on test input generation
and sampling and thus is inherently incapable of proving ro-
bustness. In contrast with PSAN, we propose a static method
aimed at formally proving robustness.

Our method is based upon an observation that, the reach-
ability of a post-crash non-volatile state under certain pre-
crash execution can be reduced to validity of the execution
with some additional ordering constraints. This enables us
to efficiently identify reachable non-volatile states given a
pre-crash execution, and check if they are also reachable
under memory consistency model. The latter reachability
checks are further optimized by shrinking its search space
using the pre-crash execution.

Furthermore, we leverage a search method to explore
all possible executions and (non-volatile) states and check
their reachability. Apart from general-purpose search al-
gorithms, some methods have been designed for efficient
exploration of the vast search space in concurrent programs.
These include stateless model checking algorithms with dy-
namic partial order reduction [1, 39-41] and SMT-based
methods that encode the program and rely on constraint
solving [3, 15, 17, 24, 57, 63, 64]. Our implementation opts
for the latter method for exploration, which depends on a
symbolic encoding of the input program, and a dedicated
theory solver for robustness checking. The solver utilizes
the emerging ordering consistency theory [24] for optimized
validity checking used in the dual reachability checks and
is incorporated into the DPLL(T) framework. Robustness
violation is reported whenever we find a non-volatile state
that is unreachable under memory consistency model, and
we confirm robustness of the program if the exploration is
exhaustive.

The proposed method has been implemented in a proto-
type tool called PMVERIFY. On 26 programs collected from
the PMDK [27] pmemobj libraries, PMVERIFY is able to report
12 robustness violations and successfully proves robustness
of one case. Compared to the dynamic model checking tool
PSAN [22], our method finds 6 more violations while PSAN
fails to prove robustness. Besides, on a set of 12 manually
crafted robust programs, PMVERIFY is able to prove 6 of
them, while PSAN is unable to prove any case.

In summary, our main contributions are:

1. We show that the reachability checking problem of a
post-crash non-volatile state under a given pre-crash
execution can be reduced to the well-studied valid-
ity checking problem of a concurrent execution (Sec-
tion 3).

2. We propose a novel and efficient algorithm for check-
ing robustness of all possible executions within a non-
volatile memory program (Section 4). This algorithm
is encapsulated as a dedicated theory solver and in-
corporated into the DPLL(T) framework (Section 5).

166
167
168

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275

PMVERIFY: Robustness Verification for Checking Crash Consistency of Non-volatile Memory

3. The approach is implemented in a prototype tool, and
we conduct experiments on PMDK benchmarks and a
set of manually crafted robust programs. Evaluation
results show our method is competitive with dynamic
tool PSAN on robustness violation detection and out-
performs on robustness verification (Section 6).

2 Preliminaries
2.1 x86 Persistency Model

In this paper, we focus on checking robustness of non-volatile
memories on Intel-x86 platforms. The visibility order of mem-
ory operations is characterized by the standard x86-TSO
model [56], while persist order is prescribed by Px86, a per-
sistency model formalized in [53]. In this setting, a system
typically employs a three-layer memory hierarchy per Px86
operational semantics: instructions are issued to thread-local
store buffers first, then propagated to a global persistent
buffer (write-back caches), from where stores are committed
to NVM.

Cache line write-back instructions can be used to con-
strain persist order. The Intel-x86 architecture provides three
such instructions: (1) cache line flush instruction c1flush,
(2) cache line optimized flush instruction c1flushopt, and
(3) cache line write back instruction clwb. All three of these
instructions write back the content of a single cache line, but
differ in how they could be reordered with other instructions.
clflush instruction has stronger constraints and can only
be reordered with loads, while c1flushopt can be reordered
with store, c1flush and clflushopt instructions to other
cache lines. clwb has the same semantics as c1flushopt but
does not invalidate the cache line, providing better perfor-
mance. To further constrain the order, the memory barriers
mfence and sfence can be used. mfence can not be reordered
while sfence allows reordering with loads.

Table 1 summarizes the order between relevant instruc-
tions based on the standard x86-TSO model and Px86 seman-
tics. Note only visibility order is characterized in the table,
which roughly corresponds to the order in which instruc-
tions propagate from store buffers to the persistent buffer
on Px86.

We can now define the persist order and reachability of
non-volatile states:

Definition 1 (Persist Order). Given a fixed visibility order
(defined later in Definition 5 as hb), the persist order, written
nvo, is defined as a total order on all stores and flushes that
satisfies the following two axioms [53]:

1. The visibility order and persist order coincide between
stores to the same variable.

2. If a store is (visibility-)ordered before a flush to the
same variable, then it must persist before any stores
(visibility-)ordered after the flush.

At any point during program execution, only stores in
a prefix of the events in nvo have persisted. In the case of
system failure, these persisted stores in the prefix are safe
and recoverable, which induce a non-volatile state s where
for each location x, s(x) equals the last store to x in the
prefix. If a state s is induced by a prefix of some persist order
nvo of the program that contains all flushes, s is said to be a
reachable non-volatile state.

2.2 Program and Execution

2.2.1 Programs. We formulate a simple concurrent lan-
guage for demonstration of our approach. It assumes a set of
thread-local variables V; (written a, b, c etc.) and shared vari-
ables V), (written x, y, z etc.). All shared variables reside on
non-volatile memory. For simplicity, flush operations work
at the granularity of variables instead of cache lines. Let e
represent an expression built from local variables, integers
and arithmetic operators, an instruction i is then defined by
the following grammar:

iz=a=x|x=e]| fence| flushx

Following [22] we ignore the differences between the flush
instructions and assume a single flush operation. Likewise,
we only consider a memory barrier fence. flush and fence
exhibit semantics of clflush and mfence respectively as
in Table 1. We note that our implementation supports all
variants of flush operations and barriers (Section 6).

A thread consists of a sequence of instructions, and a
(concurrent) program is the parallel composition of one or
more threads. We use the symbol || for parallel composition,
and for each thread, we designate a thread identifier 7 € Tid.
Likewise, each instruction in a thread is associated with
an event identifier i € N, i.e. the index in the sequence of
instructions. For a given program, a state s is defined as a
valuation of all shared variables, i.e. s € V, — Z.

2.2.2 Event Order Graph. Similar to the standard declara-
tive methods in the literature [3, 17, 24, 40, 64], we represent
execution of a concurrent program by an event order graph
(EOG). However, executions on non-volatile memory are
slightly different from those on traditional DRAM, in that
system failure might happen before a program execution
finishes. Therefore, we distinguish between partial and total
executions, and adjust the definition of EOGs accordingly.
We first define a memory event:

Definition 2 (Event). An event e is a triple (z, i,1) where
7 € Tid is a thread identifier, i € N is an event identifier, and
I is an event label that can be one of the following:

e R(x,v), marking the event as a read event, where v is
the value read from the shared variable x,

o W(x,v), marking the event as a write event, where v
is the value stored to shared variable x,

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
3

)

2
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

Anonymous Authors

Table 1. The preserved program order of Intel-x86 instructions relevant to persistency. X means two instructions can be
reordered, while v/ means they are always ordered. CL means the pair of instructions is only ordered when on the same cache

line.

Later in Program Order

read | write | mfence | sfence | clflushopt | clflush

_cg read v v v v v v
-

O | write X v v v/ CL v
i mfence v v v v v v
£ | sfence X v v v v v
& | clflushopt | X X v v X CL
(5]

E clflush X v v v CL v

o FL(x), marking the event as a flush event, where all
pending stores to x are forced to persist in the order
they are issued

o F, marking the event as a memory fence event, which
prevents reordering of events before and after it.

Remark 1 (Notation). Given an event label [, the functions
type, loc, and val returns the type (R,W,FL,F), location (x),
value read or written (v) of [if applicable. Given an event
e, the functions Tid, # and lab return the thread identifier,
event identifier and event label respectively. The functions
on event labels (type, loc etc.) are also lifted to events. For
a program P, we write Ep for the set of memory events in
P. The method to generate Ep is straightforward [37] by
simulation of program execution, and we omit the details
here. We abuse the symbols R,W,FL,F for the set of events
with the corresponding label in Ep.

Given a relation r, we write r* for the transitive closure of
r,and r~! for its inverse. Given a relation A, r|4 is r restricted
to A. We write ry; r; as the relation composition of the two
relations r; and ry. For a set of events E, E, is the subset of E
restricted to events on variable x, i.e. Ex = {e € E | loc(e) =
x}. For any ordering relation r over E, we also write e; <, e;
for (eg,ez) € r.

An EOG is then defined with respect to ordering relations
over memory events:

Definition 3 (Event Order Graph). An event order graph
G = (E, Ey, po, rf) consists of a set of events E and a subset of
initialization events E, C E containing a single write event
to each shared variable. po, rf are relations over E where,

® po C EXE is the program order, a total order of events
in each thread. Moreover, initialization events in E, are
ordered before the other events in E. po can be derived
syntactically from the program, i.e. po = {(e1, e2) |
T1d(e1) = Tld(ez) A #ep < #ez} U (EO X E \ Eo)

e rf C (ENW)X(ENR) is the read-from relation between
write and read events on the same variable. Intuitively,
(ews er) € rf if e, reads the value written by e,,. It is
obvious that each read event should read from at most
one write event, i.e. for any events el,, e2, € (ENW) and
er € (ENR), (el,e,) erf A (e, e) erf el =e2.

For convenience, we use G.x to refer to the element of G,
where x can be E, Eg, po or rf. When the context is clear, we
write E, po etc. directly.

An event order graph G represents a (total) execution of
a concurrent program P, if G.E equals Ep, and G.rf assigns
a write event to each read event. In this case, the execu-
tion finishes without being interrupted by a potential crash.
However, not all executions are valid, or consistent, per the
underlying memory consistency model that prescribes al-
lowed visibility order of memory operations.

Each memory consistency model M essentially defines
a predicate over executions, denoted consy,(-), for the set
of valid executions under M. The memory consistency model
adopted in this paper is an extension of standard x86-TS0 [56]
for Intel-x86 platform which identifies a global happens-
before order hb over all events. Unlike Sequential Consistency
(SC), only preserved program order (ppo), a subset po that can
not be reordered according to architecture specification, is
included in hb.

Table 1 summarizes the ordering constraints of relevant
instructions. It shows that writes and flushes might be re-
ordered with later reads. The preserved program order ppo
is then formally defined as:

ppo £ {(e1,e2) €po | e EWUFL — e, ¢ R}

To define happens-before order hb, we introduce coher-
ence order (co):

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486

488
489
490
491
492
493
494
495

PMVERIFY: Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Definition 4 (Coherence Order). Given an execution G, a

coherence order co C (G.E NW) X (G.E N W) is the disjoint

union of relations for each shared variable x € V,,, where
is a strict total order on write events to x.

Orders within the same thread (called internal orders)
are distinguished from those across different threads (called
external orders), and we denote them with suffix i and e
respectively. For instance, rf; is the relation rf N (po U
po~1). Additionally, given a coherence order co, the from-
read relation fr between a write event and a read event is
derived as fr £ rf~1; co. Intuitively, if we have (e,,, e,) € rf
and (e, €],) € co, e, must happen before e/, since e, would
read from e, otherwise.

Definition 5 (x86-TS0). An execution G is valid under
x86-TSO, written constso(G), if there is a coherence order
such that

1. hb = (ppo U rfe U co U fr)* is irreflexive,
2. fr;po is irreflexive (per-location coherence)

Each valid execution G induces a (volatile) state s, where
for each x € V), s(x) equals the value written by the last
write event to x in hb. If s is induced by some execution of
the program P, it is said to be a reachable state of P under
x86-TSO.

2.3 Crash Consistency and Robustness

Crash consistency is an essential property of programs run-
ning on non-volatile memories. Given that the system may
crash at any time, it specifies that program execution can be
correctly resumed from the recovered non-volatile state, as
defined in Section 2.1. This essentially requires that the post-
crash execution starting from the state does not terminate
unexpectedly (e.g. segmentation faults or assertion viola-
tion) or cause data corruption. However, most tools in the
literature rely on user annotation for crash consistency bug
detection, and the few automatic tools only detect observ-
able bugs. To tackle the problem, robustness is proposed [22]
as a sufficient condition for crash consistency of lock-free
programs:

Definition 6 (Robustness). A program P is robust iff all
reachable non-volatile states of P, as defined in Section 2.1,
are reachable under x86-TSO, as defined in Section 2.2.

In other words, the set of reachable non-volatile states
is subsumed by the set of reachable states under x86-TSO.
Crash consistency requires safe execution from any post-
crash state. In this case, to prove crash consistency of a
robust program, we only need to apply existing methods for
ensuring correctness of a concurrent program under some
weak memory consistency model, which is x86-TS0 in our
case. For a robust program, the problem in question is essen-
tially reduced to the classical safety verification problem of
concurrent programs. Furthermore, since consistency check-
ing and proving robustness are decoupled from each other,

this method is fully automated, and user annotation is not
needed.

3 Checking Reachability of a Non-volatile
State

In this paper, we focus on proving robustness. Since robust-
ness is a universal property over non-volatile states, it is nec-
essary to explore all non-volatile states and check if all states
are reachable per definitions in Section 2.1 and Section 2.2.
In this section, we focus on how to observe a potential non-
volatile state from the program and check reachability of the
post-crash state given a fixed pre-crash execution.

3.1 Recovery Observer

To enumerate non-volatile states efficiently, we leverage
recovery observer to instrument the program. Recovery ob-
server is originally proposed in [50] as a hypothetical notion
that atomically observes the entire content of the NVM. It
is then adopted for verification of software performing file
I/O [38]. Unsurprisingly, the semantics of I/O operations
to storage devices are analogous to memory operations on
NVM. In fact, it has been utilized later for persistent invariant
checking [48].

Intuitively, recovery observer is a virtual thread that reads
each shared variable. As the recovery observer acts as an ad-
ditional thread, the reads in it interleave with other memory
operations. By going through all possible interleaving of the
threads, each read also iterates through all possible writes.
It facilitates enumeration of states since we could rely on
the rf relation of these reads for a proper post-crash state.
Figure 2 shows an example program with recovery observer.
The third thread is the recovery observer with a read to each
shared variable in the program.

x =1; y = 2;

flush x; flush y; M= x
a=y; I b=x; [
X = a; y = b; ’
flush x; flush y;

Figure 2. An example of recovery observer. r1 = x; and r2
= y are not ordered.

To adopt recovery observer to our setting, we instrument
the program with the virtual thread and introduce a ded-
icated reads-from order for reads in this thread. Formally,
given a program P, its instrumented version is P’ = P || P,,
where P, represents the recovery observer that contains an
instruction a, = x for each x € V). Let REC be the set of
events in the recovery observer P,, i.e. REC = {e € Ep/ |
Tid(e) = P,}. To ensure they could observe all states of the
program, these read events are not ordered with any other
events, and in particular, they are not ordered with each

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

other. We thus have the following definition of instrumented
execution:

Definition 7 (Instrumented Execution). An instrumented
execution G’ of P is an execution of the instrumented pro-
gram P || P,.In particular, it satisfies G*.poN(RECXG'.E) = 0
and G'.po N (G*.E X REC) = 0.

We define the recovery read-from relation rrf of G as
the projection of the read-from relation to REC, i.e. rrf £
rflwxrec). The relation induces an observed non-volatile
state s, such that for each shared variable x € V), s,(x)
equals the store read by RECy.

Once a non-volatile state s, is observed by the recovery
observer, the next step is to check reachability of s, under G,
which is elaborated in Section 3.2. If s, is indeed a reachable
non-volatile state, we then need to check if s, is reachable
under x86-TS0. While this is a well-studied problem and not
the topic of this paper, we note that recovery observer can be
tweaked for this purpose as well. Briefly speaking, we retain
the instrumented execution G’, but group the read events in
REC together as an atomic block, i.e. we only allow it to read
the whole memory simultaneously. In this way, the recovery
observer now signifies an equivalent volatile state instead.
The details are given in Section 4.

3.2 Reduction to Validity Checking

In this section, we check reachability of the observed non-
volatile state s, under a given execution. Reachability under
Px86, which is a more general problem than ours, has been
previously proved to be decidable [2], but no algorithmic
method is given. To solve the problem, the key is to reduce
it to an equivalent validity checking problem of a pre-crash
execution that is augmented with additional ordering con-
straints.

To accomplish this, we leverage the derived TSO propa-
gation order (dtpo) from [37] as a bridge between memory
consistency and persistency. Given an instrumented execu-
tion G of the program, we have:

dtpo & U FLox{w € Wy | 3w’ € dom(rrf), (w,w) € co}

xeVp

dtpo orders any flush on the shared variable x before any
store w to x that are co-ordered after the store w’ to x read
by rrf. Note that although it is derived from the persistency-
related relation rrf, it characterizes visibility order between
flushes and certain stores. The correctness of this derived
order can be seen by the following argument: if the flush
event is instead ordered after w, then all pending writes to
x, including w, should be committed to the NVM. Since w
happens after w’, it would overwrite w’, which contradicts
the fact that w’ is the last write to x that has persisted. Fig. 3
demonstrates a possible instrumented execution of the pro-
gram in Fig. 2 where the state x = 0;y = 1; is observed. Since
the observer reads the initial value of x, which is ordered

Anonymous Authors

before the two stores x = 1 and x = a, two dtpo ordering
constraints are induced.

- rrf

recovery observer

Figure 3. Visualization of an event order graph representing
a possible instrumented execution of the program in Fig. 2,
where the state x = 0;y = 1; is observed by the recovery
observer. The execution is not valid under DPTSO per Defini-
tion 8 due to cycles induced by the dtpo order.

Our goal is to check if the observed non-volatile state s,,
as induced by rrf, is reachable under G!. Note the execution
G' only characterizes visibility order, and we do not know
the exact persist order nvo. A naive approach to check reach-
ability is to enumerate all possible persist order, and check
whether the last persisted store to each shared variable con-
forms with s,. Nevertheless, it is redundant to consider all
possible orders. Even if we prune the search by leveraging
the two axioms for nvo (Definition 1), the exhaustive method
is still inefficient.

What matters in reachability checking is the last persisted
stores and the additional ordering constraints they generate
(dtpo). Therefore, the crux is to check if G is a valid execu-
tion under a memory model augmented with dtpo, called
DPTSO in [37]:

Definition 8 (DPTSO). An instrumented execution G is valid
under DPTSO, written conspprso(G?), if there is a coherence
order co such that

1. hb = (ppo U rfe UcoU fr U dtpo)?* is irreflexive,
2. fr;po is irreflexive (per-location coherence)

The predicate conspprso(-) can be checked in an analogous
way to checking constso(+). It is basically a cycle detection
algorithm on a directed graph where the orders rf, co, dtpo
etc. are regarded as edges. Since DPTSO only adds dtpo as a
component in the happens-before relation, existing methods
for checking validity of a concurrent execution could be
easily adopted. For example, the execution depicted in Fig. 3
is not valid under DPTSO due to cycles introduced by the
extra dtpo edges.

Theorem 1. Given an instrumented execution G valid un-
der x86-TSO, the non-volatile state s, induced by rrf is
reachable under G’ iff conspprso(G*) holds.

606
607
608
609
610
611
612
613
614
615
616
617
618
619

649

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

PMVERIFY: Robustness Verification for Checking Crash Consistency of Non-volatile Memory

Proof. The proof is elaborated in Appendix A. O

4 Robustness Checking Algorithm

In this section, we discuss the general search-based frame-
work for robustness checking. More specifically, we extend
the algorithm to partial executions and introduce the overall
exploration algorithm based on it.

Previously, reachability of states is defined with an as-
sumption that all memory events have been propagated from
the store buffer and made visible to all threads before the
program terminates. This is in line with the Px86 and DPTSO
models. However, to verify programs running on NVM, it is
necessary to reason about crashes, and in particular when a
system failure would occur. Therefore, the verification algo-
rithm must take partial executions into account.

Partial Executions. In Section 2.2, we defined an exe-
cution of a program P as an EOG that contains all memory
events of a program, Ep, and assigns a value to each read
event in rf. Likewise, a partial execution is an EOG that
assigns a value to each read in rf, but it contains only a
subset of all memory events Ep. However, the events must
be prefix-closed. In other words, any event in the porf—prefix
of an event in the partial execution should also be contained
in the event set. This requirement corresponds to the fact
that when a system fails, only a prefix of the total execution
has been propagated. A partial instrumented execution is
defined similarly.

Take the total execution of the program in Fig. 2 as an
example, as depicted in Fig. 3. It is shown previously that
this execution is not valid under DPTSO, thus the state s, is
not reachable. Now consider the realistic scenario where the
instructions flush x; a = y; x = a; flush x; are not
propagated before the crash. In this case, we obtain a partial
execution as visualized below:

It can be easily checked that this partial execution is valid
under DPTSO, and thus the state x = 0;y = 1; is a reachable
non-volatile state.

Exploration Algorithm. The reachability checking algo-
rithm in Section 3 can be naturally lifted to partial executions
since dtpo is defined analogously on partial executions. An
exploration algorithm can then search through all partial ex-
ecutions and states, and utilize the aforementioned reduction
to check reachability of a state with a given partial execution.
Whenever a reachable non-volatile state is found, robustness
is checked locally first by checking reachability of this state
under x86-TSO. Robustness of the whole program is proved
if no violation is found when the exploration ends.

The presence of recovery observer has embedded a non-
volatile state in an instrumented execution, thus the explo-
ration method only needs to search through all instrumented
partial executions. Besides, it allows that some events in REC
are not contained in the partial execution, i.e. it induces a

recovery observer

Figure 4. A partial instrumented execution of the program
in Fig. 2, where the state x = 0;y = 1; is observed by the
recovery observer. No dtpo orders are derived since flush
events to x are not in this partial execution. This execution
is valid under DPTSO.

partial state. This boosts performance and allows our robust-
ness checking algorithm to have the flexibility of leveraging
different search methods, from brute force searching to more
advanced stateless model checking with dynamic partial
order reduction, or simply relying on program encoding
and constraint solving. Our robustness checking algorithm
could be incorporated into any exploration method capable
of search tree pruning. Therefore, we abstract away the de-
tails and assume the exploration method provides the next
and hasNext interface for exploration, and block interface
to block a subset of partial instrumented executions. Sec-
tion 5 will elaborate on this topic.

Remark 2 (Notation). We say the partial instrumented exe-
cution G’ is an expansion of partial instrumented execution
G, written G < G',if G.E c G’.E and G.rf c G’.rf.

G’ is an alternation of G, written G’ « G, if G.E = G’'.E
and G.rrf = G’.rrf (other orders in G.rf and G’.rf might
differ).

The overall algorithm framework is shown in Algorithm 1.
The input program is first instrumented with recovery ob-
server, then the exploration method takes over the search.
Each time a partial execution G is yielded, a partial state is
also generated. We first check if it is reachable under the
current execution, i.e. if conspprso(G) holds. If not, we make
sure not to extend G and further explore its expansion, since
an invalid execution with additional ordering constraints is
still invalid under DPTSO (Line 10). This optimization can be
implemented in most search methods. In depth-first search-
ing, for instance, the search immediately backtracks to avoid
further redundant exploration.

If G exhibits a reachable non-volatile state s,, the next
step is to check if s, is reachable under the x86-TSO model,

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

Algorithm 1: Robustness Checking Algorithm
Framework for Non-volatile Memories
input :A program P running on non-volatile
memory.
output:If P is robust.

1P «—P||P
2 while hasNext(P’) do

3 G <« next(P")

4 if COﬂSDsto(G) holds then

5 foreach G’ = G do

6 if constso(atomic(G’)) holds then
7 L goto 2;

8 return false;

9 else

10 | block({G" | G < G'});

11 return true

which typically involves another search over all total execu-
tions (Line 5). There are abundant algorithms for this task
in the literature. In our algorithm, we take advantage of the
recovery observer by regarding the read events in them as
an atomic block and keeping the rrf orders. The formal def-
inition of atomic is given in Appendix B due to space limit,
but intuitively this allows the recovery observer to signify
an equivalent volatile state. As an example, Fig. 5 shows how
to check validity of an execution under x86-TSO with the
help of recovery observer.

recovery observer
(atomic block)

Figure 5. Visualization of validity checking of the execution
in Fig. 4, where the recovery observer is regarded as an
atomic block. It is invalid under x86-TSO due to the cycle in
red.

While searching through total executions, we only alter
other rf orders, keeping G.E the same. Essentially, enumer-
ating alternations of G is enough for checking reachability
under x86-TS0, The soundness of this method is shown in
the following lemma:

Anonymous Authors

Lemma 1. If for every alternation G’ of G, constso(G”) does
not hold, then the observed state s, must be unreachable
under x86-TSO.

Proof. The proof is given in Appendix A. O

If the state s, is proved unreachable under x86-TS0 in this
way, we report violation of robustness (Line 8). Note that s,
might be a partial state, but it is obvious that any total state
that conforms with s, is still invalid under x86-TSO. There-
fore, we could always add rrf orders that read from the last
store per co. This way validity under DPTSO is not affected.
On the other hand, if s, is reachable, once its reachability is
proven we proceed with the exploration of executions (Line
7). If all executions have been explored and no violation is
found, P has been proved robust (Line 11).

5 Integration with DPLL(T)

Algorithm 1 is parameterized by an exploration method. In
this section, we instantiate our algorithm to leverage pro-
gram encoding and constraint solving for this task.

5.1 Encoding

A complete encoding of a concurrent program should cover
both functional program behaviours and possible interleav-
ing of the threads, i.e. the orders between memory events.
Following the standard encoding [3], the input program is
firstly transformed into SSA form and the program event set
Ep. The instructions in each thread, including the recovery
observer in our case, are then naturally translated to atoms
in first-order logic?. As a simple example, the program in
Fig. 2 is encoded as:

(initial value)
(first thread)
(second thread)

(recovery observer)

pssa:xO:O/\yOZO
Axi=1ANa=y; Axy
/\y2:2/\b=X3/\y3_

Il
)

|
S

ANT1=Xg N1y =1y

Note that it does not encode ordering relations. The read
11, for instance, could potentially read from yy, y, and ys. To
add ordering constraints to the encoding, we first model a
partial execution by a predicate enabled (implemented as a
Boolean variable) defined for every event, where enabled(e)
signifies e is included in the partial execution. Furthermore,
each order relations used in x86-TSO or DPTSO are repre-
sented by Boolean variables explicitly. For instance, since
the coherence order co is total, it is encoded by adding a
Boolean variable ws{ ; for each pair of stores x; and x; to the
shared variable x. We have (x;, x;) € co iff ws] ;s assigned
true. Additional axioms are included in the encoding that
constrain its assignment:

flush and fence operations are not included in the functional encoding of
a program since they are irrelevant. However, they are still numbered and
contribute to ordering constraints.

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

933
934
935

PMVERIFY: Robustness Verification for Checking Crash Consistency of Non-volatile Memory

pi; =ws;; — enabled(x;) A enabled(x;) (ws-cond)

X
/\wsi,j — Xj <co Xj

A (enabled(x;) A enabled(x;)) — ws}; V ws;
(ws-some)

(ws-order)

Similarly, we introduce for each variable x a Boolean vari-
ables rf7; for any read x; and store x; and axioms for rf as
follows:

p;i = rf}; — enabled(x;) A enabled(x;) A x; = x;

(rf-val)
A rfj.‘,i — Xj <rf X; (rf-ord)
A enabled(x;) — \/ rfl; (rf-some)

X EWx

Since fr can be derived from rf and co as discussed in
Section 2, for each variable x, we introduce the following
axiom for any two stores x;, xx and read x;:

f
Pk = ML AWST = 1y, <er Wy
For dtpo, we need the flush event to be enabled. Thus, for
each variable x, we introduce the following axiom for any

two stores xj, xi, read event x; in the recovery observer, and
flush FL;:

p;t]plok = enabled(FLg) A rfj; AwsT, — FLy a0 W
To ensure the prefix-closed property of a partial execu-
tion, encoding for each ordering relation requires the pair of
events to be both enabled (e.g. the rule ws-cond and rf-val
above), and an extra axiom is added to the encoding: for
any two events e; and e, that are ordered by ppo, we have
enabled(e;) — enabled(e;). The encoding of the program
¥ is then the conjunction of pss, and all axioms (p;. i p;i etc.)

related to ordering constraints.

5.2 DPLL(T) and Exploration

The encoded formula of the program ¥ is solved by an SMT
solver. While it searches for a model of the formula, vari-
ables in it are assigned values. In particular, the assignment
of Boolean variables representing various order relations
corresponds to a partial execution and state. Modern SMT
solvers typically utilize the DPLL(T) framework. In the frame-
work, formulas are in a combination of certain first-order
background theories. Each background theory 7 has a the-
ory solver which decides 7 -satisfiability of a conjunction of
literals in 7. An overview of this framework is shown in
Fig. 6.

In this framework, each atom in the given formula ¥ is
first replaced by a Boolean variable, and the satisfiability
of the resulting propositional formula B(¥) is checked by

SMT formula ¥

SAT Solver

Satisfiable model M for B(¥)

Theory Solver

B(¥) is unsatisfiable M is T-consistent

M is T-inconsistent, Add a conflict clause to ¥

¥ is unsatisfiable ¥ is satisfiable

Figure 6. Overview of the DPLL(T) framework.

an SAT solver. If B(¥) is unsatisfiable, so is ¥. Otherwise,
since B(¥) is an over-approximation of ¥, theory solvers are
called to check if the model M returned by the SAT solver is
compatible with the underlying background theories. The
theory solver also returns a conflict clause to prevent the SAT
solver from exploring the same assignment.

Following [24], while DPLL(T) controls the exploration, in
our implementation each ordering constraints in the formula,
such as wy, <ys Wy, from ws-order above, are passed to a
dedicated theory solver for robustness checking. Based on
the solver for ordering consistency theory, the backend em-
ploys an incremental cycle detection algorithm for efficient
checking validity under DPTSO. If the current partial state is
reachable, we use the solver in [15] to check its reachability
under x86-TS0. Otherwise, a conflict clause is generated and
returned to the DPLL(T) framework which blocks further
exploration of this partial instrumented execution.

6 Implementation and Evaluation

We have implemented our method in a prototype tool called
PMVERIFY, expanding on Deagle [25], a concurrent program
verification tool that supports weak memory consistency on
top of the bounded model checker CBMC. We extend Deagle’s
frontend to recognize NVM programs using a selected set of
APIs in pmemobj library from PMDK [27]. A dedicated back-
end for robustness checking is implemented to complement
the default solver of Deagle for weak memory consistency
checking.

To evaluate the efficacy of PMVERIFY, we collect the exam-
ple programs that accompany the pmemobj library in PMDK
as the benchmark. It contains 26 small to medium-sized pro-
grams (548 LOC on average) that implement simple algo-
rithms and basic data structures on non-volatile memory,
such as binary search and persistent lists.

As a comparison, we also run PSAN [22], the only robust-
ness violation detection tool in the literature, on the same
benchmark. PSAN is implemented based on the dynamic
model checking tool Jaaru [23] which observes the outcome
of memory operations at runtime and checks for persistency
bug on the observed trace. PSAN offers a model checking
mode that exhaustively enumerates program traces, as well
as a random mode that relies on sampled traces.

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

978
979
980
981
982
983
984
985
986

988
989
990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

Table 2. Evaluation of PMVERIFY and PSAN on the PMDK
pmemobj benchmarks (26 programs in total). The rows
YES/No/UNKNOWN contain the total number of cases each
tool proves to be robust, non-robust, or fails to give an an-
swer. Unique No. is the number of cases only solved by this
tool.

PMVERIFY PSanN
YES 1 0
No 12 6
UNKNOWN 13 20
Unique No. 7 0
Average Time 2768.42s 16.7s
Standard Deviation 1045.26s 9.98s

The experiments are conducted on an Intel® Core™ i5-
10400 @ 2.90GHz CPU with 16GB memory. Timeout is set to
two hours. For PSAN running in random mode, the maximum
amount of sampled traces is set to 100,000.

6.1 Experimental Results on PMDK benchmark

Table 2 shows the overall results of the experiment. Out of
26 programs, PMVERIFY is able to solve 13. It successfully
proves robustness of one of the programs (manpage. c), and
detects robustness violation of 12 test programs. The results
are manually checked to ensure soundness. PMVERIFY fails
on the remaining programs mainly due to usage of some
PMDK primitives that are not modeled by the frontend, such
as pmemobj_tx_add_range_direct, and timeouts on one
program it supports.

Compared to PSAN, our tool is able to find robustness
violation of six more programs. Besides, since PSAN employs
an incomplete dynamic method, it is only able to refute
robustness instead of verifying the property. On the contrary,
PMVERIFY is able to prove robustness of a program after all
executions have been explored.

In terms of performance, Fig. 7 shows the accumulated
solving time of PMVERIFY. It takes around 45 minutes to
complete verification on average. PSAN, on the other hand,
takes no more than a minute for the six cases it solves, which
is, on average, 33 times shorter than PMVERIFY. We note that
PSAN is similar to a testing tool and could very efficiently
find potential bugs in the program due to its dynamic nature.
However, it cannot verify robustness. PMVERIFY has adopted
some optimization methods to improve the performance
of exploration, but still faces the common state explosion
problem. The exhaustive exploration is necessary to ensure
completeness, at the cost of performance. Therefore, our
method and PSAN can complement each other in robustness
verification and bug detection.

10

Anonymous Authors

Table 3. Evaluation results of PMVERIFY on 12 instrumented
programs. PSAN is unable to prove robustness of any pro-
gram.

Program LOC PMVerify Time (s)
btree 493 5468.95
buffons_needle_problem 432 timeout
lists 551 timeout
pi 570 3565.19
examine_arttree 6379 7021.70
arttree 1793 timeout
fifo 207 4677.78
data_store 5512 timeout
mapcli 742 timeout
main 195 1765.79
reader 95 timeout
writer 67 5905.49
Average 1420 4734.15

6.2 Evaluation on robust programs

The robust case PMVERIFY solves, manpage.c, is a simple
program that opens a persistency memory pool and does
nothing. In this section, to further demonstrate the ability
of PMVERIFY to prove robustness, we manage to instrument
each of the 12 non-robust programs to manually produce a
set of robust programs.

More specifically, we insert a cache line flush instruc-
tion after each memory operation. In this way, the instru-
mented program is guaranteed to be robust. We then run
both PMVERIFY and PSAN on this new benchmark.

Table 3 shows the results of PMVERIFY and PSAN running
on the set of instrumented programs. PMVERIFY is able to
prove robustness of six programs with an average running
time of 4734.15 seconds, including the medium-sized pro-
grams examine_arttree and data_store. This shows the
ability to scale to larger robust programs. On the other hand,
PSAN is unable to prove robustness of any program.

Due to the increase in program size, the performance
of PMVERIFY on this benchmark degrades by around half.
We note that although adding a flush operation after every
memory operation introduces considerable redundancy and
increases the overall exploration space, the set of reachable
non-volatile states is smaller because of stronger constraints.
Since PMVERIFY checks for reachability under DPTSO model
first, we can avoid later steps of checking x86-TSO consis-
tency for some states. Therefore, the running time of PMVER-
IFY does not grow exponentially. In fact, all cases could be
finished within three hours if we do not consider time limits,

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

PMVERIFY: Robustness Verification for Checking Crash Consistency of Non-volatile Memory

124

104

Validated

5000 10000 15000

20000 25000 30000 35000

Accumulated Time (s)

Figure 7. Accumulated solving time of PMVERIFY on the 13 solved case. 35989.46 seconds are spent in total.

with an average running time of 6712 seconds. This shows
the efficacy of our tool PMVERIFY for verification of robust-
ness.

7 Related Works

Persistent Models. The early studies on NVMs rely on
certain persistency models, an extension of memory con-
sistency models, to prescribe constraints on the persistence
order. In [50], Pelly et al. classified these models into three
categories: strict persistency, epoch persistency and strand
persistency. The original definition of robustness in [22] is
based on strict persistency, the strongest model where any
recovered state is guaranteed to be an observable volatile
state [14, 31].

Epoch persistency under sequential consistency is de-
scribed in [50], while [32] proposes a persist barrier imple-
mentation that works on x86-TS0 [56]. The first formal def-
inition of epoch persistency is given by [30] under release
consistency, and [52] formally describes operational and
declarative semantics of epoch persistency under x86-TSO.
StrandWeaver [21] implements strand persistency in hard-
ware to minimally constrain persists to NVMs.

Recently, a line of work focused on formally defining
the persistency model of hardware architecture. [54] de-
velops PARMv8 model for ARMvS, followed by Px86 [53]
for Intel-x86. Later, the PEx86 model [51] is proposed with
formalized semantics of non-temporal stores. Alternative
models such as DPTSO [37] and view-based models for Intel-
x86 and Armv8 [10] are proposed to further develop these
formalisms.

Memory consistency checking. The essential idea of
multi-threaded program verification is to explore the pos-
sible executions caused by thread interleaving. [3] gives a
framework for using partial order relations to model possible
executions and encode program behaviors into a formula.
Several works expand on this idea and rely on bounded model
checking, such as lazy sequentialization [28] and a line of
work that employs the scheduling constraints-based abstrac-
tion refinement method (SCAR) [62—-64]. [17] proposes to

11

solve the difference logic-based ordering constraints more ef-
ficiently with DPLL(T) framework. [24] proposes an ordering
consistency theory and integrates a dedicated theory solver
into the DPLL(T) routine, which is extended to weak mem-
ory consistency in [15]. On the other hand, stateless model
checking (SMC) methods enumerate all interleavings with
respect to an equivalence class, i.e. a Mazurkiewicz trace.
Several algorithms have been proposed to further weaken
the ordering requirement and efficiently explore the search
space [1, 39, 40].

Persistency Bug Detection. Several tools have been de-
veloped to assist persistent programming, including testing
applications such as XFDetector [45], PMTest [46] and PMDe-
bugger [12]. Yat [43] is a model checker that exhaustively
explores all persistence orders and crash points. The model
checker Jaaru [23] reduces search space by focusing on the
last writes to each location. To our knowledge, the only auto-
mated verification tool for persistent memories is introduced
in [48], which utilizes an SMT-based method to formally
verify persistent invariants.

8 Conclusion

In this paper, we propose a novel approach to check robust-
ness, a sufficient condition for crash consistency of lock-free
programs running on non-volatile memories. Our algorithm
employs a search method to explore all partial executions
and non-volatile states, and check reachability of the state
under the pre-crash execution. This is achieved by reducing
the reachability checking problem to checking validity of an
instrumented execution under an alternative model DPTSO.
Our implementation is based on encoding the program into
a SMT formula and constraint solving. It succeeds in ro-
bustness verification of a set of example programs in PMDK
while the dynamic robustness violation tool PSAN fails. In
terms of robustness bug detection, our tool also outperforms
PSAN.

References

[1] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt
Jonsson, Carl Leonardsson, and Konstantinos Sagonas. Stateless model

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

(10]

(11]

(12]

(13]

(15]

checking for TSO and PSO. Acta Informatica, 54(8):789-818, December
2017.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani,
K. Narayan Kumar, and Prakash Saivasan. Deciding reachability
under persistent x86-TSO. Proceedings of the ACM on Programming
Languages, 5(POPL):1-32, January 2021.

Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial Orders
for Efficient Bounded Model Checking of Concurrent Software. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Veri-
fication, Lecture Notes in Computer Science, pages 141-157, Berlin,
Heidelberg, 2013. Springer.

Joy Arulraj and Andrew Pavlo. How to Build a Non-Volatile Mem-
ory Database Management System. In Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD 17, pages
1753-1758, New York, NY, USA, May 2017. Association for Computing
Machinery.

Hans-J. Boehm and Dhruva R. Chakrabarti. Persistence programming
models for non-volatile memory. ACM SIGPLAN Notices, 51(11):55-67,
June 2016.

Daniel Castro, Paolo Romano, and Jodo Barreto. Hardware Transac-
tional Memory meets memory persistency. Journal of Parallel and
Distributed Computing, 130:63-79, August 2019.

Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
Leveraging locks for non-volatile memory consistency. ACM SIGPLAN
Notices, 49(10):433-452, October 2014.

Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu. HiNFS: A Persistent
Memory File System with Both Buffering and Direct-Access. ACM
Transactions on Storage, 14(1):4:1-4:30, April 2018.

Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. Effi-
ciently detecting concurrency bugs in persistent memory programs. In
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’22, pages 873-887, New York, NY, USA, February 2022. Association
for Computing Machinery.

Kyeongmin Cho, Sung-Hwan Lee, Azalea Raad, and Jeehoon Kang.
Revamping hardware persistency models: View-based and axiomatic
persistency models for Intel-x86 and Armv8. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, pages 16-31, New York, NY,
USA, June 2021. Association for Computing Machinery.

Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: Making
persistent objects fast and safe with next-generation, non-volatile
memories. ACM SIGARCH Computer Architecture News, 39(1):105-118,
March 2011.

Bang Di, Jiawen Liu, Hao Chen, and Dong Li. Fast, flexible, and
comprehensive bug detection for persistent memory programs. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’21, pages 503-516, New York, NY, USA, April 2021. Association for
Computing Machinery.

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System
software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys 14, pages 1-15, New York,
NY, USA, April 2014. Association for Computing Machinery.

Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas, and Ste-
fanos Kaxiras. TSOPER: Efficient Coherence-Based Strict Persistency.
In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pages 125-138, February 2021.

Hongyu Fan, Zhihang Sun, and Fei He. Satisfiability Modulo Ordering
Consistency Theory for SC, TSO, and PSO Memory Models. ACM
Transactions on Programming Languages and Systems, 45(1):6:1-6:37,
March 2023.

12

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Anonymous Authors

Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad
Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. Witcher:
Systematic Crash Consistency Testing for Non-Volatile Memory Key-
Value Stores. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP 21, pages 100-115, New York, NY,
USA, October 2021. Association for Computing Machinery.

Cunjing Ge, Feifei Ma, Jeff Huang, and Jian Zhang. SMT Solving for the
Theory of Ordering Constraints. In Xipeng Shen, Frank Mueller, and
James Tuck, editors, Languages and Compilers for Parallel Computing,
pages 287-302, Cham, 2016. Springer International Publishing.

Kaan Geng, Michael D. Bond, and Guoqing Harry Xu. Crafty: Effi-
cient, HTM-compatible persistent transactions. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2020, pages 59-74, New York, NY, USA, June
2020. Association for Computing Machinery.

Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and
Pratap Subrahmanyam. Go-pmem: Native support for programming
persistent memory in go. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 859-872. USENIX Association, July 2020.
Ellis Giles, Kshitij Doshi, and Peter Varman. Continuous checkpointing
of HTM transactions in NVM. ACM SIGPLAN Notices, 52(9):70-81,
June 2017.

Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Relaxed Persist Or-
dering Using Strand Persistency. In 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 652-665,
May 2020.

Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoging Harry Xu, and Brian
Demsky. Checking robustness to weak persistency models. In Pro-
ceedings of the 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, PLDI 2022, pages
490-505, New York, NY, USA, June 2022.

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. Jaaru: Effi-
ciently model checking persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS °21, pages
415-428, New York, NY, USA, April 2021. Association for Computing
Machinery.

Fei He, Zhihang Sun, and Hongyu Fan. Satisfiability modulo order-
ing consistency theory for multi-threaded program verification. In
Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2021, pages
1264-1279, New York, NY, USA, June 2021. Association for Computing
Machinery.

Fei He, Zhihang Sun, and Hongyu Fan. Deagle: An SMT-based Verifier
for Multi-threaded Programs (Competition Contribution). In Dana
Fisman and Grigore Rosu, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 424-428, Cham, 2022. Springer
International Publishing.

Terry Ching-Hsiang Hsu, Helge Briigner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. NVthreads: Practical Persistence for Multi-
threaded Applications. In Proceedings of the Twelfth European Confer-
ence on Computer Systems, EuroSys ’17, pages 468-482, New York, NY,
USA, April 2017. Association for Computing Machinery.

Intel Corporation. Persistent Memory Development Kit.
https://pmem.io/pmdk/, 2023.

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore
La Torre, and Gennaro Parlato. Bounded Model Checking of Multi-
threaded C Programs via Lazy Sequentialization. In Armin Biere and
Roderick Bloem, editors, Computer Aided Verification, Lecture Notes in
Computer Science, pages 585-602, Cham, 2014. Springer International
Publishing.

Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. ACM SIGARCH

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

PMVERIFY: Robustness Verification for Checking Crash Consistency of Non-volatile Memory

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(43]

[44]

Computer Architecture News, 44(2):427-442, March 2016.

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Lin-
earizability of Persistent Memory Objects Under a Full-System-Crash
Failure Model. In Cyril Gavoille and David Ilcinkas, editors, Distributed
Computing, pages 313-327, Berlin, Heidelberg, 2016. Springer.

Jungi Jeong and Changhee Jung. PMEM-spec: Persistent memory
speculation (strict persistency can trump relaxed persistency). In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’21, pages 517-529, New York, NY, USA, April 2021. Association for
Computing Machinery.

Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Effi-
cient persist barriers for multicores. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO-48, pages 660—-671,
New York, NY, USA, December 2015. Association for Computing Ma-
chinery.

Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. SplitFS: Reducing software
overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP ’19,
pages 494-508, New York, NY, USA, October 2019. Association for
Computing Machinery.

Tomasz Kapela. An introduction to pmemcheck (part 1) - ba-
sics. https://pmem.io/blog/2015/07/an-introduction-to-pmemcheck-
part-1-basics/, July 2015.

T. Kawahara, K. Ito, R. Takemura, and H. Ohno. Spin-transfer torque
RAM technology: Review and prospect. Microelectronics Reliability,
52(4):613-627, April 2012.

Terence Kelly. Is persistent memory persistent? Communications of
the ACM, 63(9):48-54, August 2020.

Artem Khyzha and Ori Lahav. Taming x86-TSO persistency. Proceed-
ings of the ACM on Programming Languages, 5(POPL):1-29, January
2021.

Michalis Kokologiannakis, Ilya Kaysin, Azalea Raad, and Viktor
Vafeiadis. PerSeVerE: Persistency semantics for verification under ext4.
Proceedings of the ACM on Programming Languages, 5(POPL):43:1—
43:29, January 2021.

Michalis Kokologiannakis, lason Marmanis, Vladimir Gladstein, and
Viktor Vafeiadis. Truly stateless, optimal dynamic partial order reduc-
tion. Proceedings of the ACM on Programming Languages, 6(POPL):49:1—
49:28, January 2022.

Michalis Kokologiannakis and Viktor Vafeiadis. HMC: Model Check-
ing for Hardware Memory Models. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 20, pages 1157-1171, New
York, NY, USA, March 2020. Association for Computing Machinery.
Michalis Kokologiannakis and Viktor Vafeiadis. GenMC: A Model
Checker for Weak Memory Models. In Alexandra Silva and K. Rus-
tan M. Leino, editors, Computer Aided Verification, pages 427-440,
Cham, 2021. Springer International Publishing.

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. Strata: A Cross Media File System.
In Proceedings of the 26th Symposium on Operating Systems Princi-
ples, SOSP °17, pages 460-477, New York, NY, USA, October 2017.
Association for Computing Machinery.

Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,
and Jeff Jackson. Yat: A validation framework for persistent memory
software. In 2014 USENIX Annual Technical Conference (USENIX ATC
14), pages 433-438, Philadelphia, PA, June 2014. USENIX Association.
Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H.
Noh, and Changhee Jung. iDO: Compiler-Directed Failure Atomicity
for Nonvolatile Memory. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 258-270, October
2018.

13

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-Failure Bug Detection in Per-
sistent Memory Programs. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’20, pages 1187-1202, New York, NY,
USA, March 2020. Association for Computing Machinery.

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira
Khan. PMTest: A Fast and Flexible Testing Framework for Persistent
Memory Programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 19, pages 411-425, New York, NY, USA,
April 2019. Association for Computing Machinery.

Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. Persis-
tent memcached: Bringing legacy code to Byte-Addressable persistent
memory. In 9th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 17), Santa Clara, CA, July 2017. USENIX Associa-
tion.

Tason Marmanis and Viktor Vafeiadis. SMT-Based Verification of Per-
sistency Invariants of Px86 Programs. In Akash Lal and Stefano
Tonetta, editors, Verified Software. Theories, Tools and Experiments., Lec-
ture Notes in Computer Science, pages 92-110, Cham, 2023. Springer
International Publishing.

Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. Fast crash recovery in RAMCloud. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 29-41, New York, NY, USA, October 2011.
Association for Computing Machinery.

Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory per-
sistency. ACM SIGARCH Computer Architecture News, 42(3):265-276,
June 2014.

Azalea Raad, Luc Maranget, and Viktor Vafeiadis. Extending Intel-x86
consistency and persistency: Formalising the semantics of Intel-x86
memory types and non-temporal stores. Proceedings of the ACM on
Programming Languages, 6(POPL):1-31, January 2022.

Azalea Raad and Viktor Vafeiadis. Persistence semantics for weak
memory: Integrating epoch persistency with the TSO memory model.
Proceedings of the ACM on Programming Languages, 2(OOPSLA):137:1-
137:27, October 2018.

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. Persis-
tency semantics of the Intel-x86 architecture. Proceedings of the ACM
on Programming Languages, 4(POPL):11:1-11:31, January 2020.
Azalea Raad, John Wickerson, and Viktor Vafeiadis. Weak persistency
semantics from the ground up: Formalising the persistency seman-
tics of ARMv8 and transactional models. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):135:1-135:27, October 2019.
Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu. ThyNVM: Enabling software-transparent crash
consistency in persistent memory systems. In Proceedings of the 48th
International Symposium on Microarchitecture, MICRO-48, pages 672—
685, New York, NY, USA, December 2015. Association for Computing
Machinery.

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,
and Magnus O. Myreen. X86-TSO: A rigorous and usable program-
mer’s model for x86 multiprocessors. Communications of the ACM,
53(7):89-97, January 2010.

Zhihang Sun, Hongyu Fan, and Fei He. Consistency-preserving propa-
gation for SMT solving of concurrent program verification. Proceedings
of the ACM on Programming Languages, 6(O0OPSLA2):158:929-158:956,
October 2022.

Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. Aerie: Flexible file-system interfaces to storage-class memory.
In Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 1-14, New York, NY, USA, April 2014. Association

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

[59]

[60]

[61]

[62]

[63]

[64]

[65]

for Computing Machinery.

Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A file system for
storage class memory. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC ’11, pages 1-11, New York, NY, USA, November 2011. Association
for Computing Machinery.

Jian Xu and Steven Swanson. NOVA: A log-structured file system
for hybrid Volatile/Non-volatile main memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16), pages 323-338,
Santa Clara, CA, February 2016. USENIX Association.

Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy
Rudoff. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory
File System. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 478-496, New York, NY, USA, October 2017.
Association for Computing Machinery.

Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. YOGAR-
CBMC: CBMC with Scheduling Constraint Based Abstraction Refine-
ment. In Dirk Beyer and Marieke Huisman, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 422-426,
Cham, 2018. Springer International Publishing.

Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. Scheduling con-
straint based abstraction refinement for weak memory models. In
Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE ’18, pages 645-655, New York, NY,
USA, September 2018. Association for Computing Machinery.
Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. On Scheduling
Constraint Abstraction for Multi-Threaded Program Verification. IEEE
Transactions on Software Engineering, 46(5):549-565, May 2020.
Bohong Zhu, Youmin Chen, Qing Wang, Youyou Lu, and Jiwu Shu.
Octopus+: An RDMA-Enabled Distributed Persistent Memory File
System. ACM Transactions on Storage, 17(3):19:1-19:25, August 2021.

14

Anonymous Authors

1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

PMVERIFY: Robustness Verification for Checking Crash Consistency of Non-volatile Memory

A Proof

Theorem 2. Given an instrumented execution G valid un-
der x86-TSO, the non-volatile state s, induced by rrf is
reachable under G’ iff conspprso(G*) holds.

Proof. To clarify, we use suffixes TSO and DPTSO to distin-
guish the respective co and hb order in Definition 5 and
Definition 8. Assume that there are m shared variables V), =
{x1,...,%p} and |G*.ENW| + |G .ENFL| = n, i.e. there are n
store and flush events in total.

(<): Suppose conspprso(G') holds.

To prove s, is reachable, let hbrsg = hbpprso and corgg =

pprso- We first arbitrarily construct a persist order nvo
that satisfies the two axioms per Definition 1. The first axiom
requires nvo to conform with the per-location store order
of hbrsp, which is exactly corsg in this case. Note nvo is a
total order over all stores and flushes. Let the sequence of
events induced by nvo be ey, ..., e,, and for each variable x;,
let s,(x;) equals the store e, where 1 < k; < n.

Let e be the last flush event in the sequence. Consider u =
max(ky, ka, ..., km, f). Now we have the prefixé = ey, ..., e,
and try to adjust nvo such that € induces s,. In other words,
it requires V1 < i < m,Vk; < j < u.loc(e;) # x; holds.

This is ensured by repeatedly reordering events in nvo
while adhering to the two axioms. At each step, we pick a
shared variable x; for which the above condition does not
hold and find the event e, such that Vk; < j < u.loc(e;) =
x; — j < p,ie. e, is the last store to x; in the range [ex,, e,].
We then rearrange nvo so that e, succeeds e,. Apparently,
the new persist order does not infringe the first axiom, since
ey is the last store in the range and no corsp order is violated
by the reorder.

We now prove that the second axiom is not violated. From
the above assumption, we know (e,,e,) € corso, so for
any flush event e, on x; we also have (eg4, e,) € dtpo. Since
conspprso(G') holds, the first requirement of Definition 8
gives (ep, eq) ¢ (ppo U rf U fr U copprso)* which simplifies
to (ep, eq) & hbrso. In this case, the premise of the second
axiom does not hold, and thus e, is not nvo-ordered with
any flush events. e, is therefore safe to be reordered.

Since the reorder of e, in nvo does not violate the two
axioms, after finite steps, the prefix € must satisfy the afore-
mentioned condition and induces s,, thus we have proved s,
is reachable under G'.

(—): Suppose s, is reachable, then for some corsg, hbrs,
there is a persist order nvo and its prefix € = ey, ..., e, that
induces s,. Let copprsg = COTs0. For each variable x;, let s, (x;)
equals the store e, where 1 < k; < u.

Assume some store e, to x; happens after e, then (e, e,) €

150- By definition of a reachable state, we have p > u. Note
that the prefix contains all flush events. Therefore, all flushes
eq to x; must be nvo-ordered before e,. This entails that
(eq> €p) € hbrsg, otherwise the first axiom of nvo is violated.

15

Now consider the validity of G' under DPTSO. Require-
ment (2) of Definition 8 follows directly from Definition 5.
Suppose that requirement (1) is violated. Since G’ is valid
under x86-TS0, there must be a flush event ey, store event e,
and e, on x; such that (eg, e,) € dtpo and (ep, eq) € hbpprso.
From the reasoning above, we have (eg, e,) € hbrso.

We now consider the path from e, to e, on the directed
graph. If no dtpo edge is on the path, then we have (e, e4) €

hbrso. If there are one or more dtpo edge on the directed
path, we note that any (ej, e;) € dtpo entails (e, e;) €
hbrsg by the argument above as well. Therefore we also have
(ep, €q) € hbrsg In either case, it contradicts the assumption
that G is valid under x86-TS0. We hereby prove requirement
(1) holds, i.e. COHSDPTSQ(Gi) holds. [m}

Lemma 2. If for every alternation G’ of G, consrtso(G’) does
not hold, then the observed state s, must be unreachable
under x86-TS0.

Proof. Suppose the state is reachable under x86-TSO and let
G’ be an execution that induces this state, thus constsg(G”’)
holds. Since x86-TSO (Definition 5) only requires acyclicity
of certain orders, by restricting G”’.E and the ordering con-
straints of G’ on G, we can always construct an execution
G’ such that constsg(G’) also holds. G’ is an alternation of
G, thus contradicts with the assumption. O

B Atomic Block

Intuitively, regarding the recovery observer as atomic forces
all read events in it to happen at the same time.

Definition 9. Given a partial instrumented execution G’,

regarding the recovery observer as atomic block yield the

partial execution atomic(G’) = (E’, Ej, po’, rf’) such that
e E' = (G.E\REC) U {e;}

[] E(,) = EO
e po’ =po
o rf’=rf\rrfU{(e,er) | Jes € REC.(e1,e3) € rrf}

where e, is a fresh event with Tid(e,) = P,.

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 x86 Persistency Model
	2.2 Program and Execution
	2.3 Crash Consistency and Robustness

	3 Checking Reachability of a Non-volatile State
	3.1 Recovery Observer
	3.2 Reduction to Validity Checking

	4 Robustness Checking Algorithm
	5 Integration with DPLL(T)
	5.1 Encoding
	5.2 DPLL(T) and Exploration

	6 Implementation and Evaluation
	6.1 Experimental Results on PMDK benchmark
	6.2 Evaluation on robust programs

	7 Related Works
	8 Conclusion
	References
	A Proof
	B Atomic Block

