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Abstract. The paper presents a novel probabilistic learning approach
to state separation problem which occurs in the counterexample guided
abstraction refinement. The method is based on the sample learning
technique, evolutionary algorithm and effective probabilistic heuristics.
Compared with the previous work by the sampling decision tree learn-
ing solver, the proposed method outperforms 2 to 4 orders of magnitude
faster and the size of the separation set is 76% smaller on average.

1 Introduction

Abstraction is one of the most important techniques when applying model check-
ing to large scale systems. The hypostasis of abstraction is to eliminate the ir-
relevant information to reduce the system model. The counterexample-guided
abstraction refinement (CEGAR) [1] is an effective strategy in application of ab-
straction. In CEGAR, the verification is performed in an abstract-check-refine
fashion, and the refinement is guided by counterexamples. The counterexample
contains the critical clues about the cause of the violation. If there exists a real
path in the concrete model that simulates the counterexample, one can find a
real bug, otherwise the counterexample is spurious and one has to refine the
abstract model to eliminate such a spurious path.

Many counterexample-guided abstraction refinement strategies have been
proposed [2–7]. Some recent methods on automatic abstraction [6,8–10] employ
the unsatisfiable core saved in the SAT solver, and the abstraction is based on
the proofs provided by the SAT solver, but not on refuting the counterexamples.
In [3], the abstraction is performed by making a set of state variables invisible.
If the counterexample is spurious, we need to refine the abstract model. State
separation problem poses the main hurdle during the refinement.

In this paper, we propose a novel probabilistic learning approach to state
separation problem (SSP) which occurs in the abstraction refinement. Our ap-
proach incorporates sample learning technique, evolutionary algorithm and ef-
fective heuristics in a synergistic way. Experimental results demonstrate the
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promising performance of our approach. In comparison with the previous work
by the sampling decision tree learning solver [3], the proposed method outper-
forms 2 to 4 orders of magnitude faster and the size of the separation set is 76%
smaller on average.

The remainder of the paper is organized as follows. In Section 2, we introduce
some preliminaries. In Section 3, we formally define the problem. In Section 4,
we present our probabilistic learning approach. The experimental results are
reported in Section 5. Finally, Section 6 concludes the paper.

2 Preliminaries

We use state transition systems to model systems. Given a non-empty set of
atomic propositions AP , let M = 〈S, S0, R, L〉 be a transition system where

– S is the set of states.
– S0 ⊆ S is the set of initial states.
– R ⊆ S × S is the transition relation.
– L : S → 2AP is the labeling function.

Let V = {v1, v2, . . . v|V |} be the universal domain of system variables. We
assume that the variables in V range over a finite set D. A valuation for V
corresponds to a state in S.

As in [3], we think of V as two parts: the set of visible variables (denoted
as VS) and the set of invisible variables (denoted as VN ). Invisible variables
are those that we will ignore when build the model. For example, consider a
digital system with latches. The subset of the latches in which we are interested
is considered as visible variables, while the remaining latches are regarded as
invisible.

In the original (non-abstracted) model, all system variables are visible. The
abstraction process is essentially equivalent to selecting and setting some of the
visible variables as invisible. Oppositely, the refinement process is to make some
of the invisible variables as visible.

Let M be the original model. We use M̃ = 〈S̃, S̃0, R̃, L̃〉 to denote the abstract
model, where the definitions of S̃, S̃0 R̃ and L̃ follow those in M .

Notice that we require our abstraction to be conservative, that is: R̃(s̃1, s̃2)
holds if and only if there exist s1 in h−1(s̃1) and s2 in h−1(s̃2), such that R(s1, s2)
holds, where h is the abstract function from S to S̃. Such a conservative trans-
lation may introduce additional behaviors into the abstract model. Consider the
example shown in Fig. 1, after mapping the concrete states 7, 8, 9 to III, and
10 to IV, respectively, the additional transitions 7 → 10, 8 → 10 are added
implicitly to the abstract model.

Given an abstract path P̃ = 〈s̃1, s̃2, . . . s̃m〉 in M̃ and a concrete path P =
〈s1, s2, . . . sm〉 in M , we define the simulation relation ∼ as follows:

P ∼ P̃ ⇐⇒ s1 ∈ S0 and s1 ∈ h−1(s̃1), s2 ∈ h−1(s̃2), . . . sm ∈ h−1(s̃m). (1)
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Fig. 1. A spurious counterexample

In the counterexample-guided approach, if we find a counterexample P̃ in the
abstract model, we check if there is a concrete path P in M such that P ∼ P̃ . If
it is true, we find a real bug. Otherwise, the counterexample is spurious. In the
case of the spurious counterexample, we need to compute the failure index iF ,
i.e. the maximal index iF , iF < m, such that there exists a concrete path in M
which simulates the iF prefix of P̃ . With the failure index, we define the failure
states to be the group of concrete states F = {s|s ∈ h−1( ˜siF

)} in M . Consider
the example in Fig. 1, the failure index is III, and the failure states are 7, 8 and
9.

The failure states can be partitioned into three sets.

1. the set of deadend states Fd: s ∈ Fd if and only if
– s ∈ F ;
– there exists a concrete path to s which simulates the iF prefix of P̃ .

2. the set of bad states Fb: s ∈ Fb if and only if
– s ∈ F ;
– there exists no concrete path to s which simulates the iF prefix of P̃ ;
– there exists a transition from s to some states in h−1(siF +1).

3. F − Fd − Fb.

3 State Separation Problem

The State Separation Problem (SSP) [3] is to find a subset Λ of the invisible
variables in VN such that

∀si ∈ Fd,∀tj ∈ Fb,∃vr ∈ Λ, si(vr) �= tj(vr). (2)

The set Λ is named as separation set. We usually want the separation set to
be as minimal as possible so that the corresponding refined model is minimal.
This problem is known as the minimal state separation problem (MSSP).

Consider the abstract counterexample P̂ = 〈I, II, III, IV〉 shown in Fig. 1. It
is spurious since there is no corresponding path in the concrete model. For this
instance, the failure states are 7, 8 and 9. To eliminate the counterexample, we



need to make some variables visible to distinguish the sets of states {7, 8} and
{9}.

In realistic systems, the size of failure states is usually very large. Moreover,
since the state separation problem is embedded in the abstract-check-refine it-
eration, each time a spurious counterexample is found, a solution to the SSP
needs to be provided. Thus, there is a strong demand for the effectiveness of
SSP solvers in terms of time and memory.

In [3], an integer linear programming (ILP) model for the minimal state
separation problem (MSSP) has been presented, and both an ILP solver and
a decision tree learning (DTL) solver are employed for solving this problem.
The general ILP solver attempts to enumerate the solution space to find the
optimal solution for the state separation problem. However, since the minimal
state separation problem is NP-hard, it is infeasible for the ILP solver to find
the solution when the problem size is large. Note that we do not necessarily need
the solution to be minimal. An approximate optimum may still good enough for
the refinement process, nevertheless, the resulting refined model may be slightly
bigger. In [3], an improved solver was proposed, which is based on the decision
tree learning. The DTL algorithm trains the decision tree based on the input
examples. It utilizes the well-trained decision tree to classify data. With some
adjustments on the parameters, the DTL algorithm is used to solve the state
separation problem, and the structure of its decision tree just gives a possible
solution. Obviously, the DTL approach is an approximate method. Its solution
precision relies on the number of input examples. If there are a sufficient number
of examples, the solution could be guaranteed. However, if the input examples
are too many, the time cost is extremely high. Thus, there is a trade-off between
the solution precision and the solving cost. Furthermore, in coping with the large
problem size, an efficient sampling technique has been applied to the DTL solver.
Experimental results show that DTL solver with efficient sampling technique (for
short, SDTL) outperforms the ordinary DTL solver [2].

3.1 Problem Formulation

In this section, we first prove the NP-hardness of MSSP by reducing it to the
set covering problem. Then we present a new mathematical model for MSSP.

Definition 1. Given a pair of states 〈s, t〉, s ∈ Fd, t ∈ Fb, if there exists a
variable v, such that s(v) �= t(v), we say that the state pair 〈s, t〉 is covered by
the variable v.

Proposition 1. The MSSP is reducible to the set covering problem.

Proof. Consider Fd × Fb as the universal set. Obviously, each variable in VN

covers a subset of elements in Fd ×Fb, i.e. each variable corresponds to a subset
of Fd × Fb. Then according to the definition, the MSSP is essentially to find a
minimal collection of subsets of Fd×Fb such to cover all the elements in Fd×Fb.
Obviously, it is a set covering problem. �



Given a MSSP instance, assume there are n invisible variables and m state
pairs. For simplicity, we use pj , 1 ≤ j ≤ m, to denote a state pair in Fd ×Fb, i.e.
Fd × Fb = {p1, p2, . . . , pm}. We define the decision variables as follows:

xi =

{
1, if vi ∈ Λ,

0, else.

Assume pj = 〈spj , tpj 〉, where

spj = 〈spj

1 , s
pj

2 , . . . , spj
n 〉

and
tpj = 〈tpj

1 , t
pj

2 , . . . , tpj
n 〉.

According to (2), pj must be covered by certain variable in the separation set,
i.e.

∃i ∈ Λ, s
pj

i �= t
pj

i .

It is equivalent to: ∑
i=1 to n

(spj

i ⊕ t
pj

i ) · xi ≥ 1, (3)

where ⊕ is the exclusive or operator, and xi the decision variable of vi.
Let A = {aij}m×n be a coefficient matrix where

aij = s
pj

i ⊕ t
pj

i , for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Obviously, aij equals 1 if and only if the state pair pj is covered by the variable
vi. Then the MSSP can be formulated as:

min
n∑

i=1

xi, where

n∑
i=1

aijxi ≥ 1, j = 1, . . . , m (4)

xi = {0, 1}, i = 1, . . . , n (5)

where equations (4) and (5) characterize the feasible solutions.

4 Our Approach

In the verification process, note that we do not necessarily need the solutions of
SSP to be minimal. Thus, it is possible for us to use some approximate method
to solve this problem. In [3], a decision tree learning solver is proposed. In this
paper, we present a novel learning approach based on the sample learning tech-
nique, evolutionary algorithm and efficient heuristics. Experimental results show
the better performance of our solver.



4.1 Sample Learning Technique

In practice, the number of failure states of SSP is very large. It is not easy to
determine the separation set for large scale systems. In [3], an idea of inferring
the separation set by learning from some selected samples, instead of the entire
sets, was introduced.

The main procedure of our Sample Learning Approach (SLA) is shown in
Alg. 1. The method avoids the complexity of SSP by considering only samples
of the set of state pairs. This algorithm is iterative. By adjusting the parameters
MAX ITER and MAX SAM, we set the maximal number of iterations and the
maximal number of samples picked in every iteration. A sample here is a pair
of states 〈s, t〉 ∈ Fd × Fb. The algorithm randomly picks MAX SAM samples in
every iteration, among which only those that are not covered by the present sep-
aration set (we call them efficient samples) can be added into the set SAMPLE.
The REQ SIZE is a preassigned parameter. When there are enough efficient
samples generated, the set of samples will be renewed, and then the separation
set is computed.

Note that we use the covering concept to judge the validity of the given sam-
ples. The samples that are already covered by the present separation set will be
directly discarded. Given an appropriate value to the REQ SIZE, many samples
will be discarded directly according to their coverage to the present separation
set, and thus the number of invoking EA solver will be greatly reduced.

Let Aj = 〈a0j , a1j , . . . , anj〉 be the coefficient vector corresponding to pj .
According to (3), it is not difficult to determine the coverage of pj to the present
separation set Λ. It is equivalent to testing true value of the following formula:∑

i=1 to n

aij · xi ≥ 1.

4.2 Probabilistic Evolutionary Algorithm

Evolutionary algorithm (EA) [11] is a powerful search and optimization paradigm.
It utilizes the principles of natural evolution and “survival of the fittest”. The
EA elaborates on many solutions at the same time. The main characteristic of
an evolutionary algorithm is population-based. Starting with a set of initial solu-
tions, evolutionary algorithms explore the solution space through the simulated
evolution. Solutions are evaluated by their fitness. The more suitable they are,
the more chances they have to survive and be reproduced.

There are many studies on applying evolutionary algorithms to the set cover-
ing problem [12–15]. The experimental results listed in the above literatures show
the good performance of applying EA to the set covering problem. However, we
cannot apply EA directly to the SSP, since the huge number of failure states.
Essentially, SSP is a special case of set covering problem, where the number of
constraints is much more than the number of variables. By applying the sample
learning technique, we avoid the complexity of such huge number of constraints.



Algorithm 1 Outline of the sample learning algorithm
Λ := φ
SAMPLE := φ
NEWSAMPLE := φ
for i := 1 to MAX ITER do

for i := 1 to MAX SAM do
randomly pick 〈s, t〉 from Fd × Fb

if 〈s, t〉 cannot be covered by Λ then
NEWSAMPLE := NEWSAMPLE ∪〈s, t〉

end if
end for
if sizeof(NEWSAMPLE) ≥ REQ SIZE then

SAMPLE := SAMPLE ∪ NEWSAMPLE
call solver to compute Λ based on SAMPLE
NEWSAMPLE := φ

end if
end for

Algorithm 2 Evolutionary algorithm
1: Generate a initial population
2: while not (terminal condition) do
3: Update the chromosomes by crossover and mutation operations
4: Evaluate the fitness of each chromosome
5: Select chromosomes to form a new population
6: end while

We use EA as the central solver embedded in the learning structure and used
for computing the separation set. The EA procedure is shown in Alg. 2.

We reinforce the basic EA in a way such that problem-specific knowledge is
incorporated. We observe following properties in SSP, which derive the effective
heuristics:

1. For a state pair, there may be multiple variables that can cover it.
2. If the variables in a separation set cover all state pairs in Fd × Fb, then the

corresponding solution is already a feasible solution.

In order to get a feasible solution more quickly, an effective strategy is to
assign larger probabilities to the variables which cover more state pairs. Denote
EV (v) as the number of state pairs covered by variable v. Based on the statistic
analysis on the sets of states Fd and Fb, the EV (v) values for all variables can
be evaluated easily in advance of the execution of our algorithm.

Probabilistic initialization We use a n-bit binary string as the chromosome
structure where n is the number of invisible variables. A value of 1 for the i-th
bit implies that the variable vi is selected into the separation set.

We generate pop size chromosomes to initialize the population. To obtain a
random chromosome, the involved method acts as follows:



1. randomly generate an integer e (0 ≤ e ≤ n), and use it as the size of the
separation set.

2. randomly select e variables into the separation set.
3. the probability of each variable to be selected is proportional to the number

of state pairs it covers.

Probabilistic mutation Let Pm be the probability of mutation. We adopt the
two-point mutation. For a traditional two-point mutation, it randomly selects
two points r1 and r2 in the chromosome, and then replaces the value of every
character between sites r1 and r2 with a random value (0 or 1).

In our probabilistic two-point mutation, the mutation sites r1 and r2 are
selected similarly, however, the value of each character between site r1 and r2

are replaced in a heuristic way as follows:

1. randomly generate a integer e (0 ≤ e < r2 − r1).
2. randomly select e genes between sites r1 and r2 into the separation set.
3. the probability of each gene between sites r1 and r2 to be chosen is propor-

tional to the number of state pairs it covers.

Probabilistic crossover We let Pc be the probability of crossover. We adopt
the uniform crossover operator. It is claimed that the uniform crossover has
a better recombination potential to combine smaller building blocks into larger
ones [16,17]. The uniform crossover works with a crossover mask which is created
at random. The mask has the same length as the chromosome structure, and the
parity of the bits indicates the corresponding parent.

We follow the probabilistic crossover operator defined in [12]. Empirical stud-
ies show that this crossover operator is suitable for the set covering problem.
Probabilistic crossover is derived from the standard uniform crossover. For the
probabilistic crossover operator, the probability of a parent to be chosen for
contributing its variable to the offspring is proportional to its fitness value. For-
mally, given parents P = 〈P1P2 . . . Pn〉 and Q = 〈Q1Q2 . . . Qn〉, the crossover
mask M = 〈M1M2 . . . Mn〉 is generated as follows:

Mi = 0 with the probability p =
fitness(Q)

fitness(P ) + fitness(Q)
Mi = 1 with the probability 1 − p

Solution improvement When applying evolutionary operators to the chro-
mosomes, the resulting solutions are no longer guaranteed to be feasible. We
implemented two strategies to deal with infeasible solutions.

The first strategy is to apply penalty function to deteriorate the optimality
of an infeasible solution by adding a penalty cost to its objective function. In our
approach, after the penalty function applied, the optimization model becomes:

Minimize
n∑

i=1

xi +
m∑

j=1

f(
n∑

i=1

aijxj ≥ 1),



where f(·) is the penalty function for unsatisfying the constraints (4). The
penalty function has a strong influence on the performance of the whole al-
gorithm. In our approach, we implement a simple and efficient penalty function
as follows:

f(x) =

{
0, if x is true,
BIGVALUE, otherwise.

The second strategy way is to apply a heuristic operator to transform the in-
feasible solution into feasible solution. We implemented the heuristic feasibility
operator proposed in [12] with minor modifications. By applying this heuris-
tic operator, not only can the infeasible solutions be transformed into feasible
solutions, but also the feasible solutions can be improved by eliminating the
redundant variables. Algorithm 3 gives the framework of the operator.

Algorithm 3 Heuristic feasibility operator
1: for each Aj , compute the number of variables that are in the separation set and

can cover this row, i.e.

nj =

nX
i=1

aijxi, for 1 ≤ j ≤ m.

2: while (∃j ∈ [1, m], nj = 0) do
3: find the best variable v∗ which is not in the separation set and can cover maximal

number of uncovered rows, i.e.

n
max
i=1

(
mX

j=1

(ni = 0) ∧ (xj = 0) ∧ (aij = 1)

)
.

4: add v∗ into the solution and renew nj for each Aj .
5: eliminate the redundant variables, i.e. the variables satisfying:

∀j ∈ [1, m], (aij = 1) ∧ (xi = 1) → nj ≥ 2.

6: end while

5 Experimental Results

To validate our approach, we implemented our probabilistic learning approach
using C++ language and ran on a PC with Intel� Celeron� 2.4GHz CPU and
512M RAM. All benchmarks are created using a random generator. The param-
eters are set as: pop size = 40, MaxIter = 1000, Pm = 0.25, Pc = 0.5, where
pop size is the size of the population, MaxIter is the maximal number of gener-
ations, Pm and Pc are the probabilities of mutation and crossover, respectively.

The experiment compares the performance of our solver to the latest pub-
lished sampling decision tree learning (SDTL) solver [2,3]. The results are listed



in Table 1. Benchmark is the name of the tested benchmark. The benchmark’s
name implies the parameters. For example, the name “ran k30 m500 n300” in-
dicates that the number of invisible variables is 30, the number of deadend states
is 500, and the number of bad states is 300, respectively. The time column lists
the runtime in seconds, and the |SepSet| column gives the size of the resulting
separation set. We evaluate the efficiency of the solver by its runtime, and the
solution quality by the size of the separation set. In order to force termination,
we impose a limit of two hours on the running time. We denote by ‘timeout’ in
the time column the examples that could not be solved in this time limit.

The results in Table 1 are arranged into six groups. In the former two groups,
we let the numbers of deadend states and bad states be fixed, and let the number
of invisible variables increase, we observed that all the solvers’ run times increase
in most of cases. In the latter four groups, we fixed the number of invisible
variables, and let the number of deadend states and bad states increase, we
observed that the SDTL solver quickly blows up, whereas our solver still works
well. Even for the benchmarks that are solvable by both the solvers, the runtime
of our solver are 2 to 4 orders of magnitude smaller than that of the SDTL
solver. Regarding the separation set size, the separation set found by our solver
is smaller 76% than that by the SDTL solver on average.

6 Conclusion

We investigated the state separation problem in this paper. A novel probabilistic
learning approach was presented for solving this problem. Experimental results
showed the efficiency and power of our approach. Compared with the latest work
using the sampling decision tree learning (SDTL) solver, the proposed approach
outperforms 2 to 4 orders of magnitude faster and the size of the separation set
is 76% smaller on average.
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