
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

SMT-based Query Tracking for Differentially Private Data
Analytics Systems

Chen LUO, Fei HE

Tsinghua National Laboratory for Information Science and Technology (TNList)
Key Laboratory for Information System Security, Ministry of Education

School of Software, Tsinghua University, Beijing 100084, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract Differential privacy enables sensitive data to be
analyzed in a privacy-preserving manner. In this paper, we
focus on the online setting where each analyst is assigned a
privacy budget and queries the data interactively. However,
existing differentially private data analytics systems such as
PINQ process each query independently, which may cause
an unnecessary waste of the privacy budget. Motivated by
this, we present a satisfiability modulo theories (SMT)-based
query tracking approach to reduce the privacy budget usage.
In brief, our approach automatically locates past queries that
access disjoint parts of the dataset with respect to the cur-
rent query to save the privacy cost using the SMT solving
techniques. To improve efficiency, we further propose an op-
timization based on explicitly specified column ranges to fa-
cilitate the search process. We have implemented a prototype
of our approach with Z3, and conducted several sets of ex-
periments. The results show our approach can save a consid-
erable amount of the privacy budget and each query can be
tracked efficiently within milliseconds.

Keywords Differential privacy, privacy budget, satisfiabil-
ity modulo theory

1 Introduction

Large amounts of personal data are being collected, analyzed,
and shared by organizations. For example, a retail company
analyzes sales data to discover business trends, and a hos-

E-mail: hefei@mail.tsinghua.edu.cn

pital shares medical records with researchers to promote the
study of certain diseases. However, as business data often
contains customers’ private information, protecting the indi-
vidual’s privacy from being leaked in data analysis has be-
come a major concern of these organizations. In the past few
decades, various privacy definitions and models have been
proposed to enable privacy-preserving data analysis.

Differential privacy [1] is one of the strongest privacy
models for publishing the statistics of sensitive data. Infor-
mally, differential privacy guarantees that the participation
of any individual cannot be observed from the statistics. It
requires the statistics to be approximately the same in case
that any individual’s record is removed from the dataset. One
common approach to achieve differential privacy is to perturb
the statistics with some well-chosen random noise, which is
controlled by the parameter ε. Intuitively, a smaller ε requires
more noise, i.e., less-accurate results, and in return provides
stronger privacy guarantees.

Differential privacy can be offline, where the query batch
is available beforehand, or online, where the analyst submits
queries interactively. In this paper, we focus on the online
setting, which is more applicable in practice. Fig. 1 illustrates
the typical workflow of an online differentially private data
analytics system. Each data analyst is first assigned a privacy
budget εtotal. When submitting a query q, the analyst also
specifies the desired accuracy εq. Then, the system checks
whether sufficient εtotal remains. If so, the system queries
the dataset, subtracts εq from εtotal, and answers q with the
perturbed result. Otherwise, q is denied.

One major research problem in online differential privacy
is to save the privacy budget when answering queries. As

2
Chen Luo and Fei He. SMT-based Query Tracking for Differentially Private Data Analytics Systems

Total privacy
budget ϵtotal

Analyst Query
System Dataset

q, ϵq q

resultperturbed
result ϵtotal = ϵtotal - ϵq

if ϵtotal - ϵq > 0

Fig. 1 Workflow of online differential privacy

pointed out in [2], when two queries access disjoint parts of a
dataset, the total privacy cost is the maximum, rather than the
sum, of the privacy costs of them. However, existing differen-
tially private data analytics systems such as PINQ [2] process
each query independently, which may cause an unnecessary
waste of the privacy budget. Thus, in this paper, we present
an approach that automatically tracks all submitted queries to
save the privacy budget.

In a nutshell, our approach partitions the submitted queries
into subsets such that the queries in each subset access dis-
joint parts of the dataset with each other. Thus, the privacy
cost of each subset is the maximum of the privacy costs of the
enclosing queries, and the total cost is the sum of the costs
of all subsets. However, there are two major challenges for
tracking queries effectively. First, finding an optimal parti-
tion to minimize the total cost, which can be viewed as an
instance of the set partitioning problem, is NP-hard. To ad-
dress this, we present a greedy partitioning algorithm that is
suitable for online query tracking.

Secondly, deciding whether two SQL queries access dis-
joint parts of a database, i.e., disjointness checking, is highly
non-trivial. To handle this, we rely on the satisfiability mod-
ulo theories (SMT) solving techniques, which have been
widely used in the software engineering community. Briefly,
we encode each query into a logical formula with the prop-
erty that two queries are disjoint if the conjunction of their
logical formulas is unsatisfiable. Moreover, because SMT
solving is a relatively expensive operation, we further pro-
pose an optimization using the explicitly specified column
ranges. The basic idea is that, if we can find a column such
the ranges specified by two queries are disjoint, the queries
must be disjoint. If this process fails, we simply fall back on
SMT solving for disjointness checking.

The main contributions of this paper are summarized as
follows:

• we introduce an SMT encoding scheme to check the dis-
jointness of Structured Query Language (SQL) queries;

• with this primitive, we present a greedy partitioning al-
gorithm for online query tracking;

• we further propose an optimization technique using the

explicitly specified column ranges;
• finally, extensive experiments show our approach can

considerably reduce budget usage with each query be-
ing tracked efficiently within milliseconds.

The rest of the paper is organized as follows. § 2 intro-
duces some preliminaries related to this paper, and § 3 for-
malizes the problem definition. § 4 presents the details of our
query tracking approach. § 5 further proposes an optimiza-
tion based on column ranges. § 6 reports the experimental
evaluation of our approach. Finally, § 7 discusses the related
works and § 8 concludes this paper.

2 Preliminaries

In this section, we review some preliminaries related to this
paper.

2.1 Relational Database

The relational database is based on the relational model [3],
where the data is organized as one or more relations.

Definition 1 (Relation schema). A relation schema R(a1 :
D1, . . . , an : Dn) is defined by a relation name R and a set of
attributes a1, . . . , an, each of which takes values in domains
D1, . . . ,Dn, respectively.

Definition 2 (Relation instance). A relation instance (or sim-
ply a relation) r on a relation schema R(a1 : D1, . . . , an : Dn)
is a set of tuples τ ∈ D1 × · · · × Dn.

Given a relation schema R(a1 : D1, . . . , an : Dn), we de-
note all possible tuples τ ∈ D1 × · · · × Dn of R as TR, and all
relations induced by R as 2TR . Given a tuple τ, we use τ(ai)
to denote the value of the attribute ai in τ.

Definition 3 (Relational database). A database schema S is a
set of relation schemas R1, . . . ,Rn. A database instance IS (or
simply a database) on a database schema S is a set of rela-
tion instances r1, . . . , rn, each of which is defined on relation
schemas R1, . . . ,Rn ∈ S, respectively.

A common approach to query a database is to use rela-
tional algebra. Relational algebra is a family of algebras on
relations. Each relational algebra operator takes as input one
or two relations, and produces a relation as output. Some
operator may also have an extra parameter that specifies the
property of that operator. Since relational algebra is viewed
as the semantic foundation of SQL, a relational algebra ex-
pression is often called as the query plan of an SQL query.

Front. Comput. Sci.
3

In the following, we briefly discuss some common relational
algebra operators. More complete reference material can be
found in [3].

• Project πL(r): L is an attribute list, whereas r is the input
relation. Here πL outputs a relation that only contains
the attributes defined in L.

• Restriction σφ(r): φ is a logical formula and r is the
input relation. Here σφ filters the tuples of r and only
outputs the tuples that satisfy the formula φ.

• Join l Zφ r: φ is a logical formula and l and r are two
input relations. Here Zφ joins l and r by first computing
the Cartesian product of l and r, and then filtering the
result using the join condition φ. There are several types
of the join operator, where the above is called inner join.
Left outer join takes an extra step by adding all tuples of
l that are filtered by the join condition into the result.
Right outer join is dual to left outer join and adds the
tuples of r. Finally, full outer join combines left and
right outer joins, and adds all tuples of l and r that are
filtered by the join condition into the result.

• Grouping γLg,La (r): Lg and La are two attribute lists that
contain a set of grouping attributes and aggregate at-
tributes, respectively, and r is the input relation. Here
γLg,La first partitions the tuples of r into groups, where
each group contains all tuples having the same values
of the grouping attributes in Lg. Then, for each group, it
produces one tuple that contains the values of the group-
ing attributes as well as the aggregations over all tuples
of that group.

• Sort τL(r): L is an attribute list and r is the input relation.
Here τ sorts the tuples of r using the attributes in L.

• Distinct δ(r): r is the input relation. Here δ eliminates
the duplicate tuples of r.

• Binary operators: Binary operators include ∪, ∩, and \,
which calculate the union, intersection, and difference
of the two input relations, respectively.

For ease of discussion, we make the following conventions
through the paper. A relation r can either be a base relation,
i.e., r ∈ IS, or a derived relation, i.e., computed from other
relations. We use the terms table, column, and row to refer to
a base relation, an attribute of a base relation, and a tuple of a
base relation, respectively. Moreover, as a query may refer a
relation multiple times, we assume each referred attribute in
a query has a unique id based on its relation reference.

Example 1. As a running example, consider the following
database schema for a retail company.

SUM(s_num#1)

c_age#1<=30 AND c_zip#1 = '10000'

c_id#1 = sc_id#1

Customer Sale

⨝

σ

γ

Fig. 2 Example query plan

• Customer(c_id:int, c_name: string, c_age: int, c_zip:
string, c_salary: int)

• Item(i_id: int, i_name: string, i_price: double)
• Sale(s_id: int, si_id: int, sc_id: int, s_time: timestamp,

s_num: double)

The primary keys have been underlined. The Customer table
stores customer information and the Item table stores item in-
formation. Finally, sales records are stored in the Sale table,
which has a composite key of s_id and si_id (referring to the
Item table).

An example SQL query q1 is shown as follows:

SELECT SUM(s_num)
FROM Customer INNER JOIN Sale ON c_id =
sc_id

WHERE c_age<=30 AND c_zip = ’10000’

The query plan of q1 is shown in Fig. 2, where each at-
tribute is attached with a unique id (#n) based on its rela-
tion reference. Intuitively, q1 first joins the Customer and
Sale relations with the condition c_id = sc_id, and only
keeps the tuples which satisfy the condition c_age ≤ 30 and
c_zip =′ 10000′. Finally, it computes the sum of s_sum
for all remaining tuples, where all tuples are treated as one
group.

2.2 Differential Privacy

Differential privacy [1] was first proposed by Dwork in 2006,
and has become the de facto standard of privacy-preserving
data analysis. Intuitively, differential privacy requires the
computations over a dataset should be approximately the
same when any individual’s record is removed. In doing so,
it protects the individual’s privacy by ensuring that the par-
ticipation of any individual in the dataset cannot be observed
from the results.

We say a dataset A is close to another dataset B, denoted
as A ∼ B, iff A and B differ on the addition of at most one
record.

Definition 4 (Differential privacy). A query function q : D →
R satisfies ε-differential privacy if for any datasets A, B ∈ D

4
Chen Luo and Fei He. SMT-based Query Tracking for Differentially Private Data Analytics Systems

such that A ∼ B, and any set of possible outputs S ⊆ R,

Pr(q(A) ∈ S) ≤ Pr(q(B) ∈ S) × exp(ε)

From above definition, differential privacy is controlled by
the parameter ε. Intuitively, a smaller ε means less-accurate
results and, thus, provides stronger privacy protection. To
achieve differential privacy, one classical approach is the
Laplace mechanism, which adds some well-chosen random
noise to the query result based on its sensitivity.

Definition 5 (Sensitivity). Given a query function q : D →
R, the sensitivity of q is

∆q = max
A,B∈D.A∼B

|q(A) − q(B)|

Theorem 1 (Laplace mechanism). Given a query function
q : D → R and a dataset A ∈ D, the Laplace mechanism
Mq(A) = q(A)+ Laplace(σ) provides (∆q/σ)-differential pri-
vacy, where Laplace(σ) is the Laplace distribution with the
mean being 0 and the variance being 2σ2.

However, note that our approach is agnostic to the under-
lying mechanism that implements differential privacy. Thus,
we simply assume that the query has been properly perturbed
by the Laplace mechanism or other mechanism such as the
exponential mechanism [4]. Instead, we are more interested
in how multiple queries are composed together, namely se-
quential composition or parallel composition [2].

Theorem 2 (Sequential Composition). Let q1, . . . , qk each
provide ε1, . . . , εk-differential privacy. Given a dataset A, the
sequence of q1(A), . . . , qk(A) provides (

∑
i
εi)-differential pri-

vacy.

Theorem 3 (Parallel composition). Let q1, . . . , qk each pro-
vide ε1, . . . , εk-differential privacy and D1, . . . ,Dk be arbi-
trary disjoint subsets of the input domain D. Given a dataset
A, the sequence of q1(A ∩ D1), . . . , qk(A ∩ Dk) provides
max

i
(εi)-differential privacy.

Composability is important for online privacy-preserving
data analysis. However, composing queries sequentially us-
ing Theorem 2 may quickly use up the privacy budget since
the total privacy cost grows linearly with respect to the num-
ber of queries. One classical approach to leverage the parallel
composition theorem is to use the GroupBy or Partition Oper-
ator [2], which partitions the dataset into disjoint groups and
computes a value for each group. For example, the follow-
ing query computes the average salary for each zip code and
should only consume the budget once:

SELECT c_zip, AVG(c_salary)
FROM Customer
GROUP BY c_zip

However, this approach requires an analyst with a sense
of budget-saving in mind, and sometimes it is difficult to
rephrase queries using the GroupBy operator explicitly. In-
stead, our approach overcomes these limitations by automat-
ically leveraging parallel composition for submitted queries
to save the privacy budget.

2.3 Satisfiability Modulo Theories

The SMT problem is concerned with the satisfiability of first-
order logic formulas. First-order logic is defined over a set
of logical connectives, variables, functions, and predicates.
Constants can be simply treated as 0-ary functions. Typi-
cal logical connectives include negation (¬), conjunction (∧),
disjunction (∨), implication (→), existential quantification
(∃), and universal quantification (∀). Each variable has a
sort, i.e., domain, that specifies a set of values the variable
can take. An interpretation I of a first-order formula speci-
fies the meanings of functions and predicates and assigns a
value for each variable. A first-order formula ϕ is satisfiable
if there exists an interpretation I such that ϕ evaluates to true,
denoted as I(ϕ) = true.

Note that the satisfiability problem of first-order logic for-
mulas is, in general, undecidable. Thus, the SMT problem
is to decide the satisfiability of a given first-order formula
ϕ in the context of some background theory T . A theory
T fixes the sort of variables and the interpretations of func-
tions and predicates. For example, the integer theory supports
variables with the integer sort and normal mathematical oper-
ations such as add, minus, equality, and inequality. The real
number theory is similar to the integer theory, but considers
real-valued variables. Moreover, as various theories are often
not used in isolation, modern SMT solvers also support the
combination of multiple theories.

Thus, given a first-order formula ϕ, the SMT problem es-
sentially tries to find an interpretation I that assigns a proper
value for each variable such that I(ϕ) evaluates to true. For
example, consider the following formula where both x and y
are real variables:

x > 0 ∧ y > 0 ∧ x + y < 1

Clearly, we can find an interpretation I where I(x) = 0.1 and
I(y) = 0.1 such that the formula evaluates to true. However,
the above formula becomes unsatisfiable if both x and y are
integer variables.

Front. Comput. Sci.
5

In the remainder of this paper, we only consider numerical
theories, i.e., the integer theory and the real number theory.

3 Problem Definition

The basic idea of our approach is to track all submitted
queries and automatically apply the parallel composition the-
orem (Theorem 3) to save the privacy budget. Previously, lots
of works have been proposed to improve the utility of differ-
ential privacy, but most of them only target certain restricted
types of queries, e.g., count queries or linear queries (§ 7).
Instead, the approach proposed in this paper is applicable for
almost all relational operators and can be viewed as a com-
plement to these works.

Since differentially private queries can only output ag-
gregated values, i.e., statistics, rather than tuples, we as-
sume that each query ends up with one aggregate operation
to output an aggregated value. Note that if a query q has
multiple aggregate operations, we can simply decompose q
into multiple queries and track them separately. We further
assume all queries operate on the same database instance
IS = {r1, . . . , rn} on the schema S = {R1, . . . ,Rn}. Since a
database may contain multiple relations, we define a virtual
relation as follows, which constitutes the dataset analyzed by
the queries.

Definition 6 (Virtual relation). Given a database instance
IS = {r1, . . . , rn} on the schema S = {R1, . . . ,Rn}, the vir-
tual relation rv is defined as rv = r1 × . . . × rn on the virtual
relation schema Rv = R1 × · · · × Rn. We denote all possible
tuples τv of Rv (called virtual tuples) as TRv = TR1 ×· · ·×TRn .

The central problem of our approach is to define and check
whether queries access disjoint parts of a database. Intu-
itively, a virtual tuple τv is accessed by a query q if τv may
influence the output of q. Thus, two queries are disjoint if the
tuples accessed by them do not overlap. Note that according
to Theorem 3, disjointness should be defined on all possible
database instances, not just the current one.

Definition 7 (Accessed tuples). Given a query q on a
database schema S, let Rv be the virtual relation schema of
S. A virtual tuple τv ∈ TRv is accessed by q if there exists a
database instance I′

S
with the corresponding virtual relation

r′v such that q(r′v) , q(r′v ∪ {τv}). We denote all virtual tuples
accessed by q as acc(q).

Definition 8 (Disjointness). Given queries q1 and q2, we
say q1 and q2 are disjoint, denoted as q1 ‖ q2, if acc(q1) ∩
acc(q2) = ∅.

In § 4, we discuss how to check disjointness using the
SMT solving techniques. We further discuss an optimiza-
tion for disjointness checking using explicitly specified col-
umn ranges in § 5. With the definition of disjointness, we can
then compute the total privacy cost of a set of queries Q by
partitioning Q as follows.

Definition 9 (Query set partition). Given a set of queries Q,
the partition P of Q is a set of subsets of Q such that:

• each query q ∈ Q is included in one and only one subset
S ∈ P; and

• for any subset S ∈ P, all queries in S are disjoint with
each other, i.e., ∀S ∈ P.∀q1, q2 ∈ S .(q1 ‖ q2).

After the query set is partitioned, the total privacy cost can
be computed based on the following theorem.

Theorem 4. Let a set of queries Q = {q1, . . . , qk} each pro-
vide εq1 , . . . , εqk -differential privacy and P be a partition of
Q, then the queries in Q provide

∑
S∈P

max
qi∈S

(εqi)-differential pri-
vacy.

Proof. Since we assume that for a database instance IS on the
schema S, the actual dataset analyzed by the queries is the
virtual relation rv of IS, the domain of the analyzed dataset
is then the set of all virtual tuples TRv of S. For each subset
S ∈ P, since all queries in S are disjoint with each other, we
can find a partition PD over TRv such that each subset in PD

corresponds to acc(q) of a query q ∈ S . Thus, by applying
Theorem 3, the queries in S provide max

qi∈S
(εqi)-differential pri-

vacy. Then by applying Theorem 2, all queries in Q provide∑
S∈P

max
qi∈S

(εqi)-differential privacy. �

However, finding an optimal partition of a query set to
minimize the privacy cost can be viewed as an instance of
the set partitioning problem, which is NP-hard. To handle
this, in § 4 we propose a greedy partitioning algorithm suit-
able for online tracking. We further discuss how to extend
this partitioning algorithm with column ranges in § 5.

Finally, note that the approach proposed in this paper of-
fers the same level of privacy protection as differential pri-
vacy does, i.e., the participation of any individual in the
dataset cannot be observed from the results. However, our
goal is to save the privacy budget when answering differ-
entially private queries. Or, equivalently, answering more
queries under a given privacy budget εtotal.

6
Chen Luo and Fei He. SMT-based Query Tracking for Differentially Private Data Analytics Systems

4 Query Tracking

In this section, we present the details of our query tracking
approach. We first discuss how to encode a query into a log-
ical formula for disjointness checking, and then present an
online partitioning algorithm for computing the total privacy
cost.

4.1 Disjointness Checking

As mentioned before, the disjointness checking problem is
to determine whether the accessed tuples of two queries are
disjoint. The basic idea of our approach is to transform each
query q into a logical formula ϕq that characterizes the ac-
cessed tuples such that two queries are disjoint if the con-
junction of their logical formulas is unsatisfiable. With this
property, the disjointness checking problem can be effectively
solved with the help of existing SMT solvers, such as Z3 [5].

4.1.1 Query Encoding

Now we discuss how to encode a query q into a logical
formula for disjointness checking. We assume the query q
has been parsed into a query plan, i.e., a relational alge-
bra expression. For simplicity, we only consider attributes
with the numerical or string types. For numerical attributes,
we support normal arithmetic operations and comparisons,
but only equality/inequality comparisons for string typed at-
tributes. Unsupported attributes and operations are simply
ignored during the transformation.

Briefly, we perform post-order traversal over the query
plan of the query q to compute the formula ϕq composition-
ally. Let p be the current plan operator, we denote ϕp the
logical formula computed for p, Rp the schema of the rela-
tion outputted by p, and ap ∈ Rp an attribute outputted by p.
For each plan operator p, we also maintain a map Vp, which
maps each attribute outputted by p to a variable or a logical
term. For unary operators, we use the subscript c to denote
the above elements of its child operator, i.e., ϕc, Rc, ac, and
Vc, respectively. For binary operators, we use the subscripts
l and r to denote the components of its left and right opera-
tors, respectively. Recall that we assume the query q outputs
an aggregated value with only one GroupBy operator at the
top. Since the GroupBy operator simply aggregates tuples
and has no effect on the accessed tuples, it is simply ignored
in the following discussion.

Relation. The Relation operator simply refers a table, i.e.,

a base relation, in the database. Thus, ϕp is simply set as
true since all tuples are considered accessed. Meanwhile, for
each supported attribute ap in the referred relation, we create
a variable (called attribute variable) for ap, which is stored
as Vp(ap), with a proper sort as follows:

• for an attribute with the integral type, e.g., int and short,
we create a variable with the integer sort;

• for an attribute with the fractional type, e.g., float and
double, we create a variable with the real sort;

• for an attribute with the string type, we create a variable
with the integer sort, and each constant string is mapped
to an integer.

Projection πL. Since πL does not filter any tuple, ϕp is
simply set as ϕc. Meanwhile, for each attribute ap defined in
L, we transform the expression defining ap to a term based
on Vc. If the transformation succeeds, then Vp(ap) is set as
the result term, otherwise the attribute ap is simply ignored.
For example, consider an attribute list L1 = c_age#1/10 →
age_group#1, f irst(c_name#1) → f irst_name#1 and let
Vc(c_age#1) = vc_age#1. Then Vp(age_group#1) is set as
vc_age#1/10, whereas f irst_name#1 is simply ignored since
f irst(c_name#1) is unsupported.

Restriction σφ. In contrast to πL, σφ filters rather than
transforming tuples. Thus, Vp is simply set as Vc, but ϕp

is set as ϕc ∧ ϕσ, where ϕσ is returned by the function
Transformσ as follows. Briefly, Transformσ takes as input
the filter condition φ in σφ and recursively transforms φ into
a logical formula based on Vc. For each binary comparison,
Transformσ returns a corresponding predicate if all the oper-
ations and attributes are supported, and returns NULL other-
wise. For AND, Transformσ returns NULL if all the trans-
formed children are NULL, and returns the conjunction of the
transformed children that are not NULL otherwise. For OR,
Transformσ returns NULL if one of the transformed children
is NULL, and returns the disjunction of the transformed chil-
dren otherwise. For NOT, Transformσ returns NULL if the
transformed child is NULL, and returns the negation of the
transformed child otherwise. Finally, if Transformσ returns
NULL for the filter condition φ, then ϕσ is simply treated as
true and ignored.

Join Zφ. Since Zφ outputs a relation that contains all the
attributes outputted by its child operators, Vp is set as the
union of Vl and Vr. Let ϕZ be a logical formula transformed
from the join condition φ as in σφ, then ϕp is computed for
different join types as follows/

• Inner join: ϕl ∧ ϕr ∧ ϕZ.
• Left outer join: ϕl.

Front. Comput. Sci.
7

• Right outer join: ϕr.
• Full outer join: ϕl ∨ ϕr.

Intuitively, for inner join, only the joined tuples satisfying
the join condition are outputted by Zφ. For left outer join,
all tuples outputted by the left operator are outputted by Zφ
despite of the tuples outputted by the right operator. Right
outer join is dual to left outer join. Finally, for full outer
join, all tuples outputted by the left and the right operators
are outputted by Zφ.

Union ∪. For ∪, all tuples outputted by the left and right
operators are outputted by ∪. Moreover, each tuple out-
putted by ∪ is either from the left operator or the right op-
erator. Thus, for each supported attribute ap outputted by
∪, we create a new variable with the proper sort and store
it in Vp(ap). Let ϕ∪l be

∧
ap

(Vp(ap) = Vl(al)), and ϕ∪r be∧
ap

(Vp(ap) = Vr(ar)), where for each supported attribute ap

outputted by ∪, al and ar denote the corresponding attributes
outputted by the left and right operators, respectively. Then,
ϕp is set as (ϕl ∧ ϕ

∪
l) ∨ (ϕr ∧ ϕ

∪
l).

Intersect ∩. For ∩, only the tuples outputted by both the
left and the right operators are outputted by ∩. Similarly,
for each supported attribute ap outputted by ∩, we create a
new variable with the proper sort and store it in Vp(ap). Let
ϕ∩l be

∧
ap

(Vp(ap) = Vl(al)), and ϕ∩r be
∧
ap

(Vp(ap) = Vr(ar)),

where for each supported attribute ap outputted by ∩, al and
ar denote the corresponding attributes outputted by the left
and right operators, respectively. Then, ϕp is set as (ϕl ∧ ϕ

∩
l)

∧ (ϕr ∧ ϕ
∩
r).

Set-Difference \. \ removes the tuples outputted by the
right operator from the tuples outputted by the left opera-
tor. However, the actual removed tuples depend on the given
database instance. For soundness, we consider all tuples out-
putted by the left operator are outputted by \. Thus, Vp is
simply set as Vl, and ϕp is set as ϕl.

Other Operators. For other operators including Sort,
Distinct, and Limit, they neither transform nor filter tuples.
Thus, ϕp is simply set as ϕc, and Vp is set as Vc.

Connecting Attributes with Columns. Recall that we as-
sume each attribute referred in the query has a unique id to
differentiate multiple references of the same relation. Thus,
the computed formula ϕp cannot be used for disjointness
checking directly since ϕp only contain attribute variables,
which are not shared among queries. To handle this, we con-
nect ϕp with column variables as the columns in the database
schema are the same for all queries. For each query q, let Rq

be a map that maps each relation schema R to a set of relation

references Rq in q. Let ϕc ≡
∧

R∈S
(
∨

Rq∈Rq(R)
(
∧

a∈Rq

colvar(a) = va)),

where colvar(a) denotes the column variable (without id) for
an attribute a. Intuitively, for each table referred by a query,
each row in the table must come from one of the referred
relations. Finally, the logical formula ϕq for the query q is
computed as ϕp ∧ ϕc.

Example 2. Consider the query q in Example 1, we show
how to encode q into a logical formula ϕq as follows. First,
for the Relation operators Customer and Sale, ϕp is always
set as true whereas Vp is initialized by creating a variable
for each attribute accordingly. After Zc_id#1=sc_id#1, ϕp is set
as ∧vc_id#1 = vsc_id#1, while Vp is set as the union of that
of both Customer and Sale. After σc_age#1≤30 AND c_zip#1=′1000′ ,
ϕp becomes ∧vc_id#1 = vsc_id#1 ∧ vc_age#1 ≤ 30 ∧ vc_zip#1 = 1,
where we assume ‘10000’ is mapped to 1, andVq remains un-
changed. Note that the final operator γ(S UM(s_num#1)) is simply
ignored since it has no effect on the accessed tuples. Finally,
as the query only refers Customer and Sale once, the final
formula ϕq is

vc_id#1 = vsc_id#1 ∧ vc_age#1 ≤ 30 ∧ vc_zip#1 = 1∧

(vc_id = vc_id#1 ∧ vc_name = vc_name#1 ∧ vc_age = vc_age#1∧

vc_zip = vc_zip#1 ∧ vc_salary = vc_salary#1 ∧ vs_id = vs_id#1∧

vs_time = vs_time#1 ∧ vsc_id = vsc_id#1 ∧ vsi_id = vsi_id#1∧

vs_num = vs_num#1)

Optimization. The number of variables in a logical for-
mula has a direct impact on the performance of SMT solving.
Here we discuss several optimizations to reduce the number
of variables in the encoded formula ϕq. First, when initial-
izing Vp for the Relation operator, we only need to create
variables for those attributes that are used in the subsequent
operators. A similar optimization can be applied when we
connect ϕp with column variables, that is, we only need to
include the column variables where the columns are used in
the query. Second, if a table is only referred once, which is
common in practice, we can use column variables directly in
Vp during the post-traversal process. For example, the opti-
mized formula ϕq for the example query is shown as follows,
which is much simpler than before:

vc_id = vsc_id ∧ vc_age ≤ 30 ∧ vc_zip = 1

4.1.2 Correctness

In this subsection, we show the correctness of our query en-
coding mechanism.

8
Chen Luo and Fei He. SMT-based Query Tracking for Differentially Private Data Analytics Systems

Theorem 5. Given a query q on a database schema S, for
any accessed tuple τv ∈ acc(q), there exists an interpretation
I such that for each column c, I(vc) = τ(c) and I(ϕq) = true.

Proof. Before proving this statement, we first introduce some
notation. For each plan operator p of a query q, we use Ri

p to
denote a set of base relation schemas (with unique attribute
ids) referred by p. We further use Ri

p to denote the Cartesian
product of the schemas in Ri

p and T i
p to denote the set of all

possible tuples τi
p induced by Ri

p. For clarity, the tuple τi
p is

called the input tuple of the plan operator p. Definition 7 can
be directly extended to the tuples in T i

p. Given an input tuple
τi

p for a plan operator p, we use τp to denote the correspond-
ing tuple outputted by p.

Given two interpretations I1 and I2 such that I1 and I2 are
compatible, i.e., for each variable v, I1(v) = I2(v), we define
the union of I1 and I2 as follows, where for each variable v:

(I1 ∪ I2)(v) =

I1(v), if I1(v) is defined
I2(v), if I2(v) is defined
undefined, otherwise

Given an interpretation I and a variable v, if I(v) is not de-
fined, we assume v can take any possible value in its sort.

We then show this statement with two steps. First, given
a plan operator p, for any accessed input tuple τi

p, we show
there exists an interpretation Ip such that for each supported
attribute ai in τi

p, pI(vai) = τ(ai) where vai is the variable for ai

and Ip(ϕp) = true. Second, we link input tuples with virtual
tuples by connecting attributes to columns to conclude the
proof.

For the first statement, we show it by structural induction
over the query plan.

Inductive basis: for the Relation operator, the statement
trivially holds since ϕp ≡ true.

Inductive step: for each unary or binary operator, we as-
sume the statement holds for the child operator(s), and prove
the statement holds for the current operator.

For the Projection operator πL, since ϕp ≡ ϕc, the state-
ment trivially holds from the inductive assumption.

For the Restriction operator σφ, ϕp ≡ ϕc ∧ ϕσ. From the
inductive assumption, we have Ic(ϕc) = true. From the con-
struction of ϕσ and Vp, it is straightforward that ϕσ is an
over-approximation of the filter condition φ in σφ. That is,
if the filter condition φ is satisfied, then Ic(ϕσ) must evaluate
to true. Since τi

p is accessed by σφ, we have that τc must not
be filtered by σφ, which means the filter condition φ is sat-
isfied. Thus, we have Ic(ϕc ∧ ϕσ) = true, and the statement
holds.

For the Join operator Zφ, let τi
p = τi

l × τ
i
r and Ip = Il ∪ Ir.

We consider each join type separately. For inner join, ϕp ≡

ϕl ∧ ϕr ∧ ϕZ. Since τi
p is accessed by inner join, we have

that τp must be outputted by Zφ, which implies that τl and
τr are outputted by the left and right operators, respectively,
Thus, τi

l and τi
r are accessed by the left and right operators,

respectively. Moreover, we also have that the join condition
φ is satisfied. Then from the inductive assumption, we have
Ip(ϕl ∧ ϕr ∧ ϕZ) = true, and the statement holds.

For left outer join, if τi
p is accessed, then τl must be out-

putted by left outer join, which means that τi
l is accessed by

the left operator. Thus, we have Ip(ϕl) = true, and the state-
ment holds. Right outer join is handled dually. Finally, for
full outer join, if τi

p is accessed, then either τl or τr is out-
putted by the operator, which means that either τi

l is accessed
by the left operator or τi

r is accessed by the right operator.
Thus, we have Ip(ϕl ∨ ϕr) = true, and the statement holds.

For the Union operator ∪, ϕp ≡ (ϕl ∨ ϕ
∪
l) ∧ (ϕr ∨ ϕ

∪
r). Let

τi
p = τi

l × τ
i
r and Ip = Il ∪ Ir. If τi

p is accessed by ∪, then
at least one of τl and τr is outputted by ∪, which means that
either τi

l is accessed by the left operator or τi
r is accessed by

the right operator. Thus, from the inductive assumption, we
have either Ip(ϕl) = true or Ip(ϕr) = true. Without loss of
generality, assume Ip(ϕl) = true. Then Ip(ϕl

∪) = true trivially
holds, since we can simply set I(Vp(ap)) for each attribute ap

outputted by ∪ as I(Vl(al)) or I(Vr(ar)), where al or ar is the
corresponding attribute outputted by the left or right operator,
respectively. Thus, the statement holds.

For the Intersect operator ∩, ϕp ≡ (ϕl ∧ ϕ
∩
l) ∧ (ϕr ∧ ϕ

∩
r).

Let τi
p = τi

l × τ
i
r and Ip = Il ∪ Ir. Similarly, if τi

p is ac-
cessed by ∩, which means τp is outputted by ∩, then τl and
τr are outputted by the left and right operators, respectively.
Thus, τi

l is accessed by the left operator and τi
r is accessed

by the right operator. From the inductive assumption, we
have Ip(ϕl) = true and Ip(ϕr) = true. Moreover, τl and τp

must be the same, i.e., for each pair of attributes al and ar,
τl(al) = τl(ar). Thus, we have Ip(ϕ∩l ∧ ϕ

∩
r) = true, and the

statement holds.
Finally, for the Set Difference operator \, ϕp ≡ ϕl. Let

τi
p = τi

l×τ
i
r and Ip = Il∪Ir. If τi

p is accessed by \, then τl must
be outputted by the left operator, which means τi

l is accessed
by the left operator. Thus, from the inductive assumption, we
have Ip(ϕl) = true, and the statement holds.

We then conclude the proof by connecting input tuples
with virtual tuples as follows. Given a query q, let p be the
final operator of q. Let Rq be a map that maps each relation
schema to a set of relation references in q. For each input tu-
ple τi

p, we define virtual(τi
p) as a set of virtual tuples τv such

Front. Comput. Sci.
9

that for each relation schema R in S:

• ∀c ∈ R.τv(c) ∈ Dc, where Dc is the domain of the col-
umn c, if Rq(R) is undefined;

• ∀c ∈ R.τv(c) = τi
p(Rq(c)), for some Rq ∈ Rq(R).

Here we use Rq(c) to denote the attribute in Rq for a given
column c. Intuitively, if some relation is not referred in q, the
columns in that relation can take any values in the virtual tu-
ple; otherwise, we flatten the multiple references of a relation
into multiple virtual tuples. Thus, each relation is referred ex-
actly once in the virtual tuple. Moreover, it is straightforward
that for any accessed virtual tuple τv ∈ acc(q), there must
exist an accessed input tuple τi

p such that τv ∈ virtual(τi
p).

Now consider ϕq ≡ ϕp ∧ ϕc. Given an accessed vir-
tual tuple τv and an accessed input tuple τi

p such that
τv ∈ virtual(τi

p), let Iv = Ip. From the previous dis-
cussion, we have Iv(ϕp) = true. Then consider ϕc ≡∧
R∈S

(
∨

Rq∈Rq(R)
(
∧

a∈Rq

colvar(a) = va)). For each relation schema

R and a set of relation references Rq(R), let Rq ∈ Rq(R) be
the relation reference used in constructing τv. Then for each
attribute a ∈ Rq, we simply set Iv(colvar(a)) = Iv(va). Thus,
it is straightforward that Iv(ϕc) = true, and the theorem holds.
�

Based on the above theorem, it is straightforward to have
the following corollary, which allows us to check the disjoint-
ness using SMT solvers.

Corollary 1. Given queries q1 and q2, let ϕq1 and ϕq2 be their
logical formulas, respectively. If ϕq1 ∧ ϕq2 is unsatisfiable,
then q1 and q2 are disjoint.

4.2 Greedy Partitioning

With the disjointness checking operation, we now present the
partitioning algorithm for computing the total privacy cost of
submitted queries. As mentioned in § 3, finding an optimal
partition to minimize the total privacy cost is NP-hard. Thus,
we present a greedy partitioning algorithm suitable for online
query tracking. The pseudocode is shown in Fig. 3, where the
function Track is called for each submitted query q.

The subsets in the partition P are maintained in ascending
order with respect to the size, i.e., smaller subsets come first.
For each subset S , we maintain a formula ϕS and a cost ε.
ϕS is the disjunction of the formulas of all enclosing queries
of S . Here εS is the maximum of the privacy costs of the
queries of S . Then for the submitted query q, the function
Track checks the first k smallest subsets in P (lines 3–6),
where k is specified by the user. For each subset S , if ϕS ∧ϕq

1: P← ∅ . P is the partition
2: function Track(q)
3: for the first k subsets S in P do
4: if ϕS ∧ ϕq is unsatisfiable then
5: Add(q, S)
6: return
7: Create(q)
8: function Add(q, S)
9: S ← S ∪ {q}

10: ϕS ← ϕS ∨ ϕq

11: εS ←Max(εS , εq)
12: function Create(q)
13: S ← {q}
14: ϕS ← ϕq

15: εS ← εq

16: Add S into P

Fig. 3 Pseudocode for the greedy partitioning algorithm

is unsatisfiable, which means q is disjoint with all queries in
S , then S is the target subset of q. Thus, q is added into
S (line 5) by calling the function Add. The function Add
simply adds the query q into the subset S , and updates the
formula ϕS and the total privacy cost εS accordingly (lines 9–
11). Otherwise, if no suitable subset is found, a new subset is
created (line 7). The function Create simply creates a subset
S that only contains the query q, and the formula ϕS and the
privacy cost εS are initialized as ϕq and εq, respectively (lines
13–16). After the partition is updated, the total privacy cost
is the sum of the costs of all subsets, i.e., εtotal =

∑
S∈P

εS .

Note that the parameter k is necessary for online query
tracking since otherwise the time for tracking each query
would grow linearly with respect to the number of subsets.
Intuitively, the parameter k balances the efficiency and the to-
tal privacy cost of our approach. Smaller k means each query
can be tracked more efficiently since each query requires at
most k times SMT solving. Meanwhile, it also lowers the
chances of locating a target subset, which in turn would cre-
ate more subsets and, according to Theorem 4, increase the
total privacy cost. We experimentally evaluate the effect of k
further in § 6.

Obviously, more heuristics are available to further opti-
mize the partitioning algorithm, e.g., the order of subsets and
the choice of a subset in the case of multiple suitable candi-
dates. We leave the investigation of possible heuristics as a
future work.

10
Chen Luo and Fei He. SMT-based Query Tracking for Differentially Private Data Analytics Systems

5 Range Optimization

Although the query tracking approach presented in the previ-
ous section works in practice, tracking each query still needs
k times SMT solving, which is a relatively expensive oper-
ation. To further reduce the number of SMT solving, we
observe that queries often explicitly specify the ranges of
some columns. For example, the following query specifies
the range of c_age should be no less than 18:

SELECT avg(c_salary) FROM Customer
WHERE c_age>=18 AND . . .

Thus, for any two queries q1 and q2, if we can find a column
c such that the ranges of c specified by q1 and q2 are disjoint,
then q1 and q2 must be disjoint.

In the remainder of this section, we first discuss how to re-
solve column ranges from a query for disjointness checking,
and then discuss how to adapt the partitioning algorithm with
column ranges.

5.1 Range Resolution

Previously, we transformed each query q into a logical for-
mula ϕq ≡ ϕp∧ϕc. We now discuss how to resolve the ranges
of the accessed columns (or, equivalently, column variables)
from ϕq for disjointness checking. Recall that we only sup-
port columns with the numerical or string types. For the nu-
merical column, the range is represented as a set of disjoint
intervals. For the string typed column, the range is repre-
sented as a set of inclusive or exclusive values.

The pseudocode for resolving column ranges is shown in
Fig. 4. The function Resolve takes as input the logical for-
mula ϕp, which is the left part of ϕq, and a map Cq that maps
each column variable to a set of corresponding attribute vari-
ables, and outputs a map ∆q that maps each column variable
to a range.

For simplicity, we only consider binary comparisons of at-
tribute variables with constants (e.g., >, ≥, <, ≤, =, and ,).
Thus, the formula ϕp is first simplified to remove unsupported
predicates (line 2). In Simplify, unsupported predicates are
simply treated as NULL and then propagated in the same way
as in Transformσ in § 4. The simplified ϕs is then rewritten
into the disjunctive normal form (DNF) ϕd to extract attribute
ranges (line 3). Briefly, ϕd is a disjunction of a set of conjunc-
tive clauses, while each conjunctive clause is a conjunction of
optionally negated predicates.

In line 4, ∆a is a map that maps each attribute variable

1: function Resolve(ϕp, Cq)
2: ϕs ← Simplify(ϕp)
3: ϕd ← ToDNF(ϕs)
4: ∆a ← NULL
5: for ϕcon j in ϕd do
6: ∆t ← ResolveConjunction(ϕcon j)
7: if ∆a = NULL then ∆a ← ∆t

8: else ∆a ←Merge(∆a, ∆t)
9: ∆q ← Collapse(∆a, Cq)

10: return ∆q

11: function Merge(∆a, ∆t)
12: ∆r ← ∅

13: for va in Dom(∆a) ∩ Dom(∆t) do
14: ∆r(va)← Union(∆a(va), ∆t(va))
15: return ∆r

16: function Collapse(∆a, Cq)
17: ∆q ← ∅

18: for vc in Dom(Cq) do
19: if ∀va ∈ Cq(vc).∆a(va) is defined then
20: ∆q ← UnionAll(∆a(Cq(vc)))
21: return ∆q

Fig. 4 Pseudocode for resolving column ranges

to a range, and is initialized as NULL. For each conjunctive
clause ϕcon j in ϕd, we call the function ResolveConjunction
to resolve attribute ranges, which is fairly simple since ϕcon j

only contains conjunctions. The ranges resolved from ϕcon j is
stored into a temporary map ∆t (line 6), which is then merged
with ∆a (lines 7–8). Since ∆t and ∆a are disjunctive, the range
of an attribute variable va is defined only when both ∆t(va)
and ∆a(va) are defined and the result range is the union of the
both (line 14).

By now, ∆a only stores attribute ranges. We then call the
function Collapse to compute column ranges. Since a col-
umn variable vc is equal to one of the attribute variables in
Cq(vc), its range is then set as the union of the ranges of all the
corresponding attribute variables (line 20), where ∆a(Cq(vc))
returns the set of ranges of all attribute variables in Cq(vc).

Example 3. For example, consider the following query q:

SELECT AVG(salary) FROM Customer
WHERE c_age ≥ 20 AND c_age ≤ 30 AND

(c_zip = ’10000’ OR c_zip = ’10001’)

First, q is transformed into a logical formula ϕq ≡ ϕp ∧ ϕc,
where ϕp is

vc_age#1 ≥ 20 ∧ vc_age#1 ≤ 30∧

(vc_zip#1 =′ 10000′ ∨ vc_zip#1 =′ 10001′)

During the simplification process, ϕp is unchanged since all
predicates are supported. Then, ϕp is transformed into the

Front. Comput. Sci.
11

following DNF ϕd:

(vc_age#1 ≥ 20 ∧ vc_age#1 ≤ 30 ∧ vc_zip#1 =′ 10000′)∨

(vc_age#1 ≥ 20 ∧ vc_age#1 ≤ 30 ∧ vc_zip#1 =′ 10001′)

Here ϕd contains two conjunctive clauses, and calling Re-
solveConjunction gives ∆1 and ∆2 as follows:

∆1(vc_age#1) = [20, 30],∆1(vc_zip#1) = {10000}

∆2(vc_age#1) = [20, 30],∆2(vc_zip#1) = {10001}

By merging ∆1 and ∆2, we obtain ∆a as follows:

∆a(vc_age#1) = [20, 30],∆a(vc_zip#1) = {10000, 10001}

As the last step, since q only refers the Customer table once,
the map ∆q is the same as ∆a:

∆q(vc_age) = [20, 30],∆q(vc_zip) = {10000, 10001}

Finally, the following theorem states the conservativeness
of the resolved column ranges.

Theorem 6. Given a query q, let ϕq and ∆q be the corre-
sponding logical formula and column ranges, respectively.
For any column variable vc and any interpretation I such that
I(ϕq) = true, if ∆q(vc) is defined, then I(vc) ∈ ∆q(c).

Proof. For the query q, let ϕq ≡ ϕp ∧ ϕc. From the function
Simplification, it is straightforward that ϕp → ϕs. Moreover,
since the DNF ϕd is equivalent to ϕs, we have ϕp → ϕd.
Thus, we only need to show for any interpretation I such that
I(ϕd ∧ ϕc) = true, if ∆q(vc) is defined, then I(vc) ∈ ∆q(vc).

Let I be an interpretation such that I(ϕd ∧ ϕc) = true,
which implies both I(ϕd) = true and I(ϕc) = true. Now
consider the resolution of attribute ranges ∆a from ϕd. Let
va be an attribute variable such that ∆a(va) is defined. Since
ϕd is the disjunction of a set of conjunctive clauses, there
must exist a conjunctive clause ϕcon j such that I(ϕcon j) = true.
Let ∆t be the attribute ranges resolved from ϕcon j by calling
ResolveConjunction. Since ∆a(va) is defined, we have that
∆t(va) is also defined. Then from ResolveConjunction, it is
straightforward that I(va) ∈ ∆t(va). Moreover, since ∆a(va) is
the union of ∆t(va) of all conjunctive clauses in ϕd, we have
I(va) ∈ ∆a(va).

Finally, consider merging the ranges of all attributes for
a column c. Let vc be a column variable such that ∆q(vc) is
defined, which implies that for all va ∈ Cq(vc), ∆a(va) is also
defined. From I(ϕc) = true and the structure of ϕc, we have
I(vc) = I(va) for some va ∈ Cq(va), which implies I(vc) ∈
∆a(va). Moreover, since ∆q(vc) is the union of ∆a(va) of all
va ∈ Cq(vc), we have I(vc) ∈ ∆q(vc). Thus, the theorem holds.
�

We can further check query disjointness using column
ranges based on the following corollary.

Corollary 2. Given queries q1 and q2, and the correspond-
ing column ranges ∆q1 and ∆q2 , if there exists a column c
such that both ∆q1 (vc) and ∆q2 (vc) are defined and ∆q1 (vc) is
disjoint with ∆q2 (vc), then q1 and q2 are disjoint.

5.2 Greedy Partitioning with Range

We now discuss how to integrate the resolved column ranges
into the partitioning algorithm. Recall that the essential oper-
ation of the partitioning algorithm is to find a target subset S
for a query q such that q is disjoint with each query in S . To
locate the target subset with column ranges, we attach each
subset S with a map ∆S . For each column variable vc, ∆S (vc)
is set as the union of ∆q(vc) of each query q ∈ S . Note that if
∆q(vc) is undefined for some query q ∈ S , then ∆S (vc) is un-
defined as well. Then from Corollary 2, given a query q, if we
can find a subset S and a column c such that both ∆q(vc) and
∆S (vc) are defined and ∆q(vc) is disjoint with ∆S (vc), then q
must be disjoint with each query in S . If this fails, we simply
fall back to SMT solving to locate target subsets.

To speed up the search of target subsets with column
ranges, we further build an index for each column. For a
string typed column c, the index simply points to a set of sub-
sets S where ∆S (vc) is defined. For a numerical column, the
index is slightly complicated and will be discussed below.

Recall that the range of a numerical column is essentially
a set of disjoint intervals. Thus, for each numerical column c,
we maintain two binary search trees, one for the start points
of the intervals and another for the end points. Each tree
node, i.e., a start (end) point, contains a set of subsets S such
that ∆S (vc) contains an interval starting (ending) at that point.
With this index, we can locate the target subset S for a query
q using a numerical column c as follows. First, for each in-
terval I in ∆q(vc), we traverse the start (end) point tree to find
the nodes which are greater (less) than the end (start) point of
I. The subsets S contained in these nodes constitute the can-
didates since ∆S (vc) contains an interval that is disjoint with
an interval in ∆q(vc). Each candidate subset S is then checked
whether ∆q(vc) is disjoint with ∆S (vc). If so, S is the target
and the process can be stopped.

Example 4. For example, consider the following subsets
where the ranges for a column c are as follows:

S 1 : [1, 15] S 2 : [2, 8], [12, 16] S 3 : [1, 5], [9, 14]
S 4 : [8, 14] S 5 : [3, 16]

12
Chen Luo and Fei He. SMT-based Query Tracking for Differentially Private Data Analytics Systems

8

3

9

1

2

12

��

S2 S3

S1 S5 S2

(a) Search tree for start point

15

14

16

5

8 S2 S2, S5

S3 S3, S4

S1

(b) Search tree for end point

Fig. 5 Example index for a numerical column

The index for the column c is shown in Fig. 5. Now suppose
we want to find a target subset for a query q, where the range
of c is [6, 8]. First, searching start points greater than 8 gives
the candidate subsets S 2 and S 3, and searching end points
less than 6 gives the candidate subset S 3. After checking the
disjointness with q, we realize that only S 3 is the target for q,
since the interval [2, 8] in S 2 overlaps with [6, 8] in q.

6 Experimental Evaluation

We have implemented our approach on top of Spark-SQL
1.3.0 1) using Z3 4.4.2 [5] as the SMT solver. To evaluate
our approach, we carried out several sets of experiments. All
experiments are performed on a Macbook Pro with 2.7 GHz
Intel Core i7 CPU and 16 GB RAM. The maximum memory
of JVM is set as 4 GB. Each experiment is performed three
times and the average result is reported. For Z3, we use its
default configurations and each set of experiments shares one
solver instance to enable incremental solving.

In all experiments, we use the Census-Income dataset [6]
and synthetic queries. The Census-Income dataset contains
40 attributes and 299285 records. Note that our approach
handles queries in an instance-independent manner, which
means it only uses the attributes while ignores the underling
records. The synthetic queries used in the experiments are
generated as follows. Each query first filters tuples and then
computes an aggregated value, and consumes the same pri-
vacy budget εq. The filter condition is a conjunction of predi-
cates, including both simple range predicates (e.g., a > 0) and
complex arithmetic predicates (e.g., a + b > c). For simple
predicates, the ratio of the selected ranges follows a normal
distribution. For complex predicates, we have predefined sev-
eral templates, such as binary comparisons with add, minus,
and multiply operations. Each complex predicate is then gen-
erated by filling the template with randomly chosen columns
and constants.

1) See http://spark.apache.org/sql/

During the experimental evaluation, we mainly focused on
the following three metrics: the relative privacy cost, i.e., the
privacy cost of our approach compared with the cost of PINQ,
the average time of tracking each query, and the effective-
ness of the range optimization. Since PINQ processes each
query independently, the relative privacy cost is computed as
the number of created subsets divided by the total number
of queries. Thus, the value of the privacy cost εq of each
query is irrelevant in the experiments. We have investigated
the impact of the following parameters on our approach: the
total number of queries N, the number of simple predicates
Ns in each query, the mean µs, and standard deviation (SD)
σs of the ratio of the selected ranges, the number of complex
predicates Nc in each query, and the maximum number of the
checked subsets k for each query. The parameter values are
listed in Table 1, where the default values are in bold. In each
set of experiments, we only vary one parameter whereas the
others are set as default.

Table 1 Experiment parameters and values
Parameter Values

N 500, 1000, 1500, 2000, 2500
Ns 1, 2, 3, 4, 5
µs 0.05, 0.1, 0.15, 0.2, 0.25
σs 0.02, 0.04, 0.06, 0.08, 0.1
Nc 1, 2, 3, 4, 5
k 5, 10, 15, 20, 25

The experimental results are given in Table 2. For the
base approach discussed in § 4, we list the relative privacy
cost with respect to PINQ and the average time of tracking
each query (track time). For the range-optimized approach
presented in § 5, we further list the average time of locating
subsets using column ranges (range time) and SMT solving
(SMT time), and the percentage of queries where a subset is
successfully located by column ranges (range hits).

In the first set of experiments, we vary the number of
queries N to evaluate the basic performance of our approach.
In general, the base approach tracks each query within 100
ms and only consumes 35% of the privacy budget compared
with the cost of PINQ. The range-optimized approach only
takes 30 ms to track each query and consumes 20% of the
privacy budget, which implies the range optimization is ef-
fective. For the time cost, the range optimization only incurs
less than 1 ms extra overhead for each query (range time), but
can successfully locate a subset for more than 70% of queries
and, thus, greatly reduces the tracking time. However, when
this fails, the time of SMT solving is in general longer than
the time of the base approach. The reason is that the logi-

Front. Comput. Sci.
13

cal formulas of the remaining queries are more complex, and
require more time for the solver to decide their satisfiability.
Meanwhile, since the range optimization checks all subsets
using column ranges despite of the parameter k, it also re-
duces the total privacy cost.

In the second set of experiments, we vary the number of
simple range predicates Ns in each query. As one can see,
both the privacy cost and the tracking time of our approach
are sensitive to Ns. Intuitively, larger Ns means each query
accesses a smaller part of the dataset, which in turn reduces
the number of created subsets and, thus, the relative privacy
cost. Meanwhile, it also increases the number of queries in
each subset, which makes the logical formula more complex
and increases the time of SMT solving. The results also show
the privacy cost of the range-optimized approach is less sen-
sitive to Ns, since it checks all subsets using column ranges.
However, larger Ns stills increases its average tracking time.
The reason is that besides making the logical formulas more
complex, larger Ns also lowers the chances of locating sub-
sets using column ranges since each subset contains more
queries.

The next two sets of experiments evaluate the impact of the
mean µs and the SD σs of the selected ranges, respectively.
The impact of µs on the relative privacy cost is contrary to
the impact of Ns, since larger µs implies each query accesses
a larger part of the dataset. However, although µs has little
impact on the tracking time of the base approach, the tracking
time of the range-optimized approach increases with larger
µs. The reason is that larger µs, i.e., larger column ranges of
each query, lowers the chances of finding target subsets with
column ranges. In contrast, σs has little impact on the privacy
cost and the average tracking time of both approaches.

In the fifth set of experiments, we vary the number of com-
plex predicates Nc in each query. As the results show, larger
Nc slightly decreases the relative privacy cost, since each
query accesses a smaller part of the dataset. Meanwhile, more
complex predicates also increase the time for tracking each
query since the logical become more complex, especially for
non-linear operations, and thus the time of SMT solving in-
creases. However, note that we simply choose the default
Z3 configurations in all experiments. It is worth considering
optimizing the configurations to improve the performance of
our approach under more complex predicates.

Finally, in the last set of experiments, we evaluate the im-
pact of the number of checked subsets k. Increasing k re-
duces the privacy cost of the base approach, but the effect
becomes less obvious when k grows larger. However, k only
has little impact over the privacy cost of the range-optimized

approach, since it already checks all subsets using column
ranges. Meanwhile, the tracking time grows almost linearly
with respect to k. From the primary evaluation, 15 to 20
seems to be a reasonable balance between the privacy cost
and the tracking time.

7 Related Work

In this section, we briefly discuss some related works.
SMT Solving. SMT solving techniques have been widely

used in the software engineering community, such as program
verification [7, 8], symbolic execution [9], and software test-
ing [10]. Moreover, many research efforts have also been
made to develop efficient SMT solvers. Some classical SMT
solvers include Z3 [5], MathSAT [11], and Yices [12]. In
this work, we use SMT solving to check the disjointness of
queries, which constitutes the primitive operation of our ap-
proach.

Differential Privacy. Differential privacy [1] was first
proposed in 2006. Here we mainly discuss differential pri-
vacy in query processing. In the offline setting, queries are
available in advance. Many techniques for different types of
queries and applications have been proposed, such as range-
count queries [13], histograms [14, 15], set-valued data [16],
and high-dimensional data [17] etc. The major difference be-
tween these works and our approach is that we do not assume
the availability of the queries, and each query is tracked inde-
pendently.

In the online setting, the system answers the submitted
queries interactively. PINQ [2] processes each query inde-
pendently, and the analyst has to explicitly use the Partition
operator for parallel composition. Some other techniques an-
swer a query batch together, but different batches are pro-
cessed independently. Examples include iReduce [18], ma-
trix mechanism [19], adaptive mechanism [20], and low-rank
mechanism [21]. Unlike these, Pioneer [22] generates an ex-
ecution plan that reuses the past results for each query to save
the privacy cost, which bears some similarity to our work.
However, Pioneer is limited to simple linear count queries,
and it is non-trivial to extend Pioneer to handle more com-
plex queries and multiple attributes. Instead, we rely on SMT
solving techniques to support most relational algebra opera-
tors, which is important for practical data analytics systems.

Query Auditing. Query auditing determines whether
queries access some forbidden tuples, which can be checked
in instance-dependent [23, 24] or instance-independent [25,
26] manners. Instance-independent query auditing can be

14
Chen Luo and Fei He. SMT-based Query Tracking for Differentially Private Data Analytics Systems

viewed as a counterpart of our approach by treating the for-
bidden tuples as a special query. However, our approach still
differs from them in several aspects. First, we consider the
definition of disjointness based on virtual tuples for parallel
composition. Moreover, most query auditing techniques only
consider a limited class of queries, e.g., conjunctive queries
or SPJ queries, while we support most relational algebra op-
erators using SMT solving techniques. Finally, disjointness
checking is only the basic building block of our approach, and
we further partition the query set to compute the total cost.

8 Conclusion

In this paper, we have presented an SMT-based query track-
ing approach to reduce the privacy cost for online differen-
tially private data analytics systems. In brief, we have trans-
formed the disjointness checking problem into an instance of
SMT solving, and present an online partitioning algorithm for
tracking queries. We have further proposed an optimization
based on the explicitly specified column ranges in queries.
The experimental results show our approach can considerably
reduce privacy budget usage and each query can be tracked
efficiently within milliseconds.

In the future, we plan to extend our work in the following
ways. We plan to investigate more effective heuristics for
the query partitioning algorithm, especially when the privacy
cost of each query varies. Moreover, we plan to explore the
possibility of reusing past queries that are not totally disjoint
with the current query.

ACKNOWLEDGMENTS

This work was supported in part by the Chinese National
973 Plan (2010CB328003), the NSF of China (61672310,
61272001, 60903030, 91218302), and the Chinese National
Key Technology R&D Program (SQ2012BAJY4052).

References

1. Dwork C. Differential privacy. In: Proceedings of International Collo-

quium on Automata, Languages and Programming. 2006, 1–12

2. McSherry F D. Privacy integrated queries: an extensible platform for

privacy-preserving data analysis. Communications of the ACM, 2009,

53: 19–30

3. Silberschatz A, Korth H F, Sudarshan S. Database system concepts.

volume 4. McGraw-Hill New York, 1997

4. McSherry F, Talwar K. Mechanism design via differential privacy. In:

Proceedings of IEEE Symposium on Foundations of Computer Sci-

ence. 2007, 94–103

5. De Moura L, Bjørner N. Z3: An efficient SMT solver. In: Proceedings

of International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems. 2008, 337–340

6. Lichman M. UCI machine learning repository, 2013

7. Barnett M, Chang B Y E, DeLine R, Jacobs B, Leino K R M. Boogie:

A modular reusable verifier for object-oriented programs. In: Proceed-

ings of International Conference on Formal Methods for Components

and Objects. 2006, 364–387

8. Kroening D, Tautschnig M. CBMC–C bounded model checker. In:

Proceedings of International Conference on Tools and Algorithms for

the Construction and Analysis of Systems. 2014, 389–391

9. Godefroid P, Levin M Y, Molnar D A. Automated Whitebox Fuzz

Testing. In: Proceedings of Network and Distributed System Security

Symposium. 2008, 151–166

10. Cadar C, Godefroid P, Khurshid S, Păsăreanu C S, Sen K, Tillmann

N, Visser W. Symbolic execution for software testing in practice: pre-

liminary assessment. In: Proceedings of International Conference on

Software Engineering. 2011, 1066–1071

11. Cimatti A, Griggio A, Schaafsma B J, Sebastiani R. The mathsat5

SMT solver. In: Proceedings of International Conference on Tools

and Algorithms for the Construction and Analysis of Systems. 2013,

93–107

12. Dutertre B. Yices 2.2. In: Proceedings of International Conference on

Computer Aided Verification. 2014, 737–744

13. Xiao X, Wang G, Gehrke J. Differential privacy via wavelet transforms.

IEEE Transactions on Knowledge and Data Engineering, 2011, 23(8):

1200–1214

14. Hay M, Rastogi V, Miklau G, Suciu D. Boosting the accuracy of dif-

ferentially private histograms through consistency. Proceedings of the

VLDB Endowment, 2010, 3(1–2): 1021–1032

15. Xu J, Zhang Z, Xiao X, Yang Y, Yu G. Differentially private histogram

publication. In: Proceedings of IEEE International Conference on Data

Engineering. 2012, 32–43

16. Chen R, Mohammed N, Fung B C, Desai B C, Xiong L. Publishing

set-valued data via differential privacy. Proceedings of the VLDB En-

dowment, 2011, 4(11): 1087–1098

17. Zhang J, Cormode G, Procopiuc C M, Srivastava D, Xiao X. Privbayes:

Private data release via Bayesian networks. In: Proceedings of ACM

SIGMOD International Conference on Management of Data. 2014,

1423–1434

18. Xiao X, Bender G, Hay M, Gehrke J. ireduct: Differential privacy with

reduced relative errors. In: Proceedings of ACM SIGMOD Interna-

tional Conference on Management of Data. 2011, 229–240

19. Li C, Hay M, Rastogi V, Miklau G, McGregor A. Optimizing linear

counting queries under differential privacy. In: Proceedings of ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems. 2010, 123–134

20. Li C, Miklau G. An adaptive mechanism for accurate query answer-

ing under differential privacy. Proceedings of the VLDB Endowment,

Front. Comput. Sci.
15

2012, 5(6): 514–525

21. Yuan G, Zhang Z, Winslett M, Xiao X, Yang Y, Hao Z. Low-rank

mechanism: optimizing batch queries under differential privacy. Pro-

ceedings of the VLDB Endowment, 2012, 5(11): 1352–1363

22. Peng S, Yang Y, Zhang Z, Winslett M, Yu Y. Query optimization for

differentially private data management systems. In: Proceedings of

IEEE International Conference on Data Engineering. 2013, 1093–1104

23. Agrawal R, Bayardo R, Faloutsos C, Kiernan J, Rantzau R, Srikant R.

Auditing compliance with a hippocratic database. In: Proceedings of

International Conference on Very Large Data Bases. 2004, 516–527

24. Kaushik R, Ramamurthy R. Efficient auditing for complex SQL

queries. In: Proceedings of ACM SIGMOD International Conference

on Management of Data. 2011, 697–708

25. Miklau G, Suciu D. A formal analysis of information disclosure in

data exchange. In: Proceedings of ACM SIGMOD International Con-

ference on Management of Data. 2004, 575–586

26. Motwani R, Nabar S U, Thomas D. Auditing SQL queries. In: Pro-

ceedings of IEEE International Conference on Data Engineering. 2008,

287–296

Chen Luo received his BS degree from

Tongji University in 2013 and his Mas-

ter’s degree from Tsinghua University

in 2016. He is currently a PhD stu-

dent in University of California Irvine,

USA. His research interests include

formal methods and database systems.

Fei He received his BS degree from the

National University of Defense Tech-

nology in 2002, and the PhD degree

from Tsinghua University in 2008. He

is currently an Associate Professor in

the School of Software at Tsinghua

University, Beijing, China. His re-

search interests include satisfiability,

model checking, compositional reason-

ing, and their applications to embedded systems.

16
Chen Luo and Fei He. SMT-based Query Tracking for Differentially Private Data Analytics Systems

Table 2 Experimental results

Experiment Value
Base Approach Range-Optimized Approach

Track
Time

Relative
Privacy Cost

Range
Time

Range
Hits

SMT
Time

Track
Time

Relative
Privacy Cost

Number of
Queries N

500 60.00 ms 34.47% 0.30 ms 71.80% 107.31 ms 30.59 ms 21.67%
1000 57.50 ms 34.37% 0.25 ms 76.23% 93.84 ms 22.35 ms 19.00%
1500 59.37 ms 35.80% 0.27 ms 77.69% 116.58 ms 26.15 ms 17.67%
2000 60.60 ms 35.38% 0.26 ms 78.40% 105.41 ms 22.83 ms 17.23%
2500 62.28 ms 35.53% 0.26 ms 78.79% 96.09 ms 20.45 ms 17.05%

Number of
Simple
Predicates
Ns

1 59.41 ms 77.60% 0.23 ms 71.00% 63.33 ms 18.60 ms 28.60%
2 54.85 ms 47.27% 0.27 ms 77.67% 77.66 ms 17.58 ms 21.00%
3 59.53 ms 35.30% 0.28 ms 78.27% 101.74 ms 22.39 ms 18.23%
4 66.28 ms 28.50% 0.27 ms 68.90% 117.64 ms 36.52 ms 17.83%
5 71.55 ms 21.43% 0.24 ms 55.93% 105.21 ms 46.08 ms 16.60%

Mean of
Selected
Ranges µs

0.05 56.84 ms 32.57% 0.30 ms 81.83% 105.35 ms 19.19 ms 14.70%
0.1 61.33 ms 35.50% 0.28 ms 75.73% 103.21 ms 25.12 ms 18.97%

0.15 62.26 ms 40.07% 0.27 ms 73.27% 98.13 ms 26.30 ms 22.87%
0.2 66.93 ms 43.93% 0.27 ms 68.97% 101.57 ms 31.57 ms 27.03%

0.25 61.33 ms 46.60% 0.27 ms 64.30% 94.27 ms 33.86 ms 31.97%

SD of
Selected
Ranges σs

0.02 63.31 ms 36.37% 0.27 ms 76.67% 117.00 ms 22.41 ms 18.73%
0.04 60.67 ms 35.53% 0.28 ms 76.30% 103.17 ms 24.47 ms 18.80%
0.06 57.39 ms 35.13% 0.28 ms 78.17% 105.22 ms 23.24 ms 18.57%
0.08 57.48 ms 36.07% 0.28 ms 78.07% 104.50 ms 23.02 ms 18.27%

0.1 61.24 ms 36.60% 0.32 ms 77.40% 96.38 ms 22.03 ms 18.67%

Number of
Complex
Predicates
Nc

1 40.96 ms 36.97% 0.28 ms 76.83% 61.54 ms 14.52 ms 19.20%
2 59.25 ms 35.50% 0.27 ms 77.00% 108.98 ms 25.28 ms 18.67%
3 91.00 ms 36.53% 0.27 ms 74.77% 163.03 ms 41.14 ms 18.90%
4 133.68 ms 34.33% 0.27 ms 71.37% 223.12 ms 63.43 ms 18.63%
5 190.13 ms 32.70% 0.25 ms 67.77% 321.24 ms 101.54 ms 18.53%

Number of
Checked
Partitions k

5 29.10 ms 44.97% 0.28 ms 78.77% 43.38 ms 9.46 ms 18.57%
10 58.69 ms 35.47% 0.25 ms 77.23% 109.16 ms 24.99 ms 18.40%
15 82.84 ms 31.53% 0.25 ms 74.70% 144.21 ms 36.58 ms 18.63%
20 118.42 ms 27.07% 0.29 ms 74.57% 220.27 ms 56.20 ms 18.30%
25 165.99 ms 24.47% 0.30 ms 72.60% 307.91 ms 84.25 ms 18.13%

