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Abstract Interface automata are one of the prominent for-

malisms for specifying interface behaviors of component-

based systems. However, only one-to-one communication

is allowed in the composition of interface automata. This

paper presents multicast interface automata which general-

ize the classic interface automata and accommodate multi-

cast communication mechanism. The multicast interface au-

tomata endorse both bottom-up and top-down design method-

ologies. Theoretical results on compatibility and refinement

are established for incremental design and independent im-

plementability.

Keywords interface automata, multicast communication,

component interaction, verification

1 Introduction

Interface automata [1,2] are a model for specifying

component-based systems. They are defined based on labeled

transition systems and syntactically similar to input/output

automata [3]. The interface automaton model is considered

as a light-weight formalism for specifying temporal aspects

of software component interfaces.

The essential feature of interface automata against tradi-

tional models lies on the fact that they can model both the

input requirements and the output behaviors of a system. Two

components are compatible if there exists an environment
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such that their input assumptions can be simultaneously sat-

isfied. This feature distinguishes the interface automata from

many traditional models, such as input/output automata [3].

In these formalisms, the models are required to be input-

enabled, thus being unable to block inputs from the environ-

ment. The compatibility checking requires that the compo-

nents work correctly in all environments. Since some inputs

can be blocked, this formalism usually leads to a simpler and

more abstract model.

In the theory of interface automata [1,2], only two inter-

faces are allowed to be composed at one time. As a result,

only one-to-one communication between two components

can be directly modeled in interface automata. Such limita-

tion hinders the application of interface automata to com-

plex distributed systems. For instance, consider a commu-

nication system shown in Fig. 1(a), the component P0 pub-

lishes a message e simultaneously to components P1, P2, and

P3. This is a typical multicast communication which occurs

in distributed systems. To model such a system with interface

automata, we have to use appropriate relabeling shown in Fig.

1(b). After relabeling actions, the message e is relabeled into

three messages, e1, e2, and e3. As a result, the publish action

is divided into three one-to-one actions. The resulting model

in interface automata may cause state space expansion with

auxiliary relabeling. A more direct and convenient modeling

is desirable.

In this paper, we present a new theory of multicast in-

terface automata. It extends the classical interface automata

to model multicast synchronism and communication. For
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Fig. 1 An example of using interface automata to model multicast communication

instance, the communication system shown in Fig. 1 can be

modeled directly with our automata. Each component (in-

cluding P0, P1, P2, and P3) is modeled as an automaton, and

the message passing from P0 simultaneously to P1, P2, and

P3 is modeled as a one-to-many communication directly. The

proposed model avoids using relabeling actions to specify

multicast communication and thus is more suitable for speci-

fying complex distributed systems.

The proposed automata are syntactically based on the clas-

sical interface automata. Each system component is modeled

as a multicast interface automaton, which is essentially a la-

beled transition system. The actions of an automaton are clas-

sified as input actions, output actions and internal actions.

The interface of a component is composed of input and out-

put actions. A collection of automata can be composed to

yield another interface automaton. For composition, the con-

current automata synchronize on input and output actions,

while they interleave asynchronously on internal actions. As

multicast interface automata are not required to be input en-

abled, we need to distinguish the concepts of composability

and compatibility of a collection of automata. A collection of

automata is compatible if there exists an environment such

that they can work together properly.

We demonstrate that the proposed automata theory sup-

ports both incremental design and independent imple-

mentability. These properties guarantee our formalism sup-

ports both bottom-up and top-down system design process.

In a bottom-up design process, the compatibility test of two

or more interfaces can be performed, even before all compo-

nents are assembled in the final design. In a top-down design

process, an individual component can be implemented inde-

pendently, as long as the implementations conform to the pre-

defined interfaces.

The paper is organized as follows. In Section 2, we address

related work. In Section 3, we introduce multicast interface

automata. In Section 4, we define the refinement relation be-

tween a collection of interface automata. We show several

fundamental theorems in multicast interface language theory

in Section 5. Finally, Section 6 concludes the paper.

2 Related work

I/O automata [3,4] are defined based on labeled transition

systems, and suitable for modeling distributed and concurrent

systems. I/O automata can be used not only for system mod-

eling, but also for algorithm correctness proving and com-

plexity analysis [5].

From its inception, a multitude of work has been done

on extending and improving I/O automata. In [6,7], a timed

I/O automaton model is proposed for modeling real-time sys-

tems. In [8–10], a probabilistic I/O automaton model is stud-

ied. It extends I/O automata with the ability to describing

probabilities. Moreover, in [11], Lynch et al. present a hy-

brid I/O automaton model, which supports modeling of both

discrete and continuous behaviors of hybrid systems.

The interface automata were first proposed in [1]. The for-

malism of interface automata is syntactically similar to I/O

automata, and is suitable for capturing the temporal aspects

of component interfaces. Theories of interface and compo-

nent algebra are presented in [12]. The interface algebra ad-

dresses compositional refinement, while the component al-

gebra underpins compositional abstraction. In [12], the au-

thors proved that the interface automaton model is an instance

of interface algebra and the I/O automaton model is an in-

stance of component algebra. In [2], the interface-based de-

sign methodology was suggested for developing component-

based systems. To support interface-based design, the inter-

face language needs to meet two requirements, i.e., incremen-

tal design and independent implementability. The interface

automaton model was proved to be an instance of an inter-

face language. In [13], a method for transforming interface

automaton to I/O automaton is presented. In the original the-
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ory of interface automata [1,2], each automaton is required

to be input-deterministic. This restriction has been relaxed in

[14] by slightly revising the definition of parallel composition

of interface automata.

Various extensions of interface automata are proposed in

[15–18]. In [17], a timed interface automaton model is pre-

sented, which is suitable for specifying real time systems.

The timed interface supports specifying timing constraints of

both input assumptions and their output behaviors. In [18],

the resource interface automaton model is investigated. In this

model, it is possible to check if a collection of components

work well together with limited resources. The sociable in-

terface model is proposed in [19]. It fuels a wide spectrum of

communication paradigms.

3 Multicast interface automata

Definition 1 An interface automaton [1] is a tuple

P = 〈VP, v
0
P, A

I
P, A

O
P , A

H
P ,�P〉,

where

• VP is a finite set of states;

• v0
P ∈ VP is an initial state;

• AI
P, AO

P and AH
P are pairwise disjoint sets of input, output

and internal actions, respectively. Let the set of actions

AP = AI
P ∪ AO

P ∪ AH
P ;

• �P ⊆ VP × AP × VP is a set of transitions.

To distinguish the traditional interface automaton which al-

lows one-to-one communication only, we call the interface

automaton which participates in a multicast communication

the multicast interface automaton.

The automaton P is closed if it has only internal actions,

i.e., AI
P = AO

P = ∅, otherwise it is open. We denote AX
P =

AI
P ∪ AO

P as the set of external actions, and AL
P = AO

P ∪ AH
P

as the set of local actions. We call a transition (v, a, v′) the

input (resp. output, internal) transition if a is an input (resp.

output, internal) action. The set of all input (resp. output, in-

ternal) transitions is denoted by �I
P (resp. �O

P , �H
P ).

An action a is enabled at a state v if there exists an-

other state v′ ∈ VP such that (v, a, v′) ∈ �P. We denote

AI
P(v), AO

P (v), AH
P (v) the set of input actions, output actions

and internal actions enabled at state v, respectively. Like in-

terface automata, we do not require multicast automata to be

input enabled, i.e., we do not require that AI
P(v) = AI

P hold at

all states.

Given v1, v2 ∈ VP, a ∈ AP, ax ∈ AX
P , and two sequences of

actions α = a1a2 · · · an ∈ (AP)n, β = b1b2 · · · bn ∈ (AX
P)n with

n � 1, we define operators “−→” and “=⇒” as follows:

• v1
a−→P v2 iff (v1, a, v2) ∈ �P;

• v1
τ−→P v2 iff there exists an action b ∈ AH

P , such that

v1
b−→P v2;

• v1
α−→P v2 iff v1

a1−→P
a2−→P · · · an−→P v2;

• v1
ε
=⇒P v2 iff v1(

τ−→P)∗v2;

• v1
ax
=⇒P v2 iff v1

ε
=⇒P

ax−→P v2;

• v1
β
=⇒P v2 iff v1

b1
=⇒P

b2
=⇒P · · · bn

=⇒P v2.

where (τ)∗ returns the reflexive and transitive closure of τ.

For simplicity, we usually ignore the subscripts of relation

operators.

Given two states v1, v2 of automaton P, we say v2 is reach-

able from v1 if there exists a sequence of action α ∈ (AP)∗

such that v1
α−→ v2; especially if the sequence α consists

of only internal actions, i.e., α ∈ (AH
P )∗, we say v2 is invisibly

reachable from v1; and if α consists of only local actions, i.e.,

α ∈ (AH
P ∪ AO

P )∗, we say v2 is autonomously reachable from

v1. We say a state v2 is (invisibly, autonomously) reachable

in automaton P if v2 is (invisibly, autonomously) reachable

from the initial state v0
P of P.

We illustrate our definitions by modeling a software com-

ponent which provides job processing service. Component

Treater has a method job for the user to assign jobs. When

this method is called, the component returns either done or

f ail. To provide this service, the component needs to con-

sume some necessary resources such as CPU and memory.

When a job is given, the component first outputs an action

alloc for requesting resources, then it expects to receive al-

located results from the resource management components.

The multicast interface automaton modeling this component

is drawn in Fig. 2. The automaton is surrounded by a rounded

corner rectangle, whose ports correspond to the interface.

With an automaton, we denote the input (resp. output, in-

ternal) action by appending a symbol of “?” (resp. “!”, “;”),

Fig. 2 Multicast interface automata Treater
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where circular node represents compatible state, and square

node represents error state.

As mentioned before, multicast interface automata need

not to be input enabled. There are input actions of Treater

which are not accepted at some states. For example, the in-

put action job is only accepted at state s0, which reveals an

assumption made by Treater about its environment: after the

user calls the job method, he will wait without calling this

method again until he gets the method result.

In the automaton Treater, it makes no provisions for han-

dling resource allocation failure. In other words, Treater ac-

cepts only success results of resource allocation, and does not

accept failure results. This reveals another assumption made

by Treater about its environment that all resources are al-

ways allocated successfully.

Consider two resource components: CPU and Memory.

They are in charge of allocation of computation resource and

storage resource, respectively. The alloc request is simultane-

ously transmitted to these two components. With the assump-

tion that system has unlimited memory resource and limited

computation resource, we draw multicast interface automata

shown in Figs. 3 and 4 for these two components, respec-

tively. When component CPU receives the alloc request, it

calls the method get_cpu to get the current usage status of

CPU. If CPU is busy, it returns cpu_ f ail; otherwise cpu_ok.

Fig. 3 Multicast interface automata CPU

The automaton of a complex system can be constructed by

composing automata modeling each of its components. We

now define composition of multicast interface automata. Let

I ⊆ N be a finite and nonempty set of natural numbers.

Definition 2 A collection {Pi}i∈I of multicast interface au-

tomata is composable if, for any i, j ∈ I, i � j,

Fig. 4 Multicast interface automata Memory

AO
Pi
∩ AO

P j
= ∅,

AH
Pi
∩ AP j = ∅.

Note that the definition of composability is different from

that of interface automata. In interface automata, only two

automata are allowed to be composed at one time. Here we

allow composition of any finite number of automata. As we

do not require that the input actions of different automata be

disjoint, components with the same input actions are compos-

able. Recalling the job processing example, the collection of

automata Treater, CPU, and Memory are composable.

We first define the product of multicast interface automata.

As in classical automata theory, the participating automata

synchronize on shared actions, and interleave asynchronously

on other actions. We then define the composition of automata

which is obtained from the product by eliminating incompat-

ible states.

Definition 3 Given a composable collection {Pi}i∈I of mul-

ticast interface automata, their product automaton P =
∏

i∈I Pi is defined as follows: 1)

• VP =
∏

i∈I VPi ;

• v0
P is a vector, where v0

P[i] = v0
Pi

;

• AI
P =
⋃

i∈I AI
Pi
\⋃i∈I AO

Pi
;

• AO
P =
⋃

i∈I AO
Pi

;

• AH
P =
⋃

i∈I AH
Pi

;

• �P ⊆ VP × AP ×VP is a set of triples (v, a, v′) such that,

for all i ∈ I, if a ∈ APi then (v[i], a, v′[i]) ∈ �Pi , and if

a � APi , then v′[i] = v[i].

For simplicity, we denote
∏

i∈I Pi as
∏

I Pi. Given a state v

1) For simplicity, we use the symbol “×” to denote both product between automata and Cartesian product between sets
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of
∏

I Pi, it is considered as a vector with the i-th element v[i]

being the value in Pi. Let v|i be the image of v on Pi. More-

over, given a subset J ⊆ I, let v|J be the image of v on
∏

J P j,

which is obtained by deleting v[k] from vector v if k � J.

The above definition shows the main difference between

our automata and interface automata. Here we are allowed

to have a product of any finite number of automata and the

shared actions are not merged into internal actions immedi-

ately. The treatment on actions is similar as that in I/O au-

tomata. When computing the product of a collection of au-

tomata, the shared input actions are removed, but the shared

output actions are kept. The motivation behind this decision

lies on the fact that there may be many participants in a mul-

ticast communication. It is necessary to keep shared output

actions to make the product automaton composable to other

components involved in the same communication.

We prove that the product operation of a collection of mul-

ticast interface automata is associative.

Theorem 1 Given a composable collection {Pi}i∈I of mul-

ticast interface automata. Let I = I1 ∪ I2 where I1 ∩ I2 = ∅,
then

∏

I

Pi =
∏

I1

Pi ×
∏

I2

Pi.

Proof According to Definition 1, to prove equivalence of

two multicast interface automata, we need to prove that the

values of V , v0, AI , AO, AH and � are equal, respectively.

Recalling the job processing example, the product of au-

tomata Treater and CPU 2) is shown in Fig. 5. The shared

actions between Treater and CPU are alloc, cpu_ok and

cpu_ f ail. Each state in the product consists of a state of

Treater and a state of CPU. Each transition is either a syn-

chronization step between Treater and CPU, such as the

transition from state (1, 0) to state (2, 1), and the transition

from state (2, 4) to state (3, 0); or an interleaving step be-

tween Treater and CPU, such as all other transitions. Note

that only reachable states are plotted in Fig. 5.

Since multicast interface automata do not need to be in-

put enabled, when computing the product of a collection of

automata, one of the automata may output an action that is

an input of another automaton, but is not accepted. An error

state is a state where such a situation happens. In Fig. 5, state

(2, 3) is an error state, where the component CPU can out-

put an action cpu_ f ail while the other component Treater

cannot accept it.

Definition 4 Given a composable collection {Pi}i∈I of mul-

ticast interface automata, a state v ∈ V∏
I Pi is an error state if

there exist i, j ∈ I such that

(i � j) ∧
(
∃a ∈ shared(Pi, P j).a ∈ AO

Pi
(v[i]) ∧ a � AI

P j
(v[ j])

)
,

where shared(Pi, P j) = APi ∩ AP j .

For I/O automata, if the product automaton contains any

reachable error state, then the participated automata are not

compatible. The situation is different in interface automata.

In interface automata, we know that the participated automata

are not compatible only when there is no environment such

that all error states are unreachable in the product automaton.

In Fig. 5, state (2, 3) is an error state. However, there are some

environments where state (2, 3) can become unreachable. For

example, the component S cheduler shown in Fig. 6 frames

one of such environments.

Fig. 5 Product Treater ×CPU

2) Just for illustration purpose, we show the product of two automata here. With the definition, we can also compute the product Treater ×CPU × Memory.
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Fig. 6 Multicast interface automata Scheduler

Note that the environment can only affect the component

by synchronizing with its input actions. If an error state is

autonomously reachable from a state s, there is no way for

the environment to prevent the automaton from going from s

to the error state. Therefore, we have the following definition

for compatible states.

Definition 5 Given a composable collection {Pi}i∈I of mul-

ticast interface automata, a state v ∈ V∏
I Pi is a compatible

state of
∏

I Pi if there exists no error state e ∈ error(
∏

I Pi)

such that e is autonomously reachable from v.

Let Cmp(
∏

I Pi) be the set of all compatible states in
∏

I Pi. Given a compatible state v, all states that are au-

tonomously reachable from this state must also be compatible

states.

Definition 6 A collection {Pi}i∈I of multicast interface au-

tomata is compatible if they are composable and the initial

state of
∏

I Pi is compatible.

To define the composition of a collection of automata, we

introduce the concept of dangerous transitions [14]. The com-

position is obtained by eliminating all dangerous transitions

in the product automaton.

Definition 7 Given a composable collection {Pi}i∈I of mul-

ticast interface automata, a transition t = (v, a, v′) ∈ �∏
I Pi is

dangerous if the following conditions hold:

1) v is a compatible state of
∏

I Pi,

2) a ∈ AI∏
I Pi

is an input action of �∏
I Pi ,

3) v′ is not a compatible state of
∏

I Pi.

Let �D∏
I Pi

be the set of all the dangerous transition in

�∏
I Pi .

Definition 8 Given a composable collection {Pi}i∈I of mul-

ticast interface automata, their composition ‖i∈I Pi (for short,

‖I Pi) is defined as:

• V‖I Pi = V∏
I Pi , v

0
‖I Pi
= v0∏

I Pi
;

• AI
‖I Pi
= AI∏

I Pi
, AO
‖I Pi
= AO∏

I Pi
, AH
‖I Pi
= AH∏

I Pi
;

• �‖I Pi = �∏I Pi\�D∏
I Pi

.

When all components participated in certain communica-

tion have been composed, we need to explicitly “hide” the in-

volved output actions by converting them to internal actions.

Definition 9 Given a multicast interface automaton P and a

set of actions Σ(⊆ AO
P ), the hidden automaton of P with Σ is

defined as follows:

P\Σ = 〈VP, v
0
P, A

I
P, A

O
P\Σ, AH

P ∪ Σ,�P〉.

Note that there is no “hide” operation in classical interface

automata where the shared actions of involved automata are

immediately merged to an internal action.

Figure shows the composition Treater‖CPU obtained by

eliminating all dangerous transitions in product Treater ×
CPU. Note that the error state (2, 3) becomes unreachable

in the composition. Moreover, since the actions cpu_ok and

cpu_ f ail are only related to the components Treater and

CPU, we change them to internal actions using the “hide” op-

eration. Figure 8 shows an implementation of the User com-

ponent. Figure 9 gives the composition of all the automata in

the system which is closed after applying the hide operation.

Fig. 7 Composition (Treater‖CPU)\{cpu_ok, cpu_ f ail}
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Fig. 8 Multicast interface automata User

4 Refinement relation

The refinement relation provides a way to check consistency

between different abstraction levels of a component. Similar

to the classical interface automata, we define a refinement

relation of multicast interface automata based on alternating

simulation [20]. Automaton P refines Q if all input steps of Q

can be simulated by P, and all output steps of P can be simu-

lated by Q. To give a formal definition, we need the following

concepts.

Definition 10 Given a state v of multicast interface automa-

ton P, the ε-closure of v (written ε-closureP(v)) is the set of

states which are invisibly reachable from v.

Assume that v is the current state of P. Since the internal

action of P is invisible, the environment only knows automa-

ton P stays at a state in the set ε-closure(v), but does not know

exactly at which state automaton P stays. Thus, when the au-

tomaton P interacts with its environment, we need to consider

situations where P can be at any state in ε-closure(v).

Definition 11 Given a state v of automaton P,

ExtEnO
P (v) = {a|∃u ∈ ε-closureP(v).a ∈ AO

P (u)},
ExtEnI

P(v) = {a|∀u ∈ ε-closureP(v).a ∈ AI
P(u)}.

Let ExtEnI
P(v) (ExtEnO

P (v)) be the set of externally en-

abled input (output) actions of P at state v.

We use ExtEnX
P(v) = ExtEnI

P(v) ∪ ExtEnO
P (v) as the set of

externally enabled actions of P at state v.

Definition 12 Given a state v of automaton P, for any a ∈
ExtEnX

P(v), the set of externally enabled destination states of

P is defined as

ExtDestP(v, a) = {u′|∃(u, a, u′) ∈ �P. u ∈ ε-closureP(v)}.

Definition 13 Let P and Q be two multicast interface au-

tomata. A binary relation � (⊆ VP × VQ) is an alternating

simulation from P to Q, if for any state pair (u, v) ∈�, the

following conditions hold:

1) ExtEnI
P(u) ⊇ ExtEnI

Q(v), ExtEnO
P (u) ⊆ ExtEnO

Q(v),

2) For any action a ∈ ExtEnO
P (u) ∪ ExtEnI

Q(v), and

any state u′ ∈ ExtDestP(u, a), there is a state v′ ∈
ExtDestQ(v, a) such that u′ � v′.

Consider condition 1 in the above definition. An input ac-

tion of an automaton can be viewed as a service provided by

this component. The environment can call this service by syn-

chronizing with the corresponding input action. On the other

hand, an output action of an automaton can be seen as a ser-

vice calling to the environment, and the environment should

provide some service to satisfy this call.

Definition 14 Given two multicast interface automata P

and Q, P refines Q (written P � Q) if

1) AI
P ⊇ AI

Q, AO
P ⊆ AO

Q,

2) There is an alternating simulation � from P to Q such

that q0
P � q0

Q.

It is easy to understand the condition 1 in the above def-

inition. In component-based design, a component A refines

Fig. 9 Composition (Treater‖CPU‖Memory‖S cheduler‖User)\Σ, where Σ is the set of all output actions
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a component B only when A provides more services to the

environment, and requires less invocation from the environ-

ment.

Theorem 2 The refinement relation between multicast in-

terface automata is a preorder relation.

Proof The refinement relation is obviously reflexive. We

need only to prove that it is also transitive, i.e., given any

automata P, Q and R, if P � Q,Q � R, then P � R holds.

1) According to Definition 14, we have AI
P ⊇ AI

Q ⊇ AI
R,

AO
P ⊆ AO

Q ⊆ AO
R ;

2) From the premise, there exists an alternating simulation

�1 from P to Q such that v0
P �1 v0

Q, and an alternat-

ing simulation �2 from Q to R such that v0
Q �2 v0

R.We

construct a binary relation �3 from P to R as follows:

�3=
{
(u,w) ∈ VP × VR|∃v ∈ VQ, (u, v) ∈�1 ∧(v,w) ∈�2

}

Obviously, v0
P �3 v0

R holds. Given any (u,w) ∈�3, there ex-

ists v ∈ VQ, such that u �1 v and v �2 w. We then need to

prove �3 is an alternating simulation.

• From u �1 v and v �2 w, we get

ExtEnI
P(u) ⊇ ExtEnI

Q(v) ⊇ ExtEnI
R(w),

ExtEnO
P (u) ⊆ ExtEnO

Q(v) ⊆ ExtEnO
R (w).

• Given any action a ∈ ExtEnO
P (u) ∪ ExtEnI

R(w), and

any state u′ ∈ ExtDestP(u, a), from ExtEnI
R(w) ⊆

ExtEnI
Q(v), we know

a ∈ ExtEnO
P (u) ∪ ExtEnI

Q(v).

Since u �1 v, there is a state v′ ∈ ExtDestQ(v, a) such that

u′ �1 v′. Similarly, from ExtEnO
P (u) ⊆ ExtEnO

Q(v), we get

a ∈ ExtEnO
Q(v) ∪ ExtEnI

R(w).

Moreover, since v �2 w, and v′ ∈ ExtDestQ(v, a), there is

a state w′ ∈ ExtDestR(w, a) such that v′ �2 w′. Thus u′ �3 w′

holds.

5 Interface language theory

An interface language should support incremental design and

independent implementability [2]. We show that our multi-

cast interface automata meet these two requirements.

The property of incremental design requires that the com-

patibility of the interfaces be not changed when an interface

is added in subsequent design phases. More precisely, if a

collection of interfaces are compatible, then any subset of the

collection are also compatible. We demonstrate that multicast

interface automata adhere to incremental design.

Theorem 3 Let {Pi}i∈I be a composable collection of multi-

cast interface automata. If J ⊆ I, then {Pi}i∈J are composable.

Proof Let i, j ∈ J, and i � j. Note that J ⊆ I, thus i, j ∈ I.

Since {Pi}i∈I are composable, we have: AO
Pi
∩ AO

P j
= ∅, and

AH
Pi
∩ AP j = ∅. According to the definition of composability,

{Pi}i∈J are also composable.

Theorem 4 Let {Pi}i∈I be a compatible collection of multi-

cast interface automata. If J ⊆ I, then
{
P j

}

j∈J
are compatible.

Proof Since
{
P j

}

j∈J
is composable (according to Theorem

3), we only need to prove the following proposition: if v0∏
I Pi

is compatible, then v0∏
J P j

is also compatible, which can be

proved by contradiction.

Assume the above proposition does not hold, then there

exists an error state e in
∏

J P j such that e is autonomously

reachable from v0∏
J P j

. Let

v0
a0→ v1

a1→ · · · an−1→ vn

be a path from v0∏
J P j

to e, where v0 = v0∏
J P j

, vn = e and

vk−1
ak−1−→ vk ∈ �∏J P j for 1 � k � n.

Let v′0 = v0∏
I Pi

, then v0 = v′0|J holds. Assume for the sub-

path from v0 to vk (k � n), there exists a corresponding path

v′0
a0→ v′1

a1→ · · · ak−1→ v′k in
∏

I Pi, such that vl = v′l |J, for

0 � l � k. Now consider the transition (vk, ak, vk+1) in
∏

J P j,

there are two cases of ak:

• ak is an internal action of
∏

J P j. Let v′k+1[i] = vk+1[i] if

i ∈ J, and v′k+1[i] = v′k[i] if i � J, then (v′k, ak, v′k+1) must

be a transition in
∏

I Pi.

• ak is an output action of
∏

J P j. For any automaton Pi

(i � J) which takes ak as its input action, ak must be

enabled on its state v′k[i], otherwise according to Def-

inition 4, v′k is an error state. Let v′k+1[i] = vk+1[i] if

i ∈ J, and equal to one of the successors of v′k[i] on ak

if i � J and a j ∈ AI
Pi

, and equal to v′k[i], otherwise, then

(v′k, ak, v′k+1) must be a transition in
∏

I Pi.

In both cases, either we prove v′k is an error state, or we

prove (v′k, ak, v′k+1) is a transition in
∏

I Pi. If v′k is an er-

ror state, we stop here and report the path v′0
a0→ v′1

a1→
· · · ak−1→ v′k. Otherwise, we continue to consider the transition
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(vk+1, ak, vk+2). In the worst case, until k = n we get

v′0
a0→ v′1

a1→ · · · an−1→ v′n,

which is a path in
∏

I Pi satisfying vk = v′k |J, for 0 � k � n.

By Definition 4, v′n is also an error state in
∏

I Pi. Therefore,

no matter what cases, we prove that there is an error state v′k
which is reachable from the initial state in

∏
I Pi.

According to the definition of composability, the output or

internal actions remain to be output or internal actions after

being composited. So the action al is still an output or inter-

nal action of v′l for (0 � l < k). Then the error state v′k is

autonomously reachable from v0∏
I Pi

, and thus v0∏
I Pi

is not a

compatible state. This conflicts with the premise. So the as-

sumption is not true, and the proposition holds.

Independent implementability is supported if the individ-

ual components can be implemented independently, as long

as the implementations conform to the predefined interfaces.

More precisely, given three multicast interface automata P,

P′ and Q with certain interacting relation, if P′ and Q are

compatible and P � P′, then P and Q are also compatible

and P‖Q � P′‖Q.

To verify our multicast interface automata supports inde-

pendent implementability, we need to prove several lemmas.

Lemma 1 Let P, P′, Q be three multicast interface au-

tomata such that P′ and Q are composable, P � P′. If

shared(P,Q) ⊆ shared(P′,Q) and AH
P ∩ AO

P′ = ∅ hold, then P

and Q are also composable.

Lemma 2 Let P, P′, Q be three multicast interface au-

tomata such that P′ and Q are composable, P � P′, AH
P ∩

AO
P′ = ∅, and shared(P,Q) ⊆ shared(P′,Q). Let � be an al-

ternating simulation from P to P′, and (sP′ , sQ) ∈ Cmp(P′,Q)

be a compatible state in P′ × Q. Given a state sp ∈ VP suth

that sP � sP′ , we have:

1) If there is a sequence of actions α ∈
(
AO

P×Q

)∗
and a state

(s′P, s
′
Q) ∈ VP×Q such that (sP, sQ)

α
=⇒P×Q

(
s′P, s

′
Q

)
, then

there must be a state s′′P ∈ VP and s′P′ ∈ VP′ such that

s′P ∈ ε-closure(s′′P), s′′P � s′P′ , (sP′ , sQ)
αn
=⇒P′×Q (s′P′ , s

′
Q)

and (s′P′ , s
′
Q) ∈ Cmp(P′,Q).

2) (sP, sQ) ∈ Cmp(P,Q).

Lemma 3 Let P, P′, and Q be three multicast interface au-

tomata such that P and Q are compatible, P′ and Q are com-

patible, and P � P′. Given states sP ∈ VP, sP′ ∈ VP′ such that

sP � sP′ , then, for any sQ ∈ VQ, the following relations hold:

ExtEnI
P×Q
(
(sP, sQ)

) ⊇ ExtEnI
P′×Q
(
(sP′ , sQ)

)
,

ExtEnO
P×Q

(
(sP, sQ)

) ⊆ ExtEnO
P′×Q

(
(sP′ , sQ)

)
.

The following theorem and corollaries show that our multi-

cast interface automata endorse independent implementabil-

ity.

Theorem 5 Let P, P′, and Q be three multicast inter-

face automata such that shared(P,Q) ⊆ shared(P′,Q) and

AH
P ∩ AO

P′ = ∅. If P′ and Q are compatible and P � P′, then P

and Q are compatible and P ‖ Q � P′ ‖ Q.

Proof We first prove the compatibility of P and Q. Based on

Lemma 1, P and Q are composable. From the compatibility

of P′ and Q, we get (v0
P′ , v

0
Q) ∈ Cmp(P′,Q). From P � P′,

we know v0
P � v0

P′ . According to Lemma 2, we conclude

(v0
P, v

0
Q) ∈ Cmp(P,Q). Thus P and Q are compatible.

We then prove P ‖ Q � P′ ‖ Q holds.

1) From P � P′, there are AI
P ⊇ AI

P′ , A
O
P ⊆ AO

P′ . Then

AI
P ∪ AI

Q ⊇ AI
P′ ∪ AI

Q and AO
P ∪ AO

Q ⊆ AO
P′ ∪ AO

Q. Thus

AI
P‖Q ⊇ AI

P′‖Q, A
O
P‖Q ⊆ AO

P′‖Q.

2) Construct a binary relation from VP×Q to Cmp(P′,Q) as

�′= {((sP, sQ), (sP′ , sQ)
) ∈ VP×Q ×Cmp(P′,Q)|

∃s∗P ∈ VP, sP ∈ ε-closure(s∗P) ∧ s∗P � sP′ }.

Then we can prove �′ is an alternating simulation.

3) Let v0
P, v0

Q, and v0
P′ be initial states of P, Q, and P′, re-

spectively. Since P and Q, and P′ and Q are compatible,

there is
(
(v0

P, v
0
Q), (v0

P′ , v
0
Q)
)
∈ Cmp(P,Q) ×Cmp(P′,Q).

Since P � P′, then v0
P � v0

P′ . Therefore,

(v0
P, v

0
Q) �′ (v0

P′ , v
0
Q).

Corollary 1 Let P, P′, Q, and Q′ be four multicast inter-

face automata such that

shared(P,Q) ⊆ shared(P′,Q) ⊆ shared(P′,Q′).

If P′ and Q′ are compatible, P � P′, AH
P ∩ AO

P′ = ∅,
Q � Q′, AH

Q ∩AO
Q′ = ∅, then P and Q are also compatible, and

P ‖ Q � P′ ‖ Q′.

Proof With the premises, we know that Q � Q′, Q′ and

P′ are compatible, and shared(P′,Q) ⊆ shared(P′,Q′),
AH

Q ∩ AO
Q′ = ∅. Then according to Theorem 5, we conclude

that Q and P′ are also compatible, and P′‖Q � P′‖Q′ holds.

Since P � P′, shared(P,Q) ⊆ shared(P′,Q), AH
P ∩ AO

P′ = ∅,
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by applying theorem 5 again, we get that P and Q are compat-

ible too, and P‖Q � P′‖Q holds. According to the transitivity

of alternating simulation relation, P‖Q � P′‖Q′ holds.

Given a collection {Pi}i∈I of multicast interface automata,

we denote the set of shared actions as

shared({Pi}i∈I) =
⋃

i, j∈N,i� j

(APi ∩ AP j ).

For instance, in our our job processing example, we have:

shared(Treater,CPU,Memory)

= {alloc, cpu_ok, cpu_ f ail,mem_ok,mem_ f ail}.

Corollary 2 Let P1, P2, . . . , Pn and P′1, P
′
2, . . . , P

′
n be two

collections of multicast interface automata such that

shared(P1, P2, . . . , Pn) ⊆ shared(P′1, P2, . . . , Pn)

⊆ shared(P′1, P
′
2, P3, . . . , Pn) ⊆ · · · ⊆ shared(P′1, P

′
2, . . . , P

′
n).

If P′1, P
′
2, . . . , P

′
n are compatible, Pi � P′i and AH

Pi
∩AO

P′i
= ∅

hold for 1 � i � n, then P1, P2, . . . , Pn are also compatible

and ‖ni=1 Pi �‖ni=1 P′i .

Proof This corollary can be proved in a similar way as for

corollary 1.

Consider the job processing example in Fig. 2. The design

of Treater requires action cpu_ok being taken before the ac-

tion mem_ok. This constraint would be unreasonable in some

circumstances. To solve the problem, we need to refine the

original design. For example, the automaton BetterTreater

in Fig. 10 gives a refinement of the Treater component.

Before inserting BetterTreater into the system, we need to

prove its compatibility with the system. We define a relation:

�= {(0′, 0), (1′, 1), (2′, 2), (3′, 3), (4′, 4), (5′, 5)}.
It is easy to prove that this relation is an alternating sim-

ulation from BetterTreater to Treater. Then by Theorem 5,

we can prove the compatibility of BetterTreater.

Fig. 10 Multicast interface automata BetterTreater

6 Conclusion

We presented multicast interface automata in this paper. The

formalism extended the classical interface automata by in-

troducing multicast communication, and therefore is more

suitable for specifying complex distributed systems. The pro-

posed model endorses both incremental design and indepen-

dent implementability methodologies and can be used in both

bottom-up and top-down design process.
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Appendix

A.1 Proof to Theorem 1

Proof According to Definition 1, to prove equivalence of

two multicast interface automata, we need to prove that the

values of V , v0, AI , AO, AH and � are equal, respectively.

For simplicity, we use left and right to denote the left and

right parts of the above formula respectively.

Vright = V∏
I1

Pi × V∏
I2

Pi =
∏

I1

VPi ×
∏

I2

VPi =
∏

I

VPi = Vleft.

v0
right = v0∏

I1
Pi
× v0∏

I2
Pi
=
∏

I1

v0
Pi
×
∏

I2

v0
Pi
=
∏

I

v0
Pi
= v0

left.

AO
right = AO∏

I1
Pi
∪ AO∏

I2
Pi
=
⋃

I1

AO
Pi
∪
⋃

I2

AO
Pi
=
⋃

I

AO
Pi
= AO

left.

AH
right = AH∏

I1
Pi
∪ AH∏

I2
Pi
=
⋃

I1

AH
Pi
∪
⋃

I2

AH
Pi
=
⋃

I

AH
Pi
= AH

left.

AI
right =

(

AI∏
I1

Pi
∪ AI∏

I2
Pi

)

\
(

AO∏
I1

Pi
∪ AO∏

I2
Pi

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

⋃

I1

AI
Pi
\
⋃

I1

AO
Pi

⎞
⎟⎟⎟⎟⎟⎟⎠ ∪
⎛
⎜⎜⎜⎜⎜⎜⎝

⋃

I2

AI
Pi
\
⋃

I2

AO
Pi

⎞
⎟⎟⎟⎟⎟⎟⎠

\
⎛
⎜⎜⎜⎜⎜⎜⎝

⋃

I1

AO
Pi
∪
⋃

I2

AO
Pi

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

⋃

I

AI
Pi
\
⋃

I

AO
Pi

⎞
⎟⎟⎟⎟⎟⎠

= AI
left.

As to the set of transitions �, we need to prove that for any

transition τ, if τ ∈ �left, then τ ∈ �right, and vice versa.

1) Given τ = 〈v, a, v′〉 ∈ �left. According to Definition 3,
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for all i ∈ I, if a ∈ APi then (v[i], a, v′[i]) ∈ �Pi ; and if

a � APi then v′[i] = v[i]. Since I1 ⊆ I and I2 ⊆ I, we

have

〈v|I1, a, v
′|I1〉 ∈ �∏I1

Pi , or v|I1 = v′|I1.

〈v|I2, a, v
′|I2〉 ∈ �∏I2

Pi , or v|I2 = v′|I2.

Then we conclude 〈v, a, v′〉 ∈ �right.

2) Given τ′ = 〈u, b, u′〉 ∈ �right. Since u and u′ are states

in
∏

I1
Pi ×∏I2

Pi, and I1 ∪ I2 = I, u and u′ are also

states in
∏

I Pi. No matter if b is an action in
∏

I1
Pi or

in
∏

I2
Pi, since I1 ⊆ I and I2 ⊆ I, b must be an action

in
∏

I Pi. Thus, 〈u, b, u′〉 ∈ �left.

A.2 Proof to Lemma 1

Proof Since P′ and Q are composable, then

shared(P′,Q) = (AI
P′ ∩ AO

Q) ∪ (AO
P′ ∩ AI

Q) ∪ (AI
P′ ∩ AI

Q).

Since AQ = AH
Q ∪ AX

Q, we have

shared(P,Q) = (AP ∩ AH
Q) ∪ (AP ∩ AX

Q).

Note that there is no element of AH
Q in shared(P′,Q). By

applying this fact to shared(P,Q) ⊆ shared(P′,Q), we get

AP ∩ AH
Q = ∅. (1)

Note

shared(P,Q) = (AP ∩ AX
Q) = (AH

P ∩ AX
Q) ∪ (AX

P ∩ AX
Q).

We now prove AH
P ∩ AX

Q = ∅ by contradiction. Assume

AH
P ∩ AX

Q � ∅. There exists an action a ∈ AH
P , and a ∈ AX

Q.

Obviously a ∈ shared(P,Q) holds. Note shared(P,Q) ⊆
shared(P′,Q), then a ∈ shared(P′,Q). Consider following

cases of a.

1) a ∈ AO
Q: In a similar way, with a ∈ AO

Q, we get a � AI
Q.

Applying this to Eq. (2), we get a ∈ (AI
P′ ∩ AO

Q), then

a ∈ AI
P′ . Since a ∈ AH

P , so we have AI
P′ ∪ AH

P � ∅. As

P � P′, AI
P ⊇ AI

P′ , we obtain AI
P ∪ AH

P � ∅. Here comes

contradiction.

2) a ∈ AI
Q: Since a ∈ AI

Q, then a � AO
Q. Applying this

to Eq. (2), we have a ∈ (AO
P′ ∩ AI

Q) ∪ (AI
P′ ∩ AI

Q),

then a ∈ AO
P′ ∪ AI

P′ , i.e., a ∈ AX
P′ . Note a ∈ AH

P , so

AX
P′ ∩ AH

P � ∅. This conflicts with the premise.

In both cases, the assumption conflicts with the premise,

so the assumption does not hold, that is

AH
P ∩ AX

Q = ∅.

Comparing this formula with equation Eq. (1), we get

AH
P ∩ AQ = ∅. (2)

Note

shared(P,Q) = AX
P ∩ AX

Q = (AI
P ∩ AI

Q) ∪ (AI
P

∩AO
Q) ∪ (AO

P ∩ AI
Q) ∪ (AO

P ∩ AO
Q).

By considering the elements in shared(P,Q) and

shared(P′,Q) which belong to AO
Q, we have

(AI
P ∩ AO

Q) ∪ (AO
P ∩ AO

Q) ⊆ AI
P′ ∩ AO

Q.

Since AI
P ⊇ AI

P′ , we have AI
P ∩ AO

Q ⊇ AI
P′ ∩ AO

Q, and

AO
P ∩ AO

Q = ∅, AI
P ∩ AO

Q = AI
P′ ∩ AO

Q. (3)

By considering Eqs. (1), (2), and (3) together, we conclude

that P and Q are composable.

A.3 Proof to Lemma 1

Proof Based on Lemma 1, P and Q are composable. We

now prove these two propositions as follows.

1) Let |α| = n, we prove the proposition 1 by induction on

the length of α.

a) The base: the proposition holds when n = 0,

i.e., if (s′P, s
′
Q) ∈ ε-closure

(
(sP, sQ)

)
, then there

must be a state s′′P ∈ VP and s′P′ ∈ VP′ such

that s′P ∈ ε-closure(s′′P), s′′P � s′P′ , (s′P′ , s
′
Q) ∈

ε-closure
(
(sP′ , sQ)

)
and (s′P′ , s

′
Q) ∈ Cmp(P′,Q).

Since (s′P, s
′
Q) ∈ ε-closure

(
(sP, sQ)

)
, then

s′P ∈ ε-closure(sP), and s′Q ∈ ε-closure(sQ).

Let s′′P ∈ ε-closure(s′P) and s′P′ ∈ ε-closure(sP′),

then obviously the proposition holds.

b) The inductive step: if the proposition holds for n,

the proposition also holds for n + 1. Let α =

a1, a2, . . . , an+1, where ai ∈ AO
P×Q for 1 � i � n + 1,

and αn = a1, a2, . . . , an be the nth prefix of α. As-

sume (sP, sQ)
αn
=⇒P×Q (sn

P, s
n
Q), there must exist a

sequence of states s0
P, s

1
P, . . . , s

n
P ∈ VP, such that

s0
P = sP,

si
P ∈ ExtDestP(si−1

P , ai), if ai ∈ ExtEnX
P(si−1

P );

and si
P = si−1

P , otherwise.
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There also exists a sequence of states

s0
Q, s

1
Q, . . . , s

n
Q ∈ VQ, such that

s0
Q = sQ,

si
Q ∈ ExtDestQ(si−1

Q , ai), if ai ∈ ExtEnX
Q(si−1

Q );

and si
Q = si−1

Q , otherwise.

According to the premise, we know there exists

a state s∗P ∈ VP and sn
P′ ∈ VP′ such that sn

P ∈
ε-closure(s∗P), s∗P � sn

P′ , (sP′ , sQ)
α
=⇒P′×Q (sn

P′ , s
n
Q)

and (sn
P′ , s

n
Q) ∈ Cmp(P′,Q). As shown in Fig. 11,

let

s′P ∈ ExtDestP(sn
P, an+1), if an+1 ∈ ExtEnX

P(sn
P);

and s′P = sn
P, otherwise,

s′Q ∈ ExtDestQ(sn
Q, an+1), if an+1 ∈ ExtEnX

Q(sn
Q);

and s′Q = sn
Q, otherwise.

Fig. 11 Illustration for Lemma 2

Note an+1 ∈ ExtEnO
P×Q(sn

P, s
n
Q), there are two cases:

i) an+1 ∈ ExtEnO
P (sn

P):

Since s′P ∈ ExtDestP(sn
P, an+1), and s∗P ∈

ε-closure(sn
P), then s′P ∈ ExtDestP(s∗P, an+1).

According to s∗P � sn
P′ , there must exist a state

s′P′ ∈ ExtDestP′ (sn
P′ , an+1), such that s′P � s′P′ .

Moreover, since s′Q ∈ ExtDestQ(sn
Q, an+1), we

have (s′P′ , s
′
Q) ∈ ExtDestP′×Q

(
(sn

P′ , s
n
Q), an+1

)

and (s′P′ , s
′
Q) ∈ Cmp(P′,Q). Thus proposition 1

holds.

ii) an+1 ∈ ExtEnO
Q(sn

Q):

We discuss two subcases here.

A) an+1 ∈ ExtEnI
P(sn

P):

In this case an+1 ∈ ExtEnI
P(sn

P) ∩
ExtEnO

Q(sn
Q), then obviously an+1 ∈ AI

P∩AO
Q.

Based on Eq. (3), we get an+1 ∈ AI
P′ ∩

AO
Q, and thus a ∈ AI

P′ . Moreover, since

(sn
P′ , s

n
Q) is a compatible state, and an+1 ∈

ExtEnO
Q(sn

Q), we have an+1 ∈ ExtEnI
P′ (sn

P′).

From s∗P � sn
P′ , there must exist a state s′P′ ∈

ExtDestP′ (sn
P′ , an+1), such that s′P � s′P′ .

Furthermore, as s′Q ∈ ExtDestQ(sn
Q, an+1),

we get

(s′P′ , s
′
Q) ∈ ExtDestP′×Q

(
(sn

P′ , s
n
Q), an+1

)
,

(s′P′ , s
′
Q) ∈ Cmp(P′,Q).

Thus proposition 1 holds for this case.

B) an+1 � ExtEnI
P(sn

P):

Note P and Q are composable, and an+1 ∈
ExtEnO

Q(sn
Q), we get an+1 � ExtEnO

P (sn
P).

Then an+1 � ExtEnX
P(sn

P), thus s′P = sn
P.

Based on s∗P � sn
P′ , and s∗P ∈ ε-closure(sn

P),

there is ExtEnI
P(sn

P) ⊇ ExtEnI
P′(sn

P′ ). Thus

an+1 � ExtEnI
P′(sn

P′ ). On the other hand,

since P′ and Q are composable, we can

get an+1 � ExtEnO
P′(sn

P′ ). Thus an+1 �
ExtEnX

P′(sn
P′ ). We set s′P′ = sn

P′ , then obvi-

ously the proposition 1 holds.

2) We prove the second proposition by contradiction. As-

sume (sP, sQ) � Cmp(P,Q), there must be a sequence

of actions α ∈ (AO
P×Q)∗ and an error state (s′P, s

′
Q) ∈

Illegal(P,Q) such that (sP, sQ)
α
=⇒P×Q (s′P, s

′
Q). Ac-

cording to the first proposition, there exists a state s′′P ∈
VP and s′P′ ∈ VP′ , such that

s′P ∈ ε-closure(s′′P ), s′′P � s′P′ , (s′P′ , s
′
Q) ∈ Cmp(P′,Q).

There are two cases for (s′P, s
′
Q) ∈ Illegal(P,Q):

a) ∃a ∈ shared(P,Q), s.t. a ∈ AO
P (s′P), a � AI

Q(s′Q):

From s′P ∈ ε-closure(s′′P ), we get a ∈ ExtEnO
P (s′′P).

Then based on s′′P � s′P′ , we get a ∈
ExtEnO

P′(s′P′ ), i.e., ∃s′′P′ ∈ ε-closure(s′P′), such

that a ∈ AO
P′(s′′P′ ). As a � AI

Q(s′Q), therefore

(s′′P′ , s
′
Q) ∈ Illegal(P′,Q). Additionally, since

(s′P′ , s
′
Q)

ε
=⇒P′×Q (s′′P′ , s

′
Q), then (s′P′ , s

′
Q) ∈

Illegal(P′,Q). This conflicts with the premise.

b) ∃a ∈ shared(P,Q), s.t. a � AI
P(s′P), a ∈ AO

Q(s′Q):

Since a � AI
P(s′P), it must be a � ExtEnI

P(s′′P).
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From s′′P � s′P′ , we know a � ExtEnI
P′ (s′P′ ) i.e.,

∃s′′P′ ∈ ε-closure(s′P′), such that a � AI
P′(s′′P′ ). As

a ∈ AO
Q(s′Q), therefore (s′′P′ , s

′
Q) ∈ Illegal(P′,Q).

Additionally, since (s′P′ , s
′
Q)

ε
=⇒P′×Q (s′′P′ , s

′
Q),

then (s′P′ , s
′
Q) ∈ Illegal(P′,Q). This conflicts with

the premise too.

In summary, there is a conflict between the conclusion

and premise, therefore the assumption is not true, and

the proposition 2 holds.

A.4 Proof to Lemma 3

Proof We prove the first formula by contradiction. Assume

the first formula does not hold, then

∃a ∈ ExtEnI
P′×Q
(
(sP′ , sQ)

)
, a � ExtEnI

P×Q
(
(sP, sQ)

)
.

Then ∃s′P ∈ ε-closure(sP),∃s′Q ∈ ε-closure(sQ), such that

a � AI
P×Q

(
(s′P, s

′
Q)
)
.

We discuss in the following three cases for a �
AI

P×Q

(
(s′P, s

′
Q)
)
:

• a � AI
P(s′P) and a � AI

Q(s′Q):

Since a � AI
P(s′P), then

a � ExtEnI
P(sP). (4)

For any s′P′ ∈ ε-closure(sP′), since a ∈
ExtEnI

P′×Q

(
(sP′ , sQ)

)
, there is a ∈ AI

P′×Q(s′P′ , s
′
Q).More-

over, since a � AI
Q(s′Q), there must be a ∈ AI

P′ (s′P′ ).
Then

a ∈ ExtEnI
P′ (sP′ ). (5)

From Eqs. (4) and (5), we conclude that ExtEnI
P(sP) ⊇

ExtEnI
P′ (sP′ ) does not hold. This conflicts with the

premise that sP � sP′ .

• a ∈ AO
P (s′P):

Since a ∈ AO
P (s′P), then

a ∈ ExtEnO
P (sP). (6)

Since a ∈ ExtEnI
P′×Q

(
(sP′ , sQ)

)
, then for any s′P′ ∈

ε-closure(sP′ ), there is a � AO
P′(s′P′ ). Thus

a � ExtEnO
P′ (sP′ ). (7)

From Eqs. (6) and (7), we conclude that ExtEnO
P (sP) ⊆

ExtEnO
P′ (sP′ ) does not hold. This conflicts with the

premise of sP � sP′ .

• a ∈ AO
Q(s′Q):

For any s′P′ ∈ ε-closure(sP′ ), since a ∈ AO
Q(s′Q), then

a ∈ AO
P′×Q

(
(s′P′ , s

′
Q)
)
. This conflicts with the premise of

a � AI
P′×Q

(
(s′P′ , s

′
Q)
)
.

Since all the cases lead to contradiction, we then conclude

the first formula holds. The second formula can be proved in

a similar way.
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