
Learning-Based Assume-Guarantee Regression
Verification

Fei He1,2,3(B), Shu Mao1,2,3, and Bow-Yaw Wang4

1 Tsinghua National Laboratory for Information Science and Technology
(TNList), Beijing, China
hefei@tsinghua.edu.cn

2 School of Software, Tsinghua University, Beijing, China
3 Key Laboratory for Information System Security, Ministry of Education,

Beijing, China
4 Academia Sinica, Taipei, Taiwan

Abstract. Due to enormous resource consumption, model checking each
revision of evolving systems repeatedly is impractical. To reduce cost in
checking every revision, contextual assumptions are reused from assume-
guarantee reasoning. However, contextual assumptions are not always
reusable. We propose a fine-grained learning technique to maximize
the reuse of contextual assumptions. Based on fine-grained learning, we
develop a regressional assume-guarantee verification approach for evolv-
ing systems. We have implemented a prototype of our approach and con-
ducted extensive experiments (with 1018 verification tasks). The results
suggest promising outlooks for our incremental technique.

1 Introduction

Software systems evolve throughout their life cycles. In order to add new features,
many revisions are released over time. Since errors may be introduced with new
releases, each revision needs to be formally verified. Formal verification however
is still very time-consuming. Verifying every revision of an evolving system is
impractical. A more effective technique to ensure correctness of evolving software
systems is desired.

Model checking is a formal verification technique [4,17]. In model checking,
lots of internal information is computed during a verification run. Note that two
consecutive revisions share many behaviors. When a revision is verified, internal
information from model checking may still be useful to verifying the next revi-
sion. Regression verification expands this idea by reusing internal information to
speed up the verification of later revisions [3,6,7,10,22,27–29]. Various internal
information has been proposed for reuse, including state space graphs [22,29],
constraint solving results [28], function summaries [3,25], and abstract preci-
sions [6].
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Assume-guarantee reasoning [18] is a compositional technique to improve
the scalability of model checking. In the compositional technique, contextual
assumptions decompose verification tasks by summarizing component behaviors.
Depending on compositional proof rules, contextual assumptions are required to
fulfill different criteria for sound verification. Although they used to be con-
structed manually, contextual assumptions can be generated automatically by
machine learning algorithms [13,14,18,21].

Like internal information from model checking, contextual assumptions for
the current revision may be reused for the next revision as well. Since contextual
assumptions contains the most important information for verifying the current
revision, they may immediately conclude the verification of the next revision.
Contextual assumptions may be more suitable for regression verification. Com-
pared to internal information from model checking, contextual assumptions are
external information. They can be stored and reused without modifying model
checking algorithms. In [26], contextual assumptions are exploited in regression
verification. When the component summarized by contextual assumptions is not
changed, the contextual assumptions are reused and modified to verify revised
composed systems. If a system evolves into a new version, components may all
be revised. Contextual assumptions thus can not be reused in regression verifi-
cation. This can be a severe limitation.

Recall that system models are often represented by logic formulas in symbolic
verification algorithms. A component may be represented by several logic formu-
las. Moreover, such logic formulas are further decomposed into more subformulas
to attain the best performance. When a system with few components is updated,
it is unlikely that all subformulas are revised. The chance of information reuse
can be greatly improved if systems are decomposed into finer constituents. In our
fine-grained learning framework, an instance of the learning algorithm [8,19,23]
is deployed for each logic subformulas. When all instances infer their conjec-
tures, a contextual assumption can be built from these conjectures and sent for
assume-guarantee reasoning. We call this the fine-grained learning-based verifi-
cation.

Using our fine-grained technique, we improve regression verification by
incremental assume-guarantee reasoning. The word incremental means the
previously-computed results are reused in later verification runs. Given a new
revision of the system model represented as a number of logical formulas. We
compare the previous revision and the new revision for each subformula. If they
remain the same, the inferred conjecture in the previous verification for this
subformula can be safely reused. Otherwise the conjecture is re-constructed.
Since two revisions have similar behaviors, many of their subformulas remain
unchanged. Previously inferred conjectures is likely to be reused.

We have implemented a prototype on top of NuSMV. We performed exten-
sive experiments (with 1018 verification tasks) to evaluate the efficiency of our
technique. Experimental results are very promising. If properties are satisfied
before and after revisions, our new technique is about four times faster than
conventional assume-guarantee reasoning. A similar speedup is also observed for
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unsatisfied properties before and after revisions. If properties are satisfied before
but unsatisfied after revisions, incremental assume-guarantee reasoning also out-
performs but less significantly. Overall, we report more than three times speedup
on more than a thousand verification tasks.

The remainder of this paper is organized as follows. Section 2 introduces
necessary background. Section 3 explains our motivation. Fine-grained learn-
ing is discussed in Sect. 4. Our regression verification framework is presented in
Sect. 5. Experimental results are reported in Sect. 6. Related work are discussed
in Sect. 7. Finally Sect. 8 concludes this paper.

2 Background

Let B be the Boolean domain and X a finite set of Boolean variables. A valuation
s : X → B of X is a mapping from X to B. A predicate φ(X) over X maps a
valuation of X to B. We may write φ if its variables are clear from the context.

Definition 1. A transition system M = (X,Λ, Γ ) consists of a finite set of
variables X, an initial condition Λ over X, and a transition relation Γ which is
a predicate over X and X ′ = {x′ : x ∈ X}.
Definition 2. Let Mi = 〈Xi, Λi, Γi〉 be transition systems for i = 0, 1 (Xi’s
are not necessarily disjoint), the composition M0‖M1 = 〈X,Λ, Γ 〉 is a transition
system where X = X0 ∪ X1, Λ(X) = Λ0(X0) ∧ Λ1(X1), and Γ (X) = Γ0(X0) ∧
Γ1(X1).

Let M = (X,Λ, Γ ) be a transition system. A state s of M is a valuation
over X. A trace σ of M is a sequence of states s0, s1, · · · , sn, such that s0 is an
initial state, and there is a transition from si to si+1 for i = 0, . . . , n − 1. For
any predicate φ, a sequence σ of states s0, s1, . . . , sn satisfies φ (written σ |= φ)
if si |= φ for i = 0, . . . , n. We say M satisfies φ (written M |= φ) if σ |= φ for
all traces of M . Given a transition system M and a predicate φ, the invariant
checking problem is to decide whether M satisfies φ.

2.1 Learning-Based Assume-Guarantee Verification

Assume-guarantee reasoning aims to mitigate the state explosion problem by
divide-and-conquer strategy. It uses assumptions to summarize components.
Since details of components can be ignored in assumptions, the compositional
technique can be more effective than monolithic verification.

Definition 3. Let Mi = 〈X,Λi, Γi〉 be transition systems for i = 0, 1, M1 sim-
ulates M0 (written M0 	 M1) if Λ0 ⇒ Λ1 and Γ0 ⇒ Γ1.

Note that the above simulation relation is defined over first-order represen-
tation of models. Informally, M0 	 M1 if M1 simulates all behaviors of M0.
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Theorem 1 [14]. Let Mi = 〈Xi, Λi, Γi〉 be transition systems for i = 0, 1,
X = X0 ∪ X1, and φ(X) a predicate, the following assume-guarantee reasoning
rule is sound and invertible:

M0 	 A A‖M1 |= φ

M0‖M1 |= φ
(1)

A rule is sound if its conclusion holds when its premises are fulfilled. A rule is
invertible if its premises can be fulfilled when its conclusion holds. In the proof
rule (1), the transition system A is called a contextual assumption (for short,
assumption) of M0. A contextual assumption is valid if it either satisfies both
premises of above rule, or is able to reveal a counterexample to M0‖M1 |= φ.

Active learning algorithms have been deployed to automatically learn the
assumptions for compositional verification [1,13,14,18,20,21]. Let U be an
unknown predicate. A learning algorithm infers a Boolean formula character-
izing U by making queries. It assumes a teacher who knows the target predicate
U and answers the following two types of queries:

– On a membership query MQ(s) with a valuation s, the teacher answers YES
if U(s) holds, and NO otherwise.

– On a equivalence query EQ(H) with a hypothesis Boolean formula H, the
teacher answers YES if H is semantically equal to U . Otherwise, she returns
a valuation t on which H and U evaluate to different Boolean values as a
counterexample.

Figure 1 shows the learning-based verification framework [13,14,21]. In the
framework, a mechanical teacher is designed to answer queries from the learner.
For simplicity of illustration, the mechanical teacher in the figure is divided into
two parts, each answering one type of queries. Let M0 = 〈X0, Λ0, Γ0〉 be a tran-
sition system. The mechanical teacher knows Λ0 and Γ0, and guides Learner
to infer an assumption A = 〈X0, ΛA, ΓA〉 fulfilling the premises of the proof
rule (1). Two learning algorithms are instantiated: one for the initial condi-
tion ΛA, the other for the transition relation ΓA. For instance, consider the
learning algorithm for ΓA. For a membership query MQΓ (s, t) from LearnerΓ ,
the mechanical teacher checks if 〈s, t〉 satisfies Γ0. If so, the mechanical teacher
answers YES . Otherwise, she answers NO . Conceptually, the mechanical teacher
uses Γ0 as the target predicate. In the worst case, the mechanical teacher infers
Γ0 as ΓA.
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Fig. 1. The learning-based verification framework
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The equivalence queries of the two learning algorithms need be synchronized.
Let ΛA and ΓA be the current purported representations of ΛA and ΓA, respec-
tively, the mechanical teacher first constructs A = 〈X0, ΛA, ΓA〉, then it checks
if the purported conjecture of A satisfies both premises of the assume-guarantee
reasoning rule. If it does, the verification terminates and returns “safe”. Other-
wise, the premises checker returns a counterexample. The teacher then proceeds
to check whether this counterexample is real or not. If it is a real counterex-
ample, the verification algorithm terminates and reports “unsafe”. Otherwise,
the teacher returns this counterexample to Learner . Learner will use this coun-
terexample to refine its purported formulas. This process repeats until a valid
assumption is inferred.

2.2 Regression Verification

Computer systems evolve during their life time. Since the current version of a
system has different behaviors from its previous versions, properties must be
re-verified against the current version. In regression verification, we consider the
invariant checking problem on two versions of a system. We would like to exploit
any information from the previous verification in the current verification.

Definition 4. Let M = (X,Λ, Γ ) and M ′ = (X,Λ′, Γ ′) be transition systems
and φ(X) a specification. The regression verification problem is to check whether
M ′ |= φ after the verification of M |= φ.

Note that Definition 4 does not assume whether the previous version M
satisfies the property φ or not. We would like to re-use any information from the
previous verification regardless of whether M |= φ holds or not.

3 Motivation

Let M0 and M1 be two components of a system, and A∗ a valid contextual
assumption. To perform regression verification on updated components M ′

0 and
M ′

1, a natural idea is to reuse the contextual assumption A∗. However, it is shown
in [26] that A∗ as a whole can only be reused if M ′

0 = M0 and M ′
1 simulates M1.

This can be a severe limitation.

3.1 An Example

Consider an email system composed of two clients ci (i = 0, 1). The client ci is
shown in Fig. 2(a). Each ci is associated with a data variable msgi, whose value
being true indicates that ci is sending a message. When ci sends a message,
c1−i will be informed and vice versa. The client ci has four states: the idle state
(“idle”), the receiving state (“recv”), the outgoing state (“otgo”), and the
sent state (“sent”). Initially, ci is at the idle state. If a message arrives (that
is, msg1−i = true), ci transits to the receiving state recv. Otherwise, it non-
deterministically transits to the outgoing state otgo and sets msgi to true, or
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Fig. 2. The email client

remains at the idle state idle. After the message is sent, the client transits to
its sent state. Denote Mci the model of ci.

The requirement φes is that all sent emails are well received. Formally, φes :=
(state0 = sent) ↔ (state1 = recv). Apparently, φes is not satisfied by the
model. Assume that both clients transit from their idle states to their otgo
states simultaneously, representing both are going to send a message. The only
next state for both of them is the sent state, which means that both clients
have sent their messages, but none of them was well received.

The original model needs be revised to satisfy the requirement. Let c′
i(i =

0, 1) be the updated client, shown in Fig. 2(b). In the new model, sending out a
message is granted for a client if another client does not require sending at the
same time. If both clients simultaneously want to send their messages, a new
variable, called “turn”, is introduced to assign priority to one of them.

Let us consider the regression verification of Mc′
0
‖Mc′

1
. Apparently, Mc′

0
�=

Mc0 and Mc′
1

�= Mc1 . According to [26], the contextual assumptions inferred in
the verification of Mc0‖Mc1 cannot be reused in the verification of Mc′

0
‖Mc′

1
.

However, if we take a look at the symbolic representations of these two revisions
of the system, many commonalities can be identified.
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Denote Mci = 〈Xci , Λci , Γci〉 for i = 0, 1, where Xci is a set including a state
variable statei ∈ {idle, recv, otgo, sent} and a data variable msgi. The model
Mci can be specified in a way that specifies for each variable x its initial values
init(x) and its next-state values next(x). (for example, in NuSMV language [16]):

init(statei) := idle, init(msgi) := false,

next(statei) :=
case

(statei = idle) ∧ msg1−i : recv;
(statei = idle) ∧ ¬msg1−i : {idle, otgo};
(statei = otgo) : sent;
(statei = recv) : idle;
(statei = sent) : idle;

esac

next(msgi) :=
case

(statei = idle) ∧ (next(statei) = otgo) : true;
(statei = otgo) ∧ (next(statei) = sent) : false;
true : msgi;

esac

The “case . . . esac” expression in above formulas returns the first expression on
the right hand side of “:”, such that the corresponding condition on the left hand
side evaluates to true [16]. For short, we write λx for the logic formula x = init(x)
and γx for the formula x′ = tran(x). Then Λci and Γci can be represented as:

Λci = λstatei
∧ λmsgi

, Γci = γstatei
∧ γmsgi

.

The formulas init(statei), init(msgi) and next(msgi) in the new model are
identical to those in the old model. The only difference lies in the formula
next(statei), which in the new model is:

next(statei) :=
case

(statei = idle) ∧ msg1−i : recv;
(statei = idle) ∧ ¬msg1−i : {idle, otgo};
(statei = otgo) ∧ msg1−i ∧ ¬turn : recv;
(statei = otgo) ∧ (¬msg1−i ∨ turn) : sent;
(statei = recv) ∧ msgi : otgo;
(statei = recv) ∧ ¬msgi : idle;
(statei = sent) : idle;

esac
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3.2 Our Solutions

To take full advantage of commonalities between revisions, we propose to learn
the contextual assumptions in a fine-grained fashion. Recall that Mci in the email
system is represented using four predicate formulas, i.e., λstatei

, γstatei
, λmsgi

and
γmsgi

. Instead of inferring the contextual assumption as a whole model [26], we
suggest to learn it as these four formulas. Note that the former three formulas are
identical in the updated model, the inferred conjectures for these three formulas
can be safely reused. In this way, the chance of assumption reuse is improved.

We intend to learn the contextual assumptions also in a symbolic fash-
ion. In [26], the contextual assumptions are represented as deterministic finite
automata (DFA’s). However, the DFA is not a compact representation of a
model. A Boolean formula representable by a BDD having n nodes may need mn
nodes even in its most compact DFA representation [23], where m is the number
of variables in the formula. Learning models via their DFA representations is
thus not an efficient approach. We utilize the learning technique in [21] to learn
the BDD representation of contextual assumptions. The benefits are multiple
folds. Firstly, the symbolic representation of a model is more compact. Record-
ing and reusing the contextual assumption in its symbolic representation is thus
more memory-efficient. Secondly, symbolic assumptions can be better adapted
to the symbolic model checking. Finally, with the symbolic representations, the
equivalence checking of models can be performed in a much more efficient way.

4 Fine-Grained Learning Technique

In this section, we propose a fine-grained learning technique for assume-
guarantee verification. Let MU = 〈X,Λ, Γ 〉 be the unknown target model. Its
initial condition Λ and transition relation Γ can oftentimes be represented as a
set of logical formulas. Instead of inferring MU as a DFA, or as two big logical
formulas (i.e. Λ and Γ ), we propose to infer it as a set of small logical formulas.
Fine-grained learning technique will give us more chances to reuse the inferred
results.

Without loss of generality, we assume Λ and Γ are decomposed into n pred-
icate formulas: ϕ1, ϕ2, · · · , ϕn. Define templates to be constructed inductively
by logical operators and subscripted square parentheses ([•]k). Let ζΛ and ζΓ

be two templates. With ζΛ and ζΓ , we can construct a contextual assumption
from the purported formulas. For example, consider the templates ζΛ[•]1[•]2 =
[•]1 ∧ [•]2 and ζΓ [•]1[•]2 = [•]1 ∧ [•]2 in the email system. Suppose λstate0 ,
λmsg0 , γstate0

and γmsg0
are the current purported formulas. The initial condi-

tion and transition relation of the contextual assumption can be constructed as
ζΛ[λstate0 ]1[λmsg0 ]2 = λstate0 ∧λmsg0 , and ζΓ [γstate0

]1[γmsg0
]2 = γstate0

∧γmsg0
,

respectively.
The fine-grained learning model is shown in Fig. 3. For each subformula

ϕi (1 ≤ i ≤ n), one instance of the learning algorithm is deployed. All
learners make membership and equivalence queries to a mechanical teacher.
Similar to the learning-based framework in Sect. 2.1, equivalence queries need be
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Fig. 3. The fine-grained learning framework

synchronized. When all learners get a conjecture, the mechanical teacher con-
structs a contextual assumption (using ζΛ and ζΓ ). If the constructed assumption
fulfills both premises of the assume-guarantee reasoning rule (1), the verification
is finished. Otherwise, the mechanical teacher helps the learners refine their con-
jectures by providing counterexamples.

Note that our fine-grained technique is not limited to the NuSMV language,
and the target model is not necessary to be decomposed by variables (as in the
email system example). To see an example, consider the ELTS (extended labelled
transition systems with variables) model that is usually specified by transitions.
Let k be the number of transitions in an ELTS model. Encoding each transition
as a logical formula, the transition relation of the ELTS model is the disjunction
of all transition formulas, and the template ζΓ = [•]1 ∨ [•]2∨· · ·∨ [•]k. Generally,
we follow the syntactic structure to decompose the symbolic representation of
the target model.

5 Assume-Guarantee Regression Verification

In this section, we discuss the data structures of contextual assumptions, propose
our regression verification framework, and finally prove the correctness of our
technique.

5.1 Data Structures of Contextual Assumptions

Our framework employs Nakamura’s algorithm [23] to infer the BDD represen-
tation of contextual assumptions. Nakamura’s algorithm is an instance of the
active learning algorithm. Its basic procedure follows that discussed in Sect. 2.1.
When we say assumption reusing, we actually mean reusing the data structure
of the learning algorithm. We thus discuss in the following the data structures
used in Nakamura’s algorithm.
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Let D be the target (reduced and ordered) BDD with m variables. A BDD
is a directed acyclic graph with one root node and two sink nodes. Each sink
node is labeled with 0 or 1, and each non-sink node is labeled with a variable.
A BDD can be regarded as a DFA. For any node of D, an access string u is a
string that leads the BDD from its initial node to that node. Each node of D can
be represented by its access string. In the following, we abuse the notation of u
(and v) to represent both a node and its access string. For any two distinct nodes
u and v, a distinguishing string w is a string such that uw reaches the terminal
1 and vw reach the terminal 0, or vice versa. Denote nodes(D) the set of strings
a1a2 · · · ak such that k = m or the assignment of x1 ← a1, x2 ← a2, · · · , xk ← ak

leads to a node labeled xk+1 in D. Let v be a string of length m, denote D(v)
the sink label that v reaches in D.

Two data structures are maintained in the BDD learning algorithm: a BDD
with access strings (for short, BDDAS) S, and a set T = {T1, T2, · · · , Tm} of
classification trees. A BDDAS is different from an ordinary BDD mainly in the
following points: it may have a dummy root node; each of its nodes has an access
string; each of its edges is labeled with a binary string. Denote nodesS

i (S) the
set of access strings possessed by the non-dummy nodes in S whose length is i.
Let nodesS(S) =

⋃m
i=0 nodes

S
i (S). Let v be a string of length m, denote S(v)

the sink label that v reaches in S.
A classification tree Ti (1 ≤ i ≤ m) decides which node in S a given string of

length i will reach. It is composed of internal nodes and leaf nodes. Each internal
node is labeled with a distinguishing string of length m − i, and each leaf node
is labeled with either a special symbol μ, or an access string of length i that is
possessed by a node of S. Any string α of length i is classified by Ti into one
of its leaf nodes. Denote Ti(α) the leaf label into which α is classified. A string
classified into a leaf node labeled with μ means that this string cannot reach any
node in the corresponding OBDDAS.

A BDD can be obtained from a BDDAS. The obtained BDD is sent to the
teacher for equivalence checking. If it passes the equivalence checking, we are
done. Otherwise, a string is returned by the teacher as a counterexample. With
this counterexample, the learner updates its BDDAS and classification trees.
During the updating, the teacher’s answers to membership queries are stored
in classification trees. After updating, the cardinality of S (i.e. the number of
nodes in S) increases by one. The target BDD is restored when the cardinality
of S equals the number of nodes in the target BDD [23].

5.2 Regression Verification Framework

Our assume-guarantee regression verification algorithm is depicted in
Algorithm 1. Before the new round of verification starts, an initialization step
is performed, which attempts to reuse the contextual assumption inferred in the
previous round of verification.

Let M0 and M1 be two components of a system. Recall that M0 is the learning
target. Assume M0 is represented as n logical formulas: ϕ1, ϕ2, · · · , ϕn. Let ϕ′

i

(1 ≤ i ≤ n) be the updated form of ϕi in M ′
0. In the regression verification,
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the algorithm checks for each i (1 ≤ i ≤ n) if ϕ′
i is equivalent to ϕi. If it is,

the data structures (the BDDAS and classification trees) of the previous learner
Learnerϕi

is restored and used to initialize Learnerϕ′
i
. Otherwise, Learnerϕ′

i

starts with empty data structures.

1 for 1 ≤ i ≤ m do
2 if ϕ′

i ≡ ϕi then
3 Learnerϕ′

i
← Learnerϕi

4 else
5 Initialize Learnerϕ′

i
with empty data structures

6 end

7 end
8 Use the technique in Sect. 4 to verify M ′

0‖M ′
1 |= φ ;

Algorithm 1. IncrementalAG(M ′
0 ,M ′

1 , φ)

5.3 Correctness

We prove the correctness of our assume-guarantee regression verification frame-
work in this subsection.

Let α1, α2 be two binary strings, we use |α1| to denote the length of α1,
pre(α1, i) the prefix string of α1 with length i, and α1 · α2 the concatenation of
α1 and α2.

Definition 5. A BDDAS S and a set T = {T1, · · · , Tm} of classification trees
are said valid for the target BDD D, if the following conditions are satisfied [23]:

1. nodesS(S) ⊆ nodes(D);
2. ∀v ∈ nodesS

m(S), S(v) = D(v);
3. ∀v1, v2 ∈ nodesS(S), if v1 and v2 lead to the same node in D, there must be

v1 = v2;
4. ∀v ∈ nodesS(S), T|v|(v) = v;
5. for any binary string α of length i(1 ≤ i ≤ m), α �∈ nodes(D) ⇒ Ti(α) = μ;
6. for any edge in S that is from u to v and labeled with l,

– T|v|(u · l) = v, and
– |u| < ∀j < |v|, Tj(u · pre(l, j − |u|)) = μ.

Lemma 1 [23]. The Nakamura’s learning algorithm terminates with a correct
result starting from any BDDAS S and classification trees Ti for i = 1, · · · ,m
that are valid for the target BDD D.

Theorem 2. Given two BDD’s D1 and D2, if D1 ≡ D2, the BDDAS S and
classification trees Ti for i = 1, · · · ,m generated by the learner of D1 are valid
for D2.
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Recall that in our verification framwork, only results of equivalent formu-
las are reused. Theorem 2 is thus applicable. The correctness of our assume-
guarantee regression verification framework (Algorithm 1) follows from Lemma 1
and Theorem 2.

Theorem 3 (Correctness). The assume-guarantee regression verification
algorithm (Algorithm 1) always terminates with a correct result.

Note that our regression verification framework is not limited to Nakamura’s
algorithm [23]. Conceptually, any active learning algorithm can apply, such as
the L∗ algorithm for regular languages [2]. However, to be better suited for
the fine-grained learning technique, an implicit learning algorithm is preferred.
Alternatively, one can also use the CDNF learning algorithm [8] that infers
Boolean functions.

6 Evaluation

A prototype of our regressional assume-guarantee verification technique was
implemented on top of NuSMV 2.4.3 [16]. We have performed extensive exper-
iments (in total, 1018 verification tasks from 108 revisions of 7 examples) to
evaluate the efficiency of our technique. All experiments were conducted on a
machine with 3.06 GHz CPU and 2G RAM, running the Ubuntu 12.04 operation
system.

A verification task is specified by a base model, an update to the base model,
and a specification. It consists of two rounds of verifications. The contextual
assumption inferred in the first round of verification (on the base model) can be
optionally reused in the second round of verification (on the updated model). We
compare the performance of the second round of verification with and without
assumption reuse. The maximal run time is set to 3 h.

The experiments are performed on seven examples, where Gigamax models
a cache coherence protocol for the Gigamax multiprocess, MSI models a cache
coherence protocol for consistence ensuring between processors and main mem-
ory, Guidance models the Shuttle Digital Autopilot engines out (3E/O) contin-
gency guidance requirements, SyncArb models a synchronous bus arbiter, Philo
models the dining philosophers problem [12], Phone models a simple phone sys-
tem with four terminals [24], and Lift models the lift system in [5]. The former
four examples are obtained from the NuSMV website1, while the latter two are
obtained from literatures. Each example model contains a number of interact-
ing components. Our tool selects one component as M0 and the composition of
others as M1.

We consider different degrees of changing a model: small changes (using muta-
tions) and significant changes (with significant difference in the functionalities).

Two performance metrics are used in our experiments: (a) the run time
(Time) for each verification run; (b) the number of membership queries (|MQ |)
1 http://nusmv.fbk.eu/examples/examples.html.

http://nusmv.fbk.eu/examples/examples.html
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and the number of equivalence queries (|EQ |) raised in each verification run.
Recall that answering learners’ queries is the most costly operation in the
learning-based verification framework, these two metrics are related to each
other.

6.1 Results for Small Changes

Model changes are often small. We realized a program to randomly produce
a number of mutations to a model either by introducing new variables or by
changing the initial condition or transition relation of an existing variable.

This experiment was performed on five examples: Gigamax, MSI, Guidance,
SyncArb and Philo. Results are shown in the upper part of Table 1. The columns
|Update|, |Spec.| and |Task| list for each example the numbers of updates, spec-
ifications, and verification tasks, respectively. The following two column show
the performance of the regression verification with and without assumption
reuse respectively. All performance results (including the number of member-
ship queries |MQ |, the number of equivalence queries |EQ |, and the run time)
are given in average values over all tasks per example. The last column compares
these two approaches. More experiment details of the highlighted example Syn-
cArb will be discussed in Sect. 6.3. The experiment analysis is deferred to the
next subsection. We will combine other examples’ results and give a combined
analysis.

6.2 Results for Significant Changes

During the evolution of a system, new features can be added to improve the
original design. This kind of updates involves significant changes to the original
model.

The second experiment was performed on two examples: Phone and Lift.
These two examples were obtained from the software product-line engineering
community [5,24]. For each example, there are a base model and a set of features.
Each feature is considered as a significant change to the base model. Results of
this experiment are shown in the bottom part of Table 1. The last Total row
gives the average of respective values over all examples, including the examples
mentioned in the former experiment and those in this experiment.

From Table 1, we observe an impressive improvement of our incremental app-
roach with assumption reuse. Depending on examples, the average speed up of
assumption reuse is between 1.26 to 3.79. Over all examples (with 1018 verifica-
tion tasks in total), the average speed up is 3.47. We also find that the number of
queries made by the incremental approach is greatly reduced compared to those
without reuse. Over all examples, the average number of membership queries
|MQ | is reduced by a ratio of 2.89, and the average number of equivalence queries
|EQ | is reduced by a ratio of 3.44. Recall that answering learners’ queries is the
most costly operation in the learning-based assume-guarantee verification, these
results conforms to those about run time.
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Table 1. Results for all examples: time in seconds

Example |Update| |Spec.| |Task| with Reuse without Reuse without/with

|MQ| |EQ| Time |MQ| |EQ| Time |MQ| |EQ| Time

Gigamax 35 6 210 657 12 58.41 2962 69 221.57 4.51 5.66 3.79

MSI 23 14 322 196 6 2.78 2695 97 5.99 13.74 16.26 2.15

Guidance 19 15 285 188 12 53.99 1197 82 199.15 6.37 6.76 3.69

SyncArb 10 2 19 1151 62 23.49 5336 425 81.22 4.64 6.85 3.46

Philo 7 1 7 4848 207 57.50 5834 245 72.37 1.20 1.18 1.26

Phone 7 17 119 9176 85 25.38 25917 328 51.66 2.82 3.86 2.04

Lift 7 8 56 40855 783 11.32 100455 1864 21.06 2.46 2.38 1.86

Total 1018 3625 63 32.47 10494 218 112.56 2.89 3.44 3.47

There is no significant difference for the performance improvement of our
incremental approach between the examples with small changes and others with
significant changes. This observation supports that our incremental approach is
applicable to both degrees of model changes.

6.3 Results for a Single Example

Detailed results for SyncArb example are shown in Table 2. The Sat. column
shows a pair of Boolean values (“T” for true, “F” for false), representing the
satisfiability of the specification on the base model and the updated model,
respectively. The term “max” in the last column denotes a divided-by-zero value.
The bottom two rows report the sum and the average of the respective values
over all verification tasks.

With assumption reuse, the numbers of membership queries |MQ | and the
number of equivalence queries |EQ | are 0’s in 15 out of 19 tasks. In other words,
the reused assumptions immediately conclude the second round of verification in
these tasks. This observation further witnesses the usability of assumption reuse
to regression verification.

6.4 Impact of the Satisfiability Results to the Performance

Recall that when models change, the previously established (or falsified) speci-
fications may become unsatisfied (or satisfied). We test in this experiment the
impact of the satisifiability results to the efficiency of our incremental approach.

We group verification tasks of each example by their satisfiability results. In
total, there are four types of groups: both true (denoted as (T, T )), true on the
base model and false on the updated model (denoted as (T, F )), false on the
base model and true on the updated model (denoted as (F, T )), and both false
(denoted as (F, F )). Results are shown in Table 3, where |Task| column lists the
number of verification tasks in each group. Empty groups (with |Task| = 0) are
omitted from the table.

We got very interesting findings from these results. The last column of Table 3
shows that the regression verification is most likely to be improved by the
assumption reuse if the specification was previously satisfied. There are two
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Table 2. Results for SyncArb: time in seconds

Spec. Update Sat. with Reuse without Reuse without/with

|MQ| |EQ| Time |MQ| |EQ| Time |MQ| |EQ| Time

1 1 (T, F) 17 1 22.10 6561 551 81.24 385.94 551.00 3.68

2 (T, F) 10083 584 85.45 14312 974 167.75 1.42 1.67 1.96

4 (T, T) 0 0 10.80 6525 550 108.21 max max 10.02

5 (T, F) 7152 358 28.86 17017 1030 531.28 2.38 2.88 18.41

6 (T, F) 0 0 184.56 6525 550 243.95 max max 1.32

7 (T, T) 0 0 5.77 6521 550 85.47 max max 14.81

8 (T, T) 0 0 7.79 6525 550 85.84 max max 11.02

9 (T, T) 0 0 8.43 6510 550 91.17 max max 10.82

10 (T, F) 4618 236 64.83 10693 746 114.12 2.32 3.16 1.76

2 1 (F, F) 0 0 2.64 1972 200 3.28 max max 1.24

2 (F, F) 0 0 2.99 1978 200 3.58 max max 1.20

3 (F, F) 0 0 2.47 1964 200 3.07 max max 1.24

4 (F, F) 0 0 2.85 1974 200 3.61 max max 1.27

5 (F, F) 0 0 2.74 1964 200 3.38 max max 1.23

6 (F, F) 0 0 2.71 1974 200 3.41 max max 1.26

7 (F, F) 0 0 2.74 1974 200 3.35 max max 1.22

8 (F, F) 0 0 2.73 1974 200 3.42 max max 1.25

9 (F, F) 0 0 3.05 1980 200 3.62 max max 1.19

10 (F, F) 0 0 2.76 2440 230 3.36 max max 1.21

Sum 21870 1179 446.28 101383 8081 1543.11 4.64 6.85 3.46

Average 1151 62 23.49 5336 425 81.22 4.64 6.85 3.46

(F, T ) groups (Gigamax, Phone) and two (F, F ) groups (Guidance, Philo) on
which the assumption reuse leads to notably performance degeneration. In con-
trast, the performance of the regression verification is always improved (or nearly
improved) by assumption reuse in all (T, T ) and (T, F ) groups. We speculate the
reasons as follows. Recall the assume-guarantee reasoning rule (1). If the spec-
ification is satisfied by the system, we need to find a contextual assumption to
prove both premises in the rule. In contrast, if the specification is dissatisfied
by the system, we need only an assumption that reveals a counterexample to
the specification. Finding a counterexample is always much easier than proving
the correctness. From the viewpoint of reuse, the assumption revealing a coun-
terexample is certainly less useful than the one proving the correctness of the
model.

The Total row in Table 3 gives that the average speedup of the incremental
technique over all examples for (T, T ), (T, F ), (F, T ) and (F, F ) groups are 4.12,
1.75, 0.59, and 4.29, respectively. It further shows that the incremental technique
tends to gets the best performance when the staisfiability of the specification are
the same on both models. This phenomenon is also reasonable. Given that many
behaviors are shared between these two models, the previously found proof (or
counterexample) is very likely to be a valid proof (or a valid counterexample)
for the updated model.
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Table 3. Results grouped by the satisfiability results on the base and the updated
models: time in seconds

Model Sat. |Task| with Reuse without Reuse without/with

|MQ| |EQ| Time |MQ| |EQ| Time |MQ| |EQ| Time

Gigamax (T, T) 139 0 0 37.12 0 0 55.47 - - 1.49

(T, F) 1 474 31 0.06 474 31 0.08 1.00 1.00 1.36

(F, T) 23 447 10 60.41 1702 40 26.61 3.81 4.05 0.44

(F, F) 47 2706 49 121.60 12392 286 812.92 4.58 5.89 6.69

MSI (T, T) 180 77 2 4.88 3648 124 10.14 47.54 56.12 2.08

(T, F) 4 56 5 0.04 216 18 0.07 3.89 4.00 1.51

(F, T) 1 2808 83 4.97 4369 169 15.99 1.56 2.04 3.22

(F, F) 137 338 10 0.09 1502 64 0.64 4.44 6.14 7.41

Guidance (T, T) 211 0 0 27.86 968 66 211.70 max max 7.60

(T, F) 34 1425 93 176.80 2559 172 299.43 1.80 1.86 1.69

(F, F) 40 127 7 87.47 1250 88 47.71 9.85 11.76 0.55

SyncArb (T, T) 4 0 0 8.20 6520 550 92.67 max max 11.31

(T, F) 5 4374 236 77.16 11022 770 227.67 2.52 3.27 2.95

(F, F) 10 0 0 2.77 2019 203 3.41 max max 1.23

Philo (T, T) 1 0 0 152.92 0 0 212.77 - - 1.39

(T, F) 5 6666 282 38.09 6666 282 57.24 1.00 1.00 1.50

(F, F) 1 608 40 59.15 7511 300 7.58 12.35 7.50 0.13

Phone (T, T) 77 11141 96 35.57 30783 367 76.63 2.76 3.82 2.15

(F, T) 4 15747 159 62.96 20361 252 41.11 1.29 1.58 0.65

(F, F) 38 4502 55 0.78 16643 257 2.17 3.70 4.69 2.77

Lift (T, T) 10 497 8 0.37 185932 3229 51.60 374.41 419.35 138.71

(T, F) 2 172319 3195 44.94 175354 3288 44.31 1.02 1.03 0.99

(F, T) 3 444478 8530 152.80 451580 8780 149.01 1.02 1.03 0.98

(F, F) 41 14752 287 2.00 50262 955 3.11 3.41 3.32 1.56

Total (T, T) 623 1407 13 23.83 8213 159 98.24 5.84 12.57 4.12

(T, F) 51 8804 239 130.93 10343 349 229.30 1.17 1.46 1.75

(F, T) 31 45468 856 67.89 47732 918 39.99 1.05 1.07 0.59

(F, F) 314 3042 57 30.03 11335 245 128.84 3.73 4.30 4.29

1018 3621 63 32.44 10484 218 112.45 2.89 3.44 3.47

7 Related Work

The first technique on learning-based assume-guarantee reasoning was proposed
in [18], where the L∗ algorithm [2] was adopted to learn the DFA representation
of contextual assumptions. The L∗-based assume-guarantee reasoning was fur-
ther optimized in different directions by many researchers, including [1,11,15,30].
An implicit learning framework for assume-guarantee reasoning was proposed
in [14], where contextual assumptions are inferred in their symbolic representa-
tions. Both the BDD learning algorithm [23] and CDNF learning algorithm [8]
have been adapted to this framework. Moreover, the techinque in [21] improves
the implicit learning framework by a progressive witness analysis algorithm.
In [20], the learning-based assume-guarantee reasoning was fruther applied to
probabilistic model checking. Our technique contributes in assume-guarantee
reasoning by providing a new fine-grained learning technique.
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Regression verification was investigated mainly in two directions, the equiva-
lence analysis, and the reuse of previously computed results. In the latter direc-
tion, a variety of information have been proposed for reuse in regression verifica-
tion. In [22,29], the state-space graphs are recorded for reuse in latter verification
runs. In [28], the intermediate results of a constraint solver are stored and reused.
In [7], the abstraction precision used for performing predicate abstraction on pre-
vious program is reused. Note that the precision reuse technique is orthogonal to
ours. Our technique contributes in this area by integrating regression verification
and automated assume-guarantee reasoning.

The most relevant work to ours are [9,26]. They used the idea of assumption
reuse to solve the dynamic component substitutability problem. Their technique
requires M ′

0 = M0 and M ′
1 simulates M1. This is surely a severe limitation. We

removed this limitation by fine-grained learning technique. With our technique,
the assume-guarantee regression verification is enabled.

8 Conclusions and Future Work

We presented in this paper a learning-based assume-guarantee regression veri-
fication technique. With this technique, contextual assumptions of the previous
round of verification can be efficiently reused in the current verification. Correct-
ness of this techniques is established. Experimental results (with 1018 verification
tasks) show significant improvements of our technique.

Currently, we implemented a prototype of our technique on top of NuSMV.
We are considering to extend this technique to a component-based modeling
language that allows hierarchical components and sophisticated interactions. We
are also planning to integrate our technique with predicate abstraction, and then
apply it to program verification.
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6. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pp. 389–399. ACM (2013)



Learning-Based Assume-Guarantee Regression Verification 327

7. Beyer, D., Wendler, P.: Reuse of verification results. In: Bartocci, E.,
Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer,
Heidelberg (2013)

8. Bshouty, N.H.: Exact learning Boolean function via the monotone theory. Inf.
Comput. 123(1), 146–153 (1995)

9. Chaki, S., Clarke, E., Sharygina, N., Sinha, N.: Verification of evolving software
via component substitutability analysis. Formal Methods Syst. Des. 32(3), 235–266
(2008)

10. Chaki, S., Gurfinkel, A., Strichman, O.: Regression verification for multi-threaded
programs. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 119–135. Springer, Heidelberg (2012)

11. Chaki, S., Strichman, O.: Optimized L* -based assume-guarantee reasoning. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291.
Springer, Heidelberg (2007)

12. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

13. Chen, Y.-F., Clarke, E.M., Farzan, A., He, F., Tsai, M.-H., Tsay, Y.-K., Wang,
B.-Y., Zhu, L.: Comparing learning algorithms in automated assume-guarantee
reasoning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol.
6415, pp. 643–657. Springer, Heidelberg (2010)

14. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated assume-guarantee reasoning through implicit learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010)

15. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal
separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

16. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

17. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

18. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
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