
VCS: A Verifier for Component-Based Systems�

Fei He1,2,3, Liangze Yin1,2,3, Bow-Yaw Wang4, Lianyi Zhang1,2,3,
Guanyu Mu1,2,3, and Wenrui Meng1,2,3

1 Tsinghua National Laboratory for Information Science and Technology (TNList)
2 School of Software, Tsinghua University

3 Key Laboratory for Information System Security, Ministry of Education, China
4 Academia Sinica, Taiwan

Abstract. This paper presents the VCS verification tool for the BIP
modeling language. The tool admits sophisticated interactions specified
in BIP models. Particularly, private variables in components can be up-
dated by user-defined interactions. On the verification back-end, the BIP
models are formulated as transition systems. Several efficient algorithms
are proposed for verification of transition systems on safety properties.
Experimental results show very promising performance of VCS. It runs
several magnitudes faster than NuSMV for a variety of examples.

1 Introduction

Component-based design has attracted significant interests from both industry
and academy. Recent modeling languages such as AADL [1] and BIP [2] offer
mechanisms for specifying sophisticated interactions among components. In the
BIP language, for instance, components expose their private variables through
ports, and the exposed private variables can be updated during user-specified
interactions. The feature allows users to specify intricate interactions among
components, but also complicates the semantics of the modeling language. Im-
plementing verification tools for the BIP language can be demanding.

VCS 1 is a verification tool for models specified in the BIP language. In
contrast to the existing BIP model checker DFinder [3], VCS allows to specify
interactions with data transfer among components. Users are able to fully exploit
features of the BIP language in their models. Additionally, the VCS tool verifies
properties specified in the Computation Tree Logic (CTL) as well as deadlock
freedom on BIP models.

To the best of our knowledge, the VCS tool is the first BIP model checker
which admits interactions with data transfer. An efficient SAT-based verification
engine is implemented. Experiments show very promising performance of the tool
in verification of component-based systems.

� This work was supported by the National 973 Plan (No. 2010CB328003), the NSF
of China (No. 61272001, 60903030, 91218302), the Chinese National Key Technol-
ogy R&D Program (No. SQ2012BAJY4052), the NSC 101-2221-E-001-007, and the
Tsinghua University Initiative Scientific Research Program.

1 http://code.google.com/p/bip-vcs/

D. Van Hung and M. Ogawa (Eds.): ATVA 2013, LNCS 8172, pp. 478–481, 2013.
c© Springer International Publishing Switzerland 2013

http://code.google.com/p/bip-vcs/


VCS: A Verifier for Component-Based Systems 479

2 Model Representation

The BIP model is defined in a hierarchical way. The model behaviors are de-
scribed in atomic components. A compound component consists of a collection
of (atomic or compound) components and connectors. Each connector can have
temporary variables 2 to specify the interactions with data transfer among com-
ponents. The BIP model is the topmost compound component.

In VCS, each atomic component is encoded as a transition system (X, I, T ),
where X is a set of variables, I is the initial predicate and T is the transition
predicate. Let T I be the transition predicate related to the internal transitions
only. Given a hierarchical BIP modelH , the tool first transforms the input model
into a flattened BIP model [4]. The flattened BIP model contains only atomic
components Ai = (Xi, Ii, Ti) (1 ≤ i ≤ N) and connectors Cj (1 ≤ j ≤ M).
Let Fj be the symbolic representation of the connector Cj . The hierarchical BIP
model H is thus a transition system (XH , IH , TH), where

– XH =
⋃N

i=1 Xi;

– IH =
∧N

i=1 Ii;

– TH =
∨N

i=1(T
I
i ∧

∧
k �=i(X

′
k = Xk))∨

∨M
j=1(Fj∧

∧
k �∈dom(Cj)

(X ′
k = Xk)), where

dom(Cj) gives the indices of atomic components in Cj .

3 Verification Algorithms

In traditional settings, the transition systems are interpreted as state machines,
and then verified by model checking algorithms (either explicit or symbolic).
However, during this interpretation, much useful information implied in the
transition system is lost. We propose several efficient techniques to utilize such
information to improve the model checking for transition systems.

Macro Step-Based Verification: Given a transition system, we distinguish
the set of transitions which may lead the property from true to false, called
property-sensitive transitions. Each search step of bounded model checking is
extended to a macro step, which consists of exactly one property-sensitive tran-
sition and any number of other transitions. Moreover, we employ an algorithm
to eliminate all loops among property-sensitive transitions in the model. Then
we are able to formulate the model checking problem as a Boolean SAT formula.
We call this technique macro step-based verification.

Variable Decision Heuristic: We propose in [5] to utilize the structure in-
formation hidden in a transition system during model checking. We define a
transition variable for each transition in the model. During the SAT solving, the
transition variable is assigned higher priority than other variables to be chosen
as the decision variable. Among the many transition variables, we follow the
structure of the transition system to assign their priorities. In such a way, the
structure information is utilized to guide the search process of a SAT solver.

2 The current version of DFinder does not support this feature.



480 F. He et al.

Incremental Verification: The proof for temporal induction [6] consists of
two parts: the base case and the induction step. Both parts generate a series
of SAT problems. We can exploit the symmetry and similarities in the series
for incremental SAT verification. We show that, under certain conditions: (1)
conflict clauses can be shared among SAT problems within each sequence; (2)
conflict clauses can be shared between these two sequences; (3) after shifting or
reversing the time steps, the transformed clauses can also be shared. Compared
to existing works, our algorithm explores much bigger degree of clause sharing.

4 Experimental Results

The VCS tool is implemented in C++. All experiments are conducted on a
computer with a 2.53GHz Intel Core2 Duo CPU with 2GB memory.

Experimental results for six examples are reported. Three examples are from
real systems in industry, including the data processing unit (DPU) used in a
space vehicle [7], the gate control system (GCS) used in the stage of LingShan
Buddhist Palace in Jiangsu, China [8], and the message transmission protocol
(MTP) used in the train communication network. Three examples are origi-
nated from public websites or literature, including the ATM system 3, the dining
philosophers problem (DPP) 3, and the automatic callback system (ACS) [9].

Note the industrial examples exploit sophisticated interactions among compo-
nents, they cannot be verified by DFinder [3]. We chose to use NuSMV(version
2.5.3) to perform the comparison. Two state-of-the-art SAT-based algorithms
(Een-sorensson and Zigzag [6]) implemented in NuSMVare tested. For each
model, we test both algorithms and report the better one for NuSMV.

Experimental results are listed in Table 1. In the table, step give the steps for
standard bounded model checking (including NuSMVand Std) to find a bug,
while stepm give the steps for our macro step-based verification to find a bug.
We observe in all cases the value of stepm is much less than that of step. This
is reasonable since a macro step may involve several transitions in the model.
The VCS tool can be configured with different settings, where Std stands for
the standard bounded model checking, Mco stands for the macro step-based
verification, Mco+ stands for Mco plus the incremental verification technique,
andMco++ stands forMco+ plus the variable decision heuristic. All runtimes are
reported in seconds. The label “-” indicates the checker cannot get a conclusive
answer in 900 seconds.

For all cases, Mco, Mco+ and Mco++ run several magnitudes faster than ei-
ther Std or NuSMV, especially when the problems scale up. For the industrial
examples DPU, GCS and MTP, which involve sophisticated behaviors and in-
teractions, Mco++ runs fastest. For other examples ACS, ATM and DPP, which
contain no local variables, the variable decision heuristic is useless, thus Mco+

runs fastest.

3 http://www-verimag.imag.fr/DFinder.html?lang=en

http://www-verimag.imag.fr/DFinder.html?lang=en


VCS: A Verifier for Component-Based Systems 481

Table 1. Experimental Results for Macro-Step Verification

Model Prop
NuSMV VCS

step time stepm Std Mco Mco+ Mco++

DPU P1 24 2.23 9 1.95 0.52 0.16 0.1
DPU P2 26 2.43 9 2.65 0.7 0.23 0.08
DPU P3 32 5.79 10 7.05 1.07 0.32 0.17

GCS P1 46 7.4 18 28.74 2.05 0.31 0.22
GCS P2 54 28.55 21 127.96 7.63 1.26 0.42

MTP P2 30 - 13 143.92 17.58 13.68 7.11
MTP P3 30 - 13 199.7 18.41 24.37 4.11
MTP P4 33 - 15 199.9 41.03 38.57 10.32
MTP P5 30 - 13 111.19 8.27 4.21 3.92

ATM6 P1 13 334.28 6 43.81 0.13 0.04 1.83
ATM8 P1 - - 8 - 1.46 0.97 -
ATM10 P1 - - 10 - 11.13 11.21 -

DPP10 P1 10 9.03 10 6.75 1.09 0.77 141.85
DPP11 P1 11 61.5 11 29.21 4.11 2.65 -
DPP12 P1 12 - 12 152.53 22.6 18.12 -

ACS3 P1 24 2.07 6 63.87 0.03 0.01 0.04
ACS5 P1 - - 10 - 0.56 0.13 55.85
ACS7 P1 - - 14 - 4.44 0.62 -
ACS9 P1 - - 18 - 29.9 9.61 -

References

1. Feiler, P.H.: The architecture analysis & design language (AADL): An introduction.
Technical report, CMU/SEI-2006-TN-011 (2006)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
bip. In: SEFM 2006, pp. 3–12. IEEE (2006)

3. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-finder: A tool for composi-
tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009)

4. Bozga, M., Jaber, M., Sifakis, J.: Source-to-source architecture transformation for
performance optimization in bip. IEEE Transactions on Industrial Informatics 5(4),
708–718 (2010)

5. Yin, L., He, F., Gu, M.: Optimizing the sat decision ordering of bounded model
checking by structural information. In: Proceedings of the 7th International Sym-
posium on Theoretical Aspects of Software Engineering, TASE (2013)

6. Eén, N., Sorensson, N.: Temporal induction by incremental sat solving. Electronic
Notes in Theoretical Computer Science 89(4), 543–560 (2003)

7. Wan, H., Huang, C., Wang, Y., He, F., Gu, M., Chen, R., Marius, B.: Modeling and
validation of a data process unit control for space applications. In: Embedded Real
Time Software and Systems (2012)

8. Wang, R., Zhou, M., Yin, L., Zhang, L., Gu, M., Sun, J., Bozga, M.: Modeling
and validation of plc-controlled system: A case study. Technical report, Tsinghua
University (2011)

9. Cha, G., Gu, T.: Formal Analysis and Design of Network Protocols (2003)


	VCS: A Verifier for Component-Based Systems 
	1 Introduction
	2 Model Representation
	3 Verification Algorithms
	4 Experimental Results
	References




