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1. INTRODUCTION

Model checking has been considered as a promising approach

to establish the correctness of systems. While model checking

has achieved significant success in verification of control-

dominated systems, it still suffers from the state explosion

problem when applied to large-scale systems. Abstraction is

particularly useful for ameliorating state explosion.

One of the prior model abstraction and reduction works is

Kurshan’s localization reduction [1] in verifying the properties

specified in omega-regular automata in which an abstract-

check-refine paradigm was proposed. His method builds an

abstract model, then checks the model, and if a counterexam-

ple is found, it refines the model and repeats the same iteration.

Recently, many abstraction strategies using abstract-check-

refine paradigm have been proposed. They can be categorized

into two approaches. The first approach [2–9] makes use of

the counterexample, which is named as counterexample-

guided abstraction refinement (CEGAR). In this method, the

generated counterexample is used to test the original model.

If the counterexample is a real path in the original model,

then a real counterexample is found; otherwise the path is

spurious, then the abstract model should be refined to elimin-

ate such spurious paths. The second approach [6, 10–12]

employs the unsatisfiable core saved in the SAT solver, and

can rule out all counterexamples up to a given length.

In this paper, we focus on CEGAR in hardware verification.

We follow the method proposed in [3], where the abstraction is

performed by making a set of latches or variables invisible. In

case the counterexample is spurious, we need to refine the

abstract model. State separation problem poses the main

hurdle during the refinement.

We propose the fast heuristic approaches to solve the state

separation problem. We prove the effectiveness of our heuris-

tics by both theoretical analysis and experimental results.

Experimental results show the promising performance of

our approach.

The remainder of the paper is organized as follows. In

Section 2, we introduce some preliminaries. In Section 3, we

formally define the problem. In Section 4, we present our

heuristic-guided approach. The experimental results are

reported in Section 5. Finally, Section 6 concludes the paper.

2. PRELIMINARIES

Let V ¼ fv1, v2,. . ., vjVjg be the universal set of system vari-

ables. We assume the variables in V range over a finite set

D. A valuation for V corresponds to a state in S. As in [3],

we think of V as two parts: the set of visible variables

(denoted as VS) and the set of invisible variables (denoted as

VN). Invisible variables are those that we will ignore when

building the model. For example, consider a digital system

with latches. The subset of the latches in which we are inter-

ested is considered as visible variables, whereas the remaining

latches are regarded as invisible.

In the original (non-abstracted) model, all system variables

are visible. The abstraction process is essentially equivalent to
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selecting and setting some of the visible variables as invisible.

Oppositely, the refinement process is to make some of the

invisible variables as visible.

We use transition systems to model systems. Given a set

of atomic propositions AP, the original model M can be

defined as a four-tuple M ¼ kS, S0, R, Ll, where S is the set

of states, S0 # S the set of initial states, R # S � S the tran-

sition relation and L : S! 2AP the labeling function. Simi-

larly, the abstract model can be defined as M̃ ¼ kS̃, S̃0, R̃, L̃l.
Let h be a map function from S to S̃. Notice that we need our

abstraction to be conservative, that is:

~R ¼ fð ~s1; ~s2Þj9s1; s2;Rðs1; s2Þ ^ ~s1 ¼ hðs1Þ ^ ~s2 ¼ hðs2Þg:

Such conservative translation may introduce additional

behaviors into the abstract model. Consider the example

shown in Fig. 1, after mapping the concrete states 7–9 to

III, and 10 to IV, respectively, the additional transition 7!

10, 8! 10 are added implicitly to the abstract model.

Given an abstract path P̃ ¼ ks̃1, s̃2, . . ., s̃ml in M̃ and a con-

crete path P ¼ ks1, s2, . . ., sml in M, we define the simulation

relation � as: P � P̃ if and only if s1 [ S0 and s1 [ h21(s̃1),

s2 [ h21(s̃2), . . ., sm [ h21(s̃m).

In the counterexample-guided approach, if we find a coun-

terexample P̃ in the abstract model, then we check if there is a

concrete path P in M such that P � P̃. If it is true, we find a real

bug. Otherwise, the counterexample is spurious. In the case of

the spurious counterexample, we need to compute the failure

index iF, i.e. the maximal index iF, iF , m, such that there

exists a concrete path in M, which simulates the iF prefix of

P̃. With the failure index, we define the failure states to be

the group of concrete states F ¼ fsjs [ h21(s̃iF
)g in M. Con-

sider the example in Fig. 1, the failure index is III, and the

failure states are 7–9.

The failure states can be partitioned into three sets: set of

dead-end states Fd, set of bad states Fb and set of remaining

states F 2 Fd 2 Fb [2]. Given a failure state s, it belongs to

Fd if and only if there exists a concrete path to s that simulates

the iF prefix of P̃. Oppositely, given a failure state s, it belongs

to Fb if and only if: (i) there exists no concrete path to s that

simulates the iF prefix of P̃; (ii) there exists a transition from

s to some states in h21(siF
þ 1). Consider the example

shown in Fig. 1, the state 7 is a dead-end state, and the state

9 is a bad state.

3. STATE SEPARATION PROBLEM

DEFINITION 3.1 The state separation problem (SSP) [3] is to

find a subset L of the invisible variables in VN such that

8si [ Fd;8tj [ Fb; 9vr [ L; siðvrÞ= tjðvrÞ: ð1Þ

The set L is named as separation set. Usually, we want the

separation set to be as minimal as possible so that the corre-

sponding refined model is minimal. This problem is known

as the minimal state separation problem (MSSP).

Let T(x) be the boolean function such that

TðxÞ ¼
1; if x . 0;
0; if x ¼ 0:

�

Define the characteristic function of L of VN as:

ILðvÞ ¼
1; if v [ L;
0; else.

�

Assume jVNj ¼ n. We use the bit vector

IL ¼ kILðv1Þ; ILðv2Þ; . . . ; ILðvnÞl

to denote a possible solution of the state separation problem.

Given a possible solution, if it satisfies the constraint (1),

then it is a feasible solution.

According to Definition 3.1, the state separation problem

can be formulated as:

maxFðILÞ;where

FðILÞ ¼
X
s[Fd
t[Fb

T
X
1�i�n

sðvi Þ=tðvi Þ

ILðviÞ

0
B@

1
CA: ð2Þ

Obviously, the maximal value of F (IL) equals jFdj � jFbj,

and only when F(IL) gets this maximal value, the solution IL
is feasible.

In [2], the MSSP has been proved to be NP-hard. In [3], an

integer linear programming (ILP) model for the MSSP has

been presented, and both an ILP solver and a decision-tree

learning (DTL) solver are employed to solve this problem.

The general ILP solver attempts to enumerate the solution

space to find the optimal solution for the state separation

problem. However, since the MSSP is NP-hard, it is veryFIGURE 1. An spurious counterexample.
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time-consuming for the ILP solver to find the solution when

the problem size is large. Note that we do not necessarily

need the solution to be minimal. An approximate optimum

may still be good enough for the refinement process, neverthe-

less, the resulting refined model may be slightly bigger. In [3],

an improved solver was proposed, which is based on the DTL.

The DTL algorithm trains the decision tree based on the input

examples. It utilizes the well-trained decision tree to classify

data. With some adjustments on the parameters, the DTL

algorithm is used to solve the state separation problem, and

the structure of its decision tree just gives a possible solution.

In [8], an alternative implementation of DTL for computing

the separation set has been present. This paper also present a

comprehensive set of experimental comparisons of various

refinement algorithms, and their impact on the overall per-

formance of the CEGAR loop.

4. HEURISTIC-GUIDED SEARCH

We consider heuristic-guided search in this section. By using

the greedy heuristics, the search process can quickly be guided

to the optimal solution in a more direct way than the DTL

approach does.

4.1. Main framework of our algorithm

Algorithm 1 is the main framework of our approach. In our

method, the separation set L is initialized to be empty. The

function decide_next_var() determines the next variable to

be added. Every time a variable is added, the set L will be

tested for its satisfiability of the constraint (1). If the

check succeeds, which means the present L is already a

feasible solution to the state separation problem, the algori-

thm terminates; otherwise the loop continues again.

Function decide_next_var() is the key of our algorithm. We

present two heuristics to implement it.

4.2. Heuristic 1

Considering the formula (2) of the state separation problem, a

natural idea for the variable selection is to choose a variable

which can increase the value of F(IL) the most. However, it

is too time-consuming to determine such a variable. Instead,

we consider the following heuristic.

HEURISTIC 1. Choose a variable with the largest EV(v),

where EV(v) is the number of states pairs ks,tl such that:

8s [ Fd; 8t [ Fb; sðvÞ= tðvÞ: ð3Þ

Obviously, based on the statistic analysis on the sets of

states Fd and Fb, we can compute the EV(v) values for all vari-

ables in advance before the execution of our algorithm. And

then the function decide_next_var() can easily be

implemented by selecting the variable with the greatest

EV(v) value from VN.

In what follows, we give some important observations on

Heuristic 1 in regard to the effectiveness of the method.

First of all, we can easily observe that the Heuristic 1 does

guide the search in the direction that increases the value of

~F ¼
X
1�i�n

ILðvi Þ¼1

EVðviÞ:

According to (3), there is

EVðviÞ ¼
X
s[Fd
t[Fb

TðsðviÞ= tðviÞÞ:

Therefore,

~F ¼
X
1�i�n

ILðvi Þ¼1

X
s[Fd
t[Fb

TðsðviÞ= tðviÞÞ

¼
X
s[Fd
t[Fb

X
1�i�n

IL ðvi Þ¼1

TðsðviÞ= tðviÞÞ

¼
X
s[Fd
t[Fb

X
1�i�n

sðviÞ=tðviÞ

TðILðviÞ ¼ 1Þ

¼
X
s[Fd
t[Fb

X
1�i�n

sðviÞ=tðviÞ

ILðviÞ:

Comparing F̃ to the formula (2), we have F̃ � F, and on

the other hand we can deduce following proposition.

PROPOSITION 1. When F̃ reaches its maximal value, F must

also get its maximal value.

Proof. By contridiction, assume F does not get its maximal

value, then there must exist s [ Fd, t [ Fb and i [ [1, n],

such that vi ¼ 0 and s(vi) = t(vi). Then F̃ does not get its

maximal value either, because at least we can set vi ¼ 1 to

increase F̃ by 1. This is contradictory to the assumption.

Thus, the proposition follows. A

From the above proposition, we can conclude the Heuristic

1 does guide the search to the feasible solutions of the state

separation problem.
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4.3. Heuristic 2

Given a pair of states ks,tl, s [ Fd, t [ Fb, if there exists a vari-

able v, such that s(v) = t(v), we say that the state pair ks,tl is

covered by the variable v. With the covering definition, we

observe following facts.

(i) For a state pair, there may be multiple variables that

can cover it.

(ii) If the variables in a separation set can cover all of the

state pairs in Fd � Fb, then the corresponding solution

is already a feasible solution.

(iii) Given a separation set, the uncovered state pairs are

those that cannot be covered by any of the variables in it.

HEURISTIC 2. Choose the variable that can cover the most of

uncovered state pairs ks,tl related to the current separation set.

To utilize the Heuristic 2, we need to implement a data

structure for storing the uncovered state pairs related to the

current separation set. Let P be such a structure. It is initia-

lized to be the Cartesian product of Fd � Fb. The variables

are evaluated by its coverage to the set P. When choosing

the next variable to be added into the separation set, the vari-

able with the highest evaluation value will be selected. Then

we renew the set P by eliminating the elements that are

covered by this variable, and then update the scores for

remaining variables according to the renewed P.

Comparing to Heuristic 1, Heuristic 2 is more aggressive. It

is a dynamic decision heuristic, and can take search history

into consideration. The experimental results demonstrate that

Heuristic 2 is more likely to find a better solution. We also

show the effectiveness of the heuristic 2 by theoretical analy-

sis. Following proposition shows that the solution found by

Heuristic 2 is very close to the global optimum.

PROPOSITION 2. The approximation ratio of heuristic 2 is

1þ ln max
vi[VN

jvij

� �
:

Proof. Every variable in VN covers a subset of elements in

Fd � Fb. Consider Fd � Fb as the universal set, and the vari-

able in VN as its subset, the SSP is try to find a collection of

variables in VN such to cover all elements in Fd � Fb. Thus,

the SSP is equivalent to the set cover problem. Heuristic 2 is

essentially a kind of natural greedy algorithms. It has been

proved that the natural greedy algorithm for the set cover

problem lead to the approximation ratio of 1 þ ln(maxvi
[

VNjvij) [13]. Thus, the proposition follows. A

4.4. Computation of EV(v)

The computation of EV(v) for Heuristic 2 is implemented in

the function incre_satisy(v*) as shown in Algorithm 2,

where v* is the variable to be added into the separation set.

The returned value can be 0 or 1, which represents whether

the new-formed separation set satisfies equation (1) or not.

The evaluation values will continually be updated during the

repeated invocations of this function.

Assume all state pairs and their coverage statuses are stored

in the structure data. The value of EV(v) for each variable is

initialized to be the total number of state pairs that can be

covered by it (as same as the evaluation value for Heuristic 1).

The coverage status of each state pair is initialized as false.

Note that for each state pair, there may be multiple variables

can cover it. And according to the definition of Heuristic 2,

each state pair can contribute to the evaluation value of one

variable. Assume the variable v* is going to be added into

the separation set, and there is an uncovered state pair r that

can be covered by v*. First, we need to change the coverage

status of r to be true. Second, after the status of r becomes

covered, it cannot be considered any more by other variables

in the computation of their evaluation values. So, we need to

decrease all those EV(v) values by 1.

4.5. Efficient sampling technique

In practice, the number of failure states usually is very large. It

is not possible for determining the separation set for large

scale systems. In [3], an idea of inferring the separation set

from some selected samples instead of the entire sets was

introduced. Such an idea can also be incorporated in our

approach.

As shown in Algorithm 3, we give the frame of the efficient

sampling technique according to [3] with minor modification.

By adjusting the parameters MAX_ITER and MAX_SAM, we

set the number of iterations and the maximal number of

samples generated in every iteration. A sample here is a pair

of states ks,tl [ Fd � Fb.
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DEFINITION 4.1. A sample is efficient if and only if it is not

covered by the present separation set.

The algorithm randomly generates MAX_SAM samples

in every iteration, among which only the efficient samples

can be added into the set SAMPLE. The separation set

is then computed by the renewed set of samples.

5. EXPERIMENTAL RESULTS

We have implemented two heuristic solvers: heu1 and heu2,

which are based on Heuristics 1 and 2, respectively. We use

some randomly generated benchmarks to test our solvers.

All experiments have been run on a PC with Intelw Celeronw

2.4 GHz CPU and 512 MB RAM.

The first experiment compares the CPU run-time and the

separation set size between our solvers and the latest published

DTL solver [3]. This experiment is focused on the algorithm

performance comparison, and thus no sampling technique is

applied in it. The results are shown in Table 1. Benchmark

is the name of the tested benchmark. The benchmark’s name

implies some parameters. For example, the name

‘ran_k20_m500_n300’ indicates that the number of invisible

variables is 20, the number of dead-end states is 500 and the

number of bad states is 300, respectively. The time column

lists the runtime in seconds, and the jLj column gives the

size of the resulting separation set. We evaluate the efficiency

of an algorithm by its runtime, and the solution quality by its

TABLE 1. Our solver versus DTL solver without efficient sampling technique

Benchmark

DTL

Heuristic solver

heu1 heu2

Time jLja Time jLj Time jLj

ran_k20_m150_n120 36.235 20 0.016 20 0.016 12

ran_k30_m150_n120 31.750 28 0.015 13 0.016 11

ran_k40_m150_n120 42.594 32 0.016 14 0.031 11

ran_k50_m150_n120 49.718 33 0.015 14 0.047 11

ran_k60_m150_n120 64.766 41 0.031 16 0.047 11

ran_k20_m500_n300 1220.843 20 0.078 19 0.140 16

ran_k30_m500_n300 1778.438 30 0.140 18 0.203 15

ran_k40_m500_n300 2828.907 40 0.156 21 0.312 14

ran_k50_m500_n300 3465.563 48 0.172 19 0.343 14

ran_k60_m500_n300 4918.453 58 0.203 18 0.375 14

ran_k30_m150_n200 84.390 29 0.015 18 0.031 13

ran_k30_m500_n1000 timeout 0.297 18 0.594 16

ran_k30_m3000_n4000 timeout 9.781 23 18.469 21

ran_k30_m5000_n4000 timeout 15.359 26 31.109 25

ran_k30_m10000_n50000 timeout 359.046 30 1045.266 27

ran_k40_m200_n250 356.500 36 0.047 17 0.093 12

ran_k40_m1000_n2000 timeout 2.281 23 4.250 18

ran_k40_m2000_n5000 timeout 12.750 28 21.047 21

ran_k40_m8000_n7000 timeout 58.828 26 119.125 23

ran_k50_m200_n300 880.625 42 0.062 21 0.125 13

ran_k50_m1000_n2000 timeout 2.672 21 5.094 17

ran_k50_m2000_n5000 timeout 15.593 24 25.937 20

ran_k50_m8000_n7000 timeout 95.375 29 147.094 22

ran_k50_m10000_n15000 timeout 194.406 30 392.843 24

ajLj is the size of the resulting separation set
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value of jLj. For the runtime of our solvers, the time spent on

computing EV (v) values is also included. In order to force ter-

mination, we imposed a limit of 3 h on the running time. We

denote by ‘timeout’ in the time column the examples that

could not be solved in this time limit.

The results in Table 1 are arranged into five groups. In the

former two groups, we let the number of dead-end states and

bad states be fixed, and let the number of invisible variables

increase, we observed that all the solvers’ run times increase

slowly. In the latter three groups, we fixed the number of invis-

ible variables, and let the number of dead-end states and bad

states increase, we observed the DTL solver quickly blows

up, whereas all our heuristic solvers still work well. Even

for the benchmarks that are solvable by the DTL solver, the

run times of our solvers are three to four orders of magnitude

smaller than those of the DTL solver. Regarding the separation

set size, our algorithm performs better than the DTL solver

too. Consider our heu2 solver, for example, the separation

set found by it is smaller 60% than that by the DTL solver

on average. Such phenomenons can be explained as follows.

Since our solvers are based on the greedy strategy, they can

find the feasible solution in a much more direct way than a

machine-learning one, then it is understandable that our heur-

istic solvers ran much faster than the DTL solver. As the better

solution quality obtained by our solvers, it indicates that the

greedy heuristic is more suitable for this problem.

In comparison with our two heuristic solvers, we can

observe that the solver heu2 can always find the better sol-

ution. Although the runtime of heu2 is longer, but it is approxi-

mately linear to that of heu1. In the following experiments, we

use heu2 only.

In the second experiment, we use heu2 to test the efficient

sampling technique. The experimental results are listed in

Table 2. These results will be compared to those in Table 1

to show the effect of the sampling technique. To make the

comparison as fair as possible, we let all state pairs in Fd �

Fb be sampled. We sum up the efficient samples encountered

in all iterations, and compare it the total number of samples

(that is the size of the Fd � Fb), the ratios are listed in the

eff_ratio column.

Comparing these results to those listed in heu2 column of

Table 1, we observed that the runtime increases. This is easy

to understand, since here the solver need to be invoked

many times (see Algorithm 3). When we compare the L

columns, we can find that the solutions’ quality has greatly

been improved (45% on average). This phenomenon

shows that the effective sampling technique can greatly

improve the performance of our solver. Additionally, when

we consider the column eff_ratio, we can observe that for all

benchmarks, the number of efficient samples is much less

than the total number of samples. In all cases, the ratios of

the efficient samples to all samples are in the magnitudes of

1022 to 1026. This phenomenon indicates that it is not necess-

ary to explore all the samples in Fd � Fb completely.

In the third experiment, we compare the performance of our

solver to DTL solver within the efficient sampling framework.

The samples are picked randomly from the data file. Table 3

lists the experimental results. From Table 3, we observed

that the DTL solver cannot get a solution in the time limit

(3 h) for most of the benchmarks. Even for the benchmarks

that DTL solver are available, the runtimes of our solver are

about three orders of magnitudes less than those of DTL

solver, and the separation sets obtained by our solver are

also 70% smaller on average than those by DTL solver.

Such results demonstrate the efficiency of our solver.

The fourth experiment is conducted on some real examples

that come from the ITC’ 99 benchemarks. The tool NuSMV

[14] is selected as the back-end for performing model check-

ing. The initial abstract models are obtained using the cone

of influence technique. In the case of the spurious counterex-

amples, the models will be refined. We implemented a tool for

generating the dead-end states and bad states from the failure

paths. The early results we have gotten are listed in Table 4.

Owing to implementation reasons, we only considered the

first found counterexample. In Table 4, column jVj lists the

number of variables, column m the number of dead-end

TABLE 2. Experiment with complete sampling technique using

heu2

Benchmark Time jLj eff_ratio

ran_k20_m150_n120 0.109 10 9.39 � 1023

ran_k30_m150_n120 0.125 7 1.58 � 1022

ran_k40_m150_n120 0.266 8 1.79 � 1022

ran_k50_m150_n120 0.359 7 2.18 � 1022

ran_k60_m150_n120 0.438 6 2.33 � 1022

ran_k20_m500_n300 0.672 15 1.51 � 1023

ran_k30_m500_n300 1.094 9 3.93 � 1023

ran_k40_m500_n300 2.187 10 5.03 � 1023

ran_k50_m500_n300 2.859 8 6.08 � 1023

ran_k60_m500_n300 3.609 8 6.88 � 1023

ran_k30_m150_n200 0.234 8 1.08 � 1022

ran_k30_m500_n1000 3.438 11 1.56 � 1023

ran_k30_m3000_n4000 86.172 16 1.60 � 1024

ran_k30_m5000_n4000 168.734 15 8.98 � 1025

ran_k30_m10000_n50000 4635.719 24 4.78 � 1026

ran_k40_m200_n250 0.75 7 1.01 � 1022

ran_k40_m1000_n2000 26.984 11 9.85 � 1024

ran_k40_m2000_n5000 131.141 14 3.56 � 1024

ran_k40_m8000_n7000 709.078 15 9.86 � 1025

ran_k50_m200_n300 1.171 8 1.03 � 1022

ran_k50_m1000_n2000 35.734 10 1.32 � 1023

ran_k50_m2000_n5000 169.75 13 4.81 � 1024

ran_k50_m8000_n7000 919.062 10 1.62 � 1024

ran_k50_m10000_n15000 2424.828 14 8.58 � 1025
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states and n the number of bad states. For comparison reason,

only the runtimes for solving the state separation problem are

accumulated. From Table 4, we observed that our solver out-

performs the DTL solver in all cases. For each case, note the

sizes of separation sets are small, such that the runtimes are

both short.

6. CONCLUSION

We considered the SSP in this paper. A heuristic-guided

approach was presented for solving this problem. An efficient

sampling technique has been applied. Experimental results

show the promising performance of our approach.
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