
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

Efficient Software Product-line Model Checking using Induction
and a SAT Solver

Fei HE 1,2,3, Yuan GAO 1,2,3, Liangze YIN 4

1 Tsinghua National Laboratory for Information Science and Technology (TNList)
2 Key Laboratory for Information System Security, Ministry of Education

3 School of Software, Tsinghua University, Beijing, China, 100084
4 Department of Computer Science and Technology, National University of Defense Technology, Changsha, China, 410073

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract Software product line (SPL) engineering is in-
creasingly being adopted in safety-critical systems. It is
highly desirable to rigorously show that these systems are de-
signed correctly. However, formal analysis for SPLs is more
difficult than for single systems because an SPL may contain
a large number of individual systems. In this paper, we pro-
pose an efficient model-checking technique for SPLs using
induction and a SAT (Boolean satisfiability problem) solver.
We show how an induction-based verification method can be
adapted to the SPLs, with the help of a SAT solver. To com-
bat the state space explosion problem, a novel technique that
exploits the distinguishing characteristics of SPLs, called fea-
ture cube enlargement, is proposed to reduce the verification
efforts. The incremental SAT mechanism is applied to fur-
ther improve the efficiency. The correctness of our technique
is proved. Experimental results show dramatic improvement
of our technique over the existing binary decision diagram
(BDD)-based techniques.

Keywords Software product line, model checking, satisfia-
bility

1 Introduction

Software product line engineering (SPLE) is a paradigm for
the development of software product lines (SPLs) [1, 2]. An
SPL [2] is a set of similar software systems (called products)
that rely on a common code base. In general, an SPL pro-
motes strategic, well-managed software reuse. Using SPLs
helps in creating a variety of related systems efficiently with
a short lead time.

E-mail: hefei@tsinghua.edu.cn

The concept of a feature is at the heart of SPLE. A feature
is a packet of functionalities optional to the system. For ex-
ample, the software packages loaded in mobile phones that
belong to the same brand form an SPL. The base function-
alities of these mobile phones (such as the call subsystem
and the short message subsystem) are realized as the code
base, whereas other functionalities (such as support for GPS,
a high-resolution screen, and camera) are realized as inde-
pendent features. The software loaded in a mobile phone is
a product. A product can be considered as a combination of
the code base and a set of features. An SPL with n features
yields up to 2n products.

SPLE is increasingly being adopted in safety-critical sys-
tems [3–9]. It is highly desirable to rigorously show that these
systems are designed correctly. Model checking is one of the
most successful approaches in formal verification [10]. For
model checking in practice, one has to deal with the state
space explosion problem. Note that an SPL can yield an ex-
ponential number of products in the number of features. To
avoid verifying these products one by one, a single model that
simulates the behaviors of all products, called the metaprod-
uct model, is often constructed. The model checking is then
performed on this metaproduct model [3]. Apparently, the
state space explosion problem is worse for analysis in the
metaproduct model than in a single product.

Model checking of SPLs has recently been studied by
many researchers [11–18]. Most of these studies used ex-
plicit algorithms that enumerate system states one by one. For
realistic designs, the size of the metaproduct model may be
very large [19] and the explicit-state analysis can easily ex-
ceed the resource limits. Classen et al. proposed a binary de-
cision diagram (BDD)-based model checking algorithm for
SPLs [12, 20]. With the BDD techniques, the state space is
explored more efficiently. However, for larger systems the
BDDs generated during model checking can still become too

2
Fei He, et. al.: Efficient Software Product-line Model Checking using Induction and a SAT Solver

large to be handled by currently available computers [21].
SAT-based model checking [22, 23] is another symbolic

verification technique, which outperforms the BDD-based
techniques in many industrial cases [21]. There have been
some attempts at applying SAT procedures to the verification
of SPLs. The tool ProVeLines [18] employs SAT procedures.
However, these solvers are only used for checking the sat-
isfiability of feature expressions (i.e. propositional formulas
over the features). The verification algorithms [11, 18, 24]
implemented in this tool are essentially based on explicit-
state enumeration. Another tool, SPLVerifier [25, 26], uses
off-the-shelf model checkers (including a SAT-based one,
CBMC [27]) to verify product-line programs, where SPL pro-
grams are treated as ordinary programs and verified by clas-
sical model checkers. However, the characteristics of SPLs
are not explored in their model checking algorithm.

Given the large number of products contained in an SPL,
applying the off-the-shelf verification techniques directly
may lead to severe state space explosion. A dedicated model-
checking algorithm that exploits the distinguishing charac-
teristics of SPLs to reduce the verification efforts is thus re-
quired. In this paper, we propose an efficient model-checking
technique using induction and a SAT solver. Recall that
the SAT-based model checking technique relies on the SAT
solver to verify the properties. A SAT solver returns one so-
lution (a counterexample) during one call. With this solution,
one can only conclude that one product violates the property.
This is inefficient because an SPL with m failing products
needs m calls of the SAT solver, whereas m may be exponen-
tial in the number of features. We propose the feature cube
enlargement technique that exploits the knowledge about fea-
tures and extends one product to a set of products. The times
of calling the SAT solver (and thus the verification efforts)
are greatly reduced. Then together with the temporal induc-
tion [28] technique, an unbounded model-checking algorithm
for SPLs is proposed.

We also note that the sequence of SAT instances produced
by model checking for increasing search length are made
up of problems that are highly correlated, the information
learned from former problems can help in solving the latter
problems. The incremental SAT technique [29, 30] can thus
be applied, which also leads a significant reduction to the ver-
ification time.

We implemented a prototype of our techniques on top of
NuSMV. It takes as inputs an fSMV model and a featured
safety property. Our algorithm can not only find the set of
products violating the property, but also prove that the re-
maining products all satisfy the property. We compare our ap-
proach with the existing BDD-based symbolic model checker
presented in [12]. Experimental results demonstrate the dra-
matic improvement of our approach.

Our main contributions are summarized as follows.

• We propose a dedicated and efficient model-checking
technique for SPLs using induction and a SAT solver.
The distinguishing characteristics of SPLs are exploited

to reduce the verification efforts. The correctness of this
technique is established.

• A technique that exploits the distinguishing character-
istics of SPLs, called feature cube enlargement, is pro-
posed to reduce the verification efforts. We also show
that the incremental SAT mechanism can be integrated
with our technique to further improve the efficiency.

• We implement a prototype of our technique. Experimen-
tal results demonstrate the promising performance of our
approach.

The remainder of this paper is organized as follows. In
Section 2, the formal preliminaries and background on SAT-
based model checking are introduced. Section 3 presents our
transition system for SPLs. Section 4 describes our SAT-
based unbounded model checking algorithms for SPLs. Sec-
tion 5 reports the experimental results on a parameterized ex-
ample. Section 6 provides a discussion of the related work.
Finally, Section 7 concludes the paper.

2 Background

2.1 Formal Preliminaries

Let B = {false, true} be the Boolean domain with the truth
values false and true, and x a finite set of Boolean variables.
Define x′ = {x′ : x ∈ x}. A literal is a Boolean variable xi ∈ x,
or its negation ¬xi. A clause is a disjunction of a set of liter-
als. If a clause contains one literal, it is called a unit clause.
The negation of a clause is a cube (a conjunction of literals).
A conjunctive normal form (CNF) formula is a conjunction
of a set of clauses. In the remainder of this paper, both a
clause and a cube are regarded as a set of literals, a CNF for-
mula is regarded as a set of clauses, where disjunction and
conjunction of these sets are implicit from the context. All
set operations are applicable to clauses, cubes, and CNFs.

A valuation s over x is a mapping from x to B. A valuation
is partial if its domain is a subset of x. We write Valx for the
set of valuations over x. The projection s|y of a valuation s on
y ⊆ x is a partial valuation such that s|y(y) = s(y) for y ∈ y. A
(partial) valuation is often described as a cube. For example,
the valuation {x0 = 1, x1 = 0} can be represented as a cube
x0∧¬x1. In the remainder of this paper, we do not distinguish
between a valuation and a cube; both are referred to as s.

A predicate φ(x) (or φ when the variables x are clear from
the context) is a Boolean function over x. A clause, a cube,
and a CNF are all a predicate. For a predicate φ and a (partial)
valuation s, s satisfies φ (written s |= φ) if φ evaluates to
true by assigning s(x) to x ∈ x. Similarly, a pair of (partial)
valuations (s, t) ∈ Valx × Valx satisfies a predicate ψ(x, x′)
(written (s, t) |= ψ) if ψ evaluates to true by assigning s(x)
and t(x) to x ∈ x and x′ ∈ x′, respectively. We write [[φ]] for
the set of satisfying valuations for the predicate φ, namely,
[[φ]] = {s ∈ Valx : s |= φ}. A predicate φ1 implies another
predicate φ2, written φ1 ⇒ φ2, if every satisfying assignment

Front. Comput. Sci.
3

of φ1 satisfies φ2. A predicate φ is a tautology (written |= φ)
if s |= φ for every valuation s ∈ Valx.

Definition 1. A transition system is a 4-tuple M = (v, x, I,
T), where:

• v is a finite set of frozen variables;
• x is a finite set of state variables;
• I(v, x) is an initial predicate over v and x; and
• T (v, x, x′) is a transition predicate over v, x and x′,

where x′ is the next-state copy of x.

In the above definition, we differentiate the frozen vari-
ables from other variables. A frozen variable is one whose
value does not change on any transition of the system. As a
result, there is no next-state copy of the frozen variables in
the transition predicate.

An x-state (or a v-state) of M is a valuation over x (or
v). Let p ∈ Valv be a v-state. An x-state s is p-initial if
s |= I(p, x). A pair (s, t) of x-states is a p-transition if (s, t) |=
T (p, x, x′). A p-trace of M is a sequence σ = [s0, s1, . . . , sn]
of x-states such that I(p, s0) holds and T (p, si, si+1) holds for
i = 0, . . . , n − 1. We write Tr(p,M) for the set of p-traces in
M, and Tr(M) for the set of all traces in M. Obviously,

Tr(M) =
⋃

p∈Valv

Tr(p,M).

An x-state s is p-reachable in M if there exists a p-trace
σ ending in s. For any predicate π over x, a sequence σ =

[s0, s1, . . . , sn] of x-states satisfies π (written σ |= π) if si |=

π for i = 0, . . . , n. We say M satisfies π with respect to p
(written (p,M) |= π) if σ |= π for any p-trace σ in M. We say
M satisfies π (written M |= π), if σ |= π for any trace σ in M.

Throughout the paper, we use p and q to represent v-states,
and s and t to represent x-states. We use φ to represent a
predicate over v ∪ x, λ and µ to represent predicates over v,
and π a predicate over x.

2.2 SAT-based Bounded Model Checking

Given a transition system M and an invariant property (a
predicate) π, the essential idea of bounded model check-
ing [22] is to search for counterexamples to π of bounded
length in Tr(M). Let xi = {xi : x ∈ x} be the ith copy of x, for
0 ≤ i ≤ k. The existence of a counterexample to π of length k
can be formulated [28] as

bmck = I(v, x0) ∧
k−1∧
i=0

(
T (v, xi, xi+1) ∧ π(xi)

)
∧ ¬π(xk) (1)

Note that in above formulation, we assume all shorter bmc j

(j < k) have been proved already. bmck is usually solved
by a conventional SAT procedure. A satisfying solution to
bmck gives a counterexample of length k. The unsatisfiability
of bmck makes the algorithm increase the search length by 1
and check the satisfiability of bmck+1.

Bounded model checking is essentially incomplete. To
verify a given property, one has to prove the unsatisfiabil-
ity of bmck for k = 0 up to the completeness threshold (CT)
[31]. The CT is usually very hard to compute [21], bounded
model checking is thus considered as a bug-finding method.

2.3 SAT-based Temporal Induction

As an improvement to the bounded model checking, SAT-
based unbounded model checking [32–34] finds counterex-
amples of failed properties, as well as proving the correctness
of satisfied properties, with no need to compute the CT.

One popular technique is based on the temporal induc-
tion [28, 33]. An inductive proof for verifying a property π
consists of two parts: the base case and the induction step.
Proving the base case on length k is equivalent to checking
the unsatisfiability of bmck. The proof for the induction step
on length k is formulated [28] as

inductk =

 k∧
i=0

(
T (v, xi, xi+1) ∧ π(xi)

) ∧ ¬π(xk+1)

∧

 ∧
0≤i< j≤k

(xi , x j)

 (2)

A satisfiable solution to inductk gives a state-unique trace of
length k+1, consisting of k consecutive π-satisfying states and
a following π-failing state. Note that a model may contain
loops and thus infinite traces. The state uniqueness requires
all states on a trace are unique. This restriction makes this
method complete [28, 33] in the sense that there is always a
length (by looking at the finite number of states in the model)
for which the induction step is provable.

The unsatisfiability of bmck indicates that there exists no
trace of length k violating the property, assuming the property
holds the first k − 1 states. The unsatisfiability of inductk in-
dicates that following k consecutive π-satisfying states, there
exists no next state violating the property. If both bmck and
inductk are unsatisfiable, by induction on the length k, the
property holds for all traces of any length [28].

The base case of this algorithm can be understood as a
bug-hunting procedure. If bmck is satisfiable for any k, the
algorithm terminates and reports the satisfiable solution as a
counterexample.

3 Transition Systems for SPLs

In this section, we introduce transition system for the soft-
ware product line (SPL-TS), a formalism for modeling the
behaviors of an SPL. The SPL-TS conforms to the standard
definition of transition systems and is thus suitable for SAT-
based model checking. Note that the SPL-TS is used as the
semantics model of an SPL in our approach. For the model-
ing language, we adopt fSMV [35].

4
Fei He, et. al.: Efficient Software Product-line Model Checking using Induction and a SAT Solver

MODULE main

VAR

 state : {ready, busy};

ASSIGN

 init(state) := ready;

 next(state) := case

 state = busy : ready;

 1: {ready, busy};

 esac;

(a) Base system

FEATURE request

INTRODUCE

 VAR request : boolean;

CHANGE

 IF request = 1 & state = ready

 THEN IMPOSE next(state) := busy;

(b) Feature

Fig. 1 An fSMV example

3.1 Transitions Systems

An SPL consists of two parts: a base system and a set of
features. The base system describes the basic behaviors of
an SPL. A feature encapsulates a set of changes to the base
system, which can be the introduction of new variables or
modification of existing transitions. The base system can be
composed with these features, leading to a superimposition.

In the following, we use a running example shown in Fig. 1
to illustrate our modeling formalism. This example is de-
scribed in fSMV (an extension of the SMV language). For
further details of the SMV and fSMV languages, the inter-
ested readers are referred to [35, 36].

The base system of the running example is shown in
Fig. 1(a), which has two states: ready and busy. Initially,
the system is on the ready state. If the current state is busy,
the system transits to the ready state; otherwise, it either
stays on the ready state, or transits to the busy state. For-
mally, the base system can be modeled as a transition system
Mb = (vb, xb, Ib,Tb), where

vb =∅,

xb ={state},

Ib =(state = ready), and
Tb =(state = busy) ∧ (state′ = ready)

∨ (state = ready) ∧ (state′ = ready)
∨ (state = ready) ∧ (state′ = busy).

Note that there is no frozen variable in the base system.
The request feature of the running example is shown in

Fig. 1(b), which adds a new variable request to the base sys-
tem, and changes the system behavior such that if the system
is currently on the ready state, and a request arrives, the sys-
tem transits to the busy state.

Definition 2. A feature is a transformation function ξ that
takes as input a transition system M1, returns a transformed
transition system M2.

Denote by ξreq the transformation function of the request
feature. Let Mreq = (vreq, xreq, Ireq, treq) be the transformed
transition system after applying the request feature to the
base system, then

vreq =∅,

xreq ={state, request},

Ireq =(state = ready),

and

Treq =(state = busy) ∧ (state′ = ready)
∨ (state = ready) ∧ (request = 1) ∧ (state′ = busy)
∨ (state = ready) ∧ (request = 0) ∧ (state′ = ready)
∨ (state = ready) ∧ (request = 0) ∧ (state′ = busy).

Note that the set of frozen variables is still empty.

Definition 3. Let ξi be a feature, the feature variable with
respect to ξi is a Boolean variable vi, such that vi = 1 if and
only if the feature ξi is present.

For the running example, let v be the feature variable in-
dicating whether the request feature is present. Let Mζ =

(vζ , xζ , Iζ ,Tζ), where

vζ ={v},

xζ ={state, request},

Iζ =(¬v ∧ Ib) ∨ (v ∧ Ireq), and
Tζ =(¬v ∧ Tb) ∨ (v ∧ Treq),

where Ib, Tb, Ireq, and Treq are defined as before. Note the
difference between a feature variable and a state variable.
The value of a state variable (either state or request) can
be changed along a transition of the system. In contrast, the
value of the feature variable v cannot be changed in the whole
transition relation of the system. Thus, we define v as a frozen
variable in Mζ .

It can easily be concluded that the behaviors of Mζ are the
same as Mb if v = 0, and the same as Mreq if v = 1. Thus, Mζ

is a model containing behaviors of both Mb and Mreq.

Definition 4. Given a base system Mb and a finite list of m
features 〈ξ0, ξ1, . . . , ξm−1〉, let vi be the feature variable with
respect to ξi, the SPL-TS is

M = (v, x, I(v, x),T (v, x, x′)),

where:

• v = {v0, v1, . . . , vm−1} is the finite set of feature variables;
• x is the finite set of state variables;
• I(v, x) is the initial predicate; and
• T (v, x, x′) is the transition predicate.

Front. Comput. Sci.
5

Note that the definition of an SPL-TS is in accordance with
that of a transition system. Therefore, the definitions of a v-
state, an x-state, and a p-trace follow those in a transition
system.

Definition 5. Let M = (v, x, I,T) be an SPL-TS, and let
p ∈ Valv be a v-state, the projection of M to p is a transi-
tion system M|p = (∅, x, Ip,Tp), where Ip and Tp are predi-
cates obtained by assigning value p(v) to v ∈ v in I and T ,
respectively. We call p a product, and M|p a product model.

The number of products in an SPL depends on the size
of v. If |v| = m, there are maximally 2m products in the
SPL. Note that a product model is a transition system with
no frozen variables. Consider the example in Fig. 1, applying
the valuation {v = 0} and {v = 1} to Mζ gives the transition
system Mb and Mreq, respectively.

According to the definition of frozen variables, any trace
in the product model M|p is a p-trace in M. Apparently, the
traces of an SPL-TS model are the union of all traces in all
product models, i.e.

Tr(M) =
⋃

p∈Valv

Tr(M|p).

3.2 Featured Safety Properties

In this paper, we focus on model checking of featured safety
properties [12] on SPL-TSs.

Definition 6. A featured safety property is of the form φ =

λ(v) : π(x), where λ(v) is a predicate over v and π(x) is a
predicate over x.

In a featured safety property φ = λ(v) : π(x), λ(v) char-
acterizes the set of products needed to be checked, and π(x)
characterizes an invariant that should hold on all reachable
x-states.

To check the behaviors of valid products only, let φFD be
the propositional formula representing the set of valid prod-
ucts in a feature model [37–39]; we simply conjoin φFD to λ,
and ask to verify λ ∧ φFD : π on the model.

Definition 7. The semantics of a featured safety property φ =

λ(v) : π(x) with respect to an SPL-TS model M is

M |= λ(v) : π(x) ⇐⇒ ∀p ∈ [[λ(v)]], M|p |= π(x)

Given a product p, if M|p |= π, we say p is π-satisfying;
otherwise, we say p is π-dissatisfying.

Definition 8. Let M be an SPL-TS and let φ = λ(v) : π(x) be
a featured safety property, then the model checking problem
is to identify a predicate µ(v), such that:

1. ∀p ∈ [[µ]].M|p |= π; and
2. ∀p ∈ [[λ]] \ [[µ]].M|p 6|= π.

Note that with the technique in [40], any liveness property
or fairness property can be handled as a safety property. Our
techniques can be extended to the verification of more general
properties in the same way.

4 Model Checking SPL-TSs

Note that an SPL yields a number of products, and the model
checking of SPL-TSs (Definition 8) asks for a verification
result for every product; the traditional model-checking algo-
rithms are therefore not applicable. In this section, we intro-
duce an SPL model-checking technique using induction and
a SAT solver.

The basic idea behind our algorithms is illustrated in
Fig. 2, where the blank area represents unchecked products,
the red area represents dissatisfying products, and the yellow
area represents satisfying products. The whole area is ini-
tialized to [[λ(v)]]. We iteratively find in the blank area the
dissatisfying products, until no further dissatisfying products
can be found.

The technique for finding dissatisfying products is in-
spired by the bounded model checking. At the first iteration
(Fig. 2(b)), we try to find the set of all products 40 that can
be falsified by a counterexample of length 0 (i.e. the initial
states). The products set 40 is then eliminated from the set
[[λ(v)]]. Then we try to prove whether all remaining products
satisfy the property. If not, the algorithm proceeds to the next
iteration. At the second iteration (Fig. 2(c)), we find in the
remaining blank area the set of all products 41 that can be
falsified by a counterexample of length 1. Again, the prod-
ucts set 41 is eliminated from [[λ(v)]]. This process repeats
until all products in the remaining blank area satisfy the prop-
erty. Note that the set [[λ(v)]] is finite; therefore, this process
always terminates.

𝜆(𝐯)

Intuition

Consider the square as the set of all valid products (a) Products set to be checked

Intuition

Consider the square as the set of all valid products

∆0

(b) Iteration 1
Intuition

Consider the square as the set of all valid products

∆0
∆1

(c) Iteration 2

Intuition

Consider the square as the set of all valid products

∆0
∆1

∆2

…

∆𝑘

𝜋 - satisfying

(d) Proved

Fig. 2 Iterative bug-finding and proving process

Further, to realize an efficient model-checking algorithm
for SPL-TSs, one needs to address the following issues:

1. how to exploit the SAT procedures to realize an efficient
and symbolic algorithm (Section 4. 1);

2. how to exploit the knowledge about features to speed up
the model checking of SPL-TSs (Sections 4.1 and 4.2);

6
Fei He, et. al.: Efficient Software Product-line Model Checking using Induction and a SAT Solver

Input: An SPL-TS M = (v, x, I,T) and a featured safety
property φ = λ(v) : π(x).

Output: A predicate µ(v).
1 k ← 0 ; /* search length */
2 µ← λ ; /* set of products */
3 while true do
4 while (p, σ) |= bmck ∧ µ do
5 µ← µ ∧ ¬p ; /* blocking clause */
6 end
7 if inductk ∧ µ is UNSAT then
8 return µ;
9 end

10 k ← k + 1 ;
11 end

Algorithm 1: Verify(M, φ)

3. how to exploit the commonalities of an SPL to avoid
redundant computations (Section 4.4).

4.1 Basic Algorithm

Algorithm 1 shows our basic algorithm for model-checking
SPL-TSs. It takes as inputs an SPL-TS M = (v, x, I,T) and a
featured safety property φ = λ(v) : π(x), outputs a predicate
that characterizes the set of π-satisfying products in [[λ]].

We use a predicate µ(v) to represent the set of products
whose satisfiability to π remains unknown. The set [[µ]] char-
acterizes the blank area in Fig. 2. The predicate µ is ini-
tialized to be λ (at line 2 of Algorithm 1). When the al-
gorithm proceeds, only products in [[µ]] need to be checked
for satisfiability to π. We call [[µ]] the search space of prod-
ucts. If a product dissatisfies the property, it is removed from
[[µ]]. When the algorithm proceeds, µ is iteratively strength-
ened, and the search space of products is reduced accord-
ingly. The algorithm terminates when all products in [[µ]]
are π-satisfying, or [[µ]] becomes empty. In the algorithm, we
keep µ as a CNF, i.e. a set of clauses.

Let k be the bounded length, the existence of a bounded
counterexample to π for any product in [[µ]] is formulated as

bug_findingk = bmck ∧ µ (3)

where bmck is as given in (1). Note that µ in the above for-
mula is used to limit the search of counterexamples in the
products set [[µ]].

If bug_findingk is satisfiable, the SAT solver returns (at
line 4 of Algorithm 1) a satisfying valuation of this formula.
Denote this valuation as (p, σ), where p is a valuation over
v (i.e. a product), and σ is a valuation over x0 ∪ · · · ∪ xk

(i.e. a p-trace). As (p, σ) |= bmck ∧ µ, the product p must
dissatisfy π, and σ gives a counterexample. Thus, p needs
to be excluded from [[µ]]. This can be done by adding the
negation of p (a clause) to µ (at line 5 of Algorithm 1). The
clause ¬p is called a blocking clause [32], which blocks the
product p from reconsideration in later computations.

Consider the while loop at line 4 of Algorithm 1. At each
iteration, one blocking clause is added to µ (equivalently, one
dissatisfying product is excluded from [[µ]]). This process re-
peats until bug_findingk becomes unsatisfiable, which means
there is no new product p′ such that M|p′ can be falsified by
a counterexample of length k. The following lemma summa-
rizes the while loop at line 4 of Algorithm 1.

Lemma 1. Let M = (v, x, I,T) be an SPL-TS and let φ =

λ(v) : π(x) be a featured safety property. At the kth iteration
of the while loop at line 3, right after line 6 of Algorithm 1:

1. ∀p ∈ ([[λ]] \ [[µ]]).M|p 6|= π;
2. all products that can be falsified by a trace of length k

(denoted as 4k) have been excluded from [[µ]].

Proof. Let µ0 = λ ∧ ¬p0 ∧ ¬p1 ∧ · · · ∧ ¬pl be the value of µ
right after line 6 of Algorithm 1, where ¬p0,¬p1, . . . ,¬pl are
blocking clauses. Note that each blocking clause corresponds
to a π-dissatisfying product. For any p ∈ [[λ ∧ ¬µ0]], we have
p ∈ {p0, p1, . . . , pl}, thus M|p 6|= π. The second proposition
follows from the fact that bmck ∧ µ0 is unsatisfiable. �

If bug_findingk is unsatisfiable, the algorithm proceeds to
prove whether all remaining products satisfy the property.
This is equivalent to checking (at line 7 of Algorithm 1) the
unsatisfiability of the following formula:

provek = inductk ∧ µ (4)

where inductk is as given in (2).
If provek is satisfiable, let (p, σ) be the satisfiable valua-

tion returned by the SAT solver, where p is a product in [[µ]]
and σ is a p-trace. As (p, σ) |= inductk, we cannot prove
by induction of length k that M|p |= π. The algorithm then
proceeds to increase the bound k and repeats the loop at line
3. If provek is unsatisfiable, then for any product q ∈ [[µ]],
inductk ∧ q is unsatisfiable, thus M|q |= π. Therefore, we can
safely conclude the algorithm with µ.

For proving the correctness of our algorithm, recall that
the induction-based unbounded model checking is sound and
complete [28].

Lemma 2 (Eén and Sörensson [28]). Let M = (v, x, I,T) be
an SPL-TS and let π(x) be an invariant property over x. For
any product model M|p, there exists some k (called the induc-
tion length of M|p) such that either inductk∧p is unsatisfiable
or bmc j ∧ p is satisfiable for some j ≤ k.

Theorem 1. Given an SPL M and a property φ = λ(v) : π(x),
Verify(M, φ) always terminate.

Proof. By Lemma 2, let kmax be the maximal induction length
among all products. Note that inductk ∧ p is unsatisfiable im-
plies inductkmax ∧ p is unsatisfiable, where k ≤ kmax. Thus,
at iteration kmax, either [[µ]] = ∅ or inductkmax ∧ p is unsat-
isfiable for all remaining products p ∈ [[µ]]. In either case,
Verify(M, φ) terminates. �

Front. Comput. Sci.
7

Theorem 2. Let M = (v, x, I,T) be an SPL-TS and let φ =

λ(v) : π(x) be a featured safety property. If µ(v) is returned
by Verify(M, φ) (Algorithm 1), then:

1. ∀p ∈ [[µ]].M|p |= π; and
2. ∀p ∈ [[λ]] \ [[µ]].M|p 6|= π.

Proof. We prove the first proposition by contradiction. As-
sume there exists a product p ∈ [[µ]], such that M|p 6|= π. Let
k∗ be the induction length of M|p. By Lemma 2, there must
exist some j ≤ k∗, such that bmc j ∧ p is satisfiable. Then ¬p
must have been added to µ at line 5 of Algorithm 1, which
contradicts p ∈ [[µ]].

Note that µ can only be revised at line 5 of Algorithm 1.
The second proposition follows directly from Lemma 1. �

If we replace the condition in line 7 of Algorithm 1 with
k >= B , where B is a predefined threshold for the search
length, we obtain a bounded model-checking algorithm for
SPLs. We call this algorithm VerifyBMC(M, φ). Obviously
VerifyBMC(M, φ) is sound but incomplete.

Theorem 3. Let M = (v, x, I,T) be an SPL-TS and let φ =

λ(v) : π(x) be a featured safety property. If µ(v) is returned
by VerifyBMC(M, φ), then:

1. ∀p ∈ [[λ]] \ [[µ]].M|p 6|= π;
2. ∀p ∈ [[µ]], if M|p |= π is UNKNOWN.

4.2 Feature Cube Enlargement

Algorithm 1 realizes a SAT-based model-checking algorithm
for SPL-TSs. Looking at line 4 of Algorithm 1, each invoca-
tion of the SAT solver generates one new dissatisfying prod-
uct. The dissatisfying products are actually enumerated in
[[µ]] one by one. Consider an SPL with m features, maximally
it can yield 2m products. In the worst case, the SAT solver
at line 4 of Algorithm 1 needs be called 2m times. This is
apparently inefficient because each SAT solution has a high
cost in terms of computational resources. We aim to propose
a technique to find dissatisfying products set by set.

Let (p, σ) be the satisfying solution returned at line 4 of
Algorithm 1, where p is a full valuation over v (a product)
and σ is a p-trace. Our idea is to reduce p to p̄ (a partial val-
uation), such that (p̄, σ) |= bmck ∧ µ still holds. This reduc-
tion is possible because the formula bmck ∧µ may have more
than one satisfying solution. For example, let v = {v0, v1, v2}

and let p̄ = v0 ∧ v1 be a partial valuation, if we prove
(p̄, σ) |= bmck ∧ µ, we can safely conclude that the set of
following products are all π-dissatisfying:

v0 ∧ v1 ∧ v2, v0 ∧ v1 ∧ ¬v2

In this way, we enlarge the set of dissatisfying products.

Definition 9. Given a valuation p over v, a valuation σ over
y, and a predicate ϕ over v ∪ y, such that (p, σ) |= ϕ, the
feature cube enlargement problem is to find a reduced cube
p̄, such that:

1. p̄ ⊆ p; and
2. (p̄, σ) |= ϕ.

Here EnlargeFCube(ϕ, p, σ) (Algorithm 2) solves the fea-
ture cube enlargement problem. It computes a shortened cube
p̄ ⊆ p as specified in Definition 9. We assume that ϕ is in the
CNF form, i.e. a set of clauses. For (p̄, σ) |= ϕ, we need that
for every clause c in ϕ, (p̄, σ) |= c holds, i.e. either p̄ |= c or
σ |= c.

Input: A predicate ϕ (in CNF form) over v ∪ y, a
valuation p over v, and a valuation σ over y,
such that (p, σ) |= ϕ.

Output: A shortened cube p̄.
1 p̄← ∅ ; /* p̄ is a cube */
2 %← ∅ ; /* % is a CNF */
3 for c ∈ ϕ do /* c is a clause */
4 if σ 6|= c then %← % ∪ {c|v} ;
5 end
6 for c̄ ∈ % do
7 if c̄ is a unit clause then
8 %← % \ c̄;
9 p̄← p̄ ∪ c̄;

10 end
11 end
12 for c̄ ∈ % do
13 if p̄ 6|= c̄ then
14 Let l be a literal in both c̄ and p, but not in p̄;
15 p̄← p̄ ∪ {l};
16 end
17 end
18 return p̄;

Algorithm 2: EnlargeFCube(ϕ, p, σ)

The main body of Algorithm 2 consists of three for loops.
We explain them in turn in the following. An example is
presented to explain our algorithm, in which v = {v0, v1, v2},
y = {y0, y1, y2}, p = ¬v0 ∧ ¬v1 ∧ v2, σ = y0 ∧ ¬y1 ∧ y2, and ϕ
is a CNF:

{v0 ∨ ¬v1 ∨ ¬v2 ∨ y0 ∨ y2,

¬v0 ∨ v1 ∨ y1 ∨ ¬y2,

v0 ∨ v2 ∨ ¬y0 ∨ y1,

¬v0 ∨ ¬y0,

¬v1 ∨ ¬v2 ∨ y2}

The first for loop (at line 3 of Algorithm 2) aims to pre-
clude the satisfied clauses by σ from further consideration.
Consider the example, the first and fifth clauses in ϕ are sat-
isfied by σ. Trivially, they are also satisfied by (p̄, σ) for any
form of p̄. For clauses dissatisfied byσ, they must be satisfied
by p̄ (to make them be satisfied by (p̄, σ)). Only projections
of these clauses to v need to be considered. For the example,
right after line 5 of Algorithm 2,

% = {¬v0 ∨ v1, v0 ∨ v2,¬v0}.

8
Fei He, et. al.: Efficient Software Product-line Model Checking using Induction and a SAT Solver

Lemma 3 summarizes the for loop at line 3 of Algorithm 2.

Lemma 3. Let %1 be the value of % right after line 5 of Algo-
rithm 2, we have:

1. ∀c̄ ∈ %1, c̄ is a clause over v; and
2. ∀ p̄ ⊆ p, (p̄ |= %1)⇒ ((p̄, σ) |= ϕ).

Proof. The first proposition holds apparently . We prove the
second proposition as follows. Let p̄ be any reduced cube of
p, such that p̄ |= %1. For any clause c in ϕ, it falls into one of
following two cases:

1. σ |= c, then trivially (p̄, σ) |= c;
2. σ 6|= c, then c|v ∈ %1 must hold; as p̄ |= %1, thus p̄ |= c|v,

thus p̄ |= c, therefore (p̄, σ) |= c.

No matter which case, we have proved that (p̄, σ) |= c; thus,
the proposition holds. �

The second for loop (at line 6 of Algorithm 2) handles
the unit clauses in %. To satisfy a unit clause, its only literal
must be present in p̄. For the example, right after line 11 of
Algorithm 2,

% ={¬v0 ∨ v1, v0 ∨ v2},

p̄ ={¬v0}.

The following lemma summarizes the for loop at line 6 of
Algorithm 2.

Lemma 4. Let %1 be the value of % right after line 5, p̄2 and
%2 the values of p̄ and % right after line 11 of Algorithm 2,
respectively, for any cube p̄ ⊆ p, we have

(p̄ ⊇ p̄2) ∧ (p̄ |= %2)⇒ (p̄ |= %1).

Proof. Let p̄ be any cube satisfying p̄ ⊇ p̄2 and p̄ |= %2. For
any clause c in %1, if c is a unit clause, its literal must be in p̄2
(by line 9 of Algorithm 2), which means p̄2 |= c. As p̄ ⊇ p̄2,
p̄ |= c. If c is not a unit clause, it must be kept in %2. From
p̄ |= %2, we have p̄ |= c. No matter which case, p̄ |= c; thus,
the proposition holds. �

The third for loop (at line 12 of Algorithm 2) tries to ex-
tend p̄ to satisfy all remaining clauses in %. Consider the ex-
ample, if the clause taken from % (at line 12 of Algorithm 2)
is ¬v0 ∨ v1, which is already satisfied by the current p̄, the
algorithm proceeds to the next iteration of the loop. Now the
only clause can be taken from % is v0 ∨ v2, which is not satis-
fied by the current p̄. In this case we need to choose a literal
(that is, v2) in v0 ∨ v2 and add it to p̄, such that the new p̄
satisfies v0 ∨ v2. Recall that we want p̄ ⊆ p, the chosen literal
must also be present in p. The following lemma summarizes
the for loop at line 12 of Algorithm 2.

Lemma 5. Let p̄2 and %2 be the values of p̄ and % right after
line 11, p̄3 the value of p̄ right after line 17 of Algorithm 2,
we have:

1. if c̄ ∈ %2 and p̄ 6|= c̄, there exists at least one literal that
satisfies the condition in line 14 of Algorithm 2;

2. p̄2 ⊆ p̄3 ⊆ p, and p̄3 |= %2.

Proof. Let c̄ be any clause in %2 that p̄ 6|= c̄, all literals in c̄
must not be in p̄ (otherwise, p̄ |= c̄). Let c be the clause in
ϕ such that c̄ = c|v. Note that (p, σ) |= ϕ and σ 6|= c; thus,
p |= c, and so p |= c̄. Therefore, at least one literal is shared
by p and c̄. The first proposition holds.

For the second proposition, p̄2 ⊆ p̄3 ⊆ p holds apparently.
Let c̄ be any clause in %2, there must be a literal in c̄ that is
also in p̄3, which means p̄3 |= c̄. Thus, p̄3 |= %2. �

In case that there exists more than one literal satisfying the
condition in line 14 of Algorithm 2, we simply take the first
satisfying literal in c̄.

With all the above lemmas, we prove the correctness of
Algorithm 2 in the following.

Theorem 4. Let ϕ be a predicate over v ∪ y, let p be a val-
uation over v, and let σ be a valuation over y, such that
(p, σ) |= ϕ. If p̄ is returned by EnlargeFCube(ϕ, p, σ) (Al-
gorithm 2), then:

1. p̄ ⊆ p; and
2. (p̄, σ) |= ϕ.

Proof. By Lemma 5, p̄2 ⊆ p̄ ⊆ p and p̄ |= %2. Then by
Lemma 4, p̄ |= %1, and by Lemma 3, (p̄, σ) |= ϕ. �

For the running example, the algorithm returns p̄ = ¬v0 ∧

v2, which is a partial valuation over v representing two prod-
ucts: ¬v0 ∧ v1 ∧ v2,¬v0 ∧ ¬v1 ∧ v2.

4.3 Improved Algorithm

The basic verification algorithm (Algorithm 1) for SPL-TSs
can be improved by the feature cube enlargement technique
(Algorithm 2), as shown in Algorithm 3. The line that is dif-
ferent in Algorithm 3 to Algorithm 1 is emphasized by a sur-
rounding box.

At line 5 of Algorithm 3, EnlargeFCube(bmck ∧µ, p, σ) is
invoked to shorten p to p̄. Note that [[p̄]] represents a set of
products. By Theorem 4, (p̄, σ) |= bmck ∧ µ; Thus, all prod-
ucts in [[p̄]] are π-dissatisfying. A blocking clause ¬p̄ is then
added to preclude all these dissatisfying products from recon-
sideration. In this way, we realize an algorithm that operates
the dissatisfying products set by set.

This is advantageous in two ways: first the blocking clause
for the reduced cube prunes the SAT search space drastically;
second, the number of iterations required for the while loop
at line 4 of Algorithm 3 decreases considerably.

The correctness of Verify+(M, φ) can be proved in the same
way as we prove the correctness of Verify(M, φ), with the ad-
ditional support of Theorem 4.

If Verify+(M, φ) (Algorithm 3) returns a predicate that is
equivalent to λ, then for every product p in [[λ]], M|p |= π,
i.e. M |= φ. Otherwise, there exists at least one product p ∈
[[λ]] \ [[µ]], such that M|p 6|= π; thus, M 6|= φ.

Front. Comput. Sci.
9

Input: An SPL-TS M = (v, x, I,T) and a featured safety
property φ = λ(v) : π(x).

Output: A predicate µ(v).
1 k ← 0 ;
2 µ← λ ;
3 while true do
4 while (p, σ) |= bmck ∧ µ do
5 p̄← EnlargeFCube(bmck ∧ µ, p, σ) ;
6 µ← µ ∧ ¬ p̄ ;
7 end
8 if inductk ∧ µ is UNSAT then
9 return µ;

10 end
11 k ← k + 1 ;
12 end

Algorithm 3: Verify+(M, φ)

4.4 Incremental SAT Solving

Many modern SAT solvers (such as MiniSAT [29] and Pi-
coSAT [30]) support solving a series of related SAT prob-
lems by an incremental SAT interface. With the incremen-
tal SAT technique, the learned clauses in former SAT prob-
lems can be reused in solving the latter problems. The reused
learned clauses can potentially greatly prune the search space
and thus accelerate the search procedure. Our approach can
also benefit from this technique.

For example, consider the while loop at line 4 of Algo-
rithms 3, the SAT problems to be solved at the ith and (i+1)th
iterations are

bmck ∧ µi, (5)
bmck ∧ µi ∧ ¬ p̄i (6)

After solving (5), the SAT solver need not be restarted, the
SAT problem (6) can be solved by adding one more clause
(i.e. ¬p̄i) to the existing SAT instance. All conflict clauses
learned in SAT solving of (5) are thus retained.

Further, if the algorithm proceeds to the next iteration of
the out while loop (at line 3), the SAT problem at line 4 is

bmck+1 ∧ µi ∧ ¬ p̄i ∧ ϕ, (7)

where ϕ is a set of new blocking clauses added after solving
(6). Note that bmck and bmck+1 are structurally similar [23].
With the technique in [28], the SAT problem (7) can also be
solved using the incremental interface. For the SAT problems
encountered at line 8 of Algorithm 3, similar analysis follows.

In this way, all SAT instances in Algorithm 3 can be solved
in an incremental way. With the incremental SAT technique,
potentially huge computations can be saved across SAT prob-
lems in our algorithm.

5 Experiments

We implemented a prototype of our technique. To evaluate
the performance of our approach, we compare our implemen-
tation (denoted as fUMC) with the state-of-the-art symbolic
model checker for SPLs1) (denoted as fBDD) developed by
Classen et al. [12,20]. Both techniques were implemented on
top of NuSMV 2.5.0 [41].

Both tools take as inputs a NuSMV model that serves as
the base system, a list of features specified in fSMV, and one
featured safety property. The composition tool in [12] is ap-
plied to compose the base system and features to create a new
NuSMV model (the SPL-TS model)2). The fBDD and fUMC
are then performed on the same SPL-TS model to verify the
featured safety properties. All experiments were run on a
machine with 3.06 GHz CPU and 4 GB RAM. The imple-
mentation of our prototype is available online3).

Our approach is evaluated on seven examples4).
• The elevator system [12, 35] consists of a cabin and a

platform. The model is scalable by changing its number
of floors. There are 9 features in this system and a total
of 512 possible products.

• The email system [26,42] consists of N email clients. By
changing N, this model is also scalable. There are eight
features in this system. Owing to feature interactions
(for example, the “Decrypt” and “Encrypt” features in-
teract with the “Keys” feature); there are a total of 40
valid products.

• The mine pump system [13,43] consists of a water pump
and a sensor that detects the water level. There are five
features and six valid products.

• The car wiper system [13,43] models a rain sensor and a
wiper. There are three features and eight valid products.

• The vending machine [43, 44] models a machine that
serves drinks for people. There are three features and
six valid products.

• The pacemaker system [45] models a pacemaker that
monitors and regulates human heart beats. There are
two features and four valid products.

The BDD-based model checking is highly dependent of
the variable order in the BDD package [41]. Finding an op-
timal variable order is, in general, very time-consuming [10].
Fortunately, the precomputed variable orders for the elevator
models with five and eight floors are available at [12]. We
thus test fBDD with both dynamic (denoted as fBDDdyn) and
static (denoted as fBDDsta) ordering strategies for these two
models. For all other models, we test only the dynamic or-
dering strategy.

1) https://projects.info.unamur.be/fts/
implementations/nusmv-extension/

2) Frozen variables are supported in NuSMV.
3) See https://bitbucket.org/hefei/fumc
4) Models and specifications of all these examples are available

10
Fei He, et. al.: Efficient Software Product-line Model Checking using Induction and a SAT Solver

Table 1 Results on the elevator example: time in seconds, memory in kilobytes

#Flr
Property fBDDdyn fBDDsta fUMC fBDDdyn/fUMC fBDDsta/fUMC

ID SAT Time Mem Time Mem Time Mem #Steps Time Mem Time Mem

5

p1 32/480 95.23 30088 15.74 31930 0.04 5114 5 2164.4 5.9 357.8 6.2
p2 272/240 32.32 28084 12.14 31526 0.08 5346 8 409.1 5.3 153.6 5.9
p3 48/464 33.76 30386 5.48 31782 0.06 5210 8 602.8 5.8 97.8 6.1
p4 48/464 16.03 22912 3.88 31652 0.06 5158 8 254.5 4.4 61.5 6.1
p5 0/512 11.07 20700 1.21 28502 0.13 5956 13 82.6 3.5 9.1 4.8
p6 240/272 11.97 19738 2.67 31752 0.05 5226 8 244.3 3.8 54.4 6.1
p7 256/256 12.13 20542 1.65 31398 0.05 5078 7 224.7 4.0 30.5 6.2

8

p1 32/480 - - 2024.51 227560 0.06 5852 5 - - 36151.9 38.9
p2 272/240 - - 967.25 169774 0.11 6272 8 - - 8793.2 27.1
p3 48/464 2022.7 76776 192.56 64168 0.09 5986 8 22474.5 12.8 2139.6 10.7
p4 48/464 - - 146.8 64536 0.09 6028 8 - - 1727.1 10.7
p5 0/512 67.37 31156 11.98 32150 0.37 8630 19 181.1 3.6 32.2 3.7
p6 240/272 124.71 31822 15.58 39370 0.09 6400 11 1341 5.0 167.6 6.2
p7 256/256 62.61 31634 12.57 31984 0.12 6302 10 513.2 5.0 103.0 5.1

13

p1 32/480 - - N/A N/A 0.11 7652 5 - - N/A N/A
p2 272/240 - - N/A N/A 0.19 8376 8 - - N/A N/A
p3 48/464 - - N/A N/A 0.14 7778 8 - - N/A N/A
p4 48/464 - - N/A N/A 0.15 7782 8 - - N/A N/A
p5 0/512 - - N/A N/A 1.49 17146 29 - - N/A N/A
p6 240/272 433.23 40604 N/A N/A 0.29 10052 16 1478.6 4.0 N/A N/A
p7 256/256 2280.85 61498 N/A N/A 0.38 9866 15 6082.3 6.2 N/A N/A

20

p1 32/480 - - N/A N/A 0.2 11144 5 - - N/A N/A
p2 272/240 - - N/A N/A 0.37 12464 8 - - N/A N/A
p3 48/464 - - N/A N/A 0.27 11316 8 - - N/A N/A
p4 48/464 - - N/A N/A 0.26 11322 8 - - N/A N/A
p5 0/512 - - N/A N/A 5.58 40376 43 - - N/A N/A
p6 240/272 - - N/A N/A 0.97 18842 23 - - N/A N/A
p7 256/256 - - N/A N/A 1.28 18382 22 - - N/A N/A

30

p1 32/480 - - N/A N/A 0.41 18218 5 - - N/A N/A
p2 272/240 - - N/A N/A 0.67 20012 8 - - N/A N/A
p3 48/464 - - N/A N/A 0.48 18240 8 - - N/A N/A
p4 48/464 - - N/A N/A 0.53 18244 8 - - N/A N/A
p5 0/512 - - N/A N/A 21.62 101666 63 - - N/A N/A
p6 240/272 - - N/A N/A 3.33 39734 33 - - N/A N/A
p7 256/256 - - N/A N/A 4.29 39000 32 - - N/A N/A

The first experiment was conducted on the elevator sys-
tem. Experimental results are listed in Table 1. In the exper-
iments, we set the number of floors to 5, 8, 13, 20, and 30.
The sizes of the SPL-TS models range from 230 states for 5
floors to 284 states for 30 floors. We specified seven safety
properties on these models and verified them on all products.
Logical formulas of these properties are listed in Table 2.

In Table 1, the first column (#Flr) lists the number of floors
in the model, the second column (ID) gives the property ID,
and the third column (SAT) shows the satisfiability result of
this property on the model. The SAT results are given as a pair
of integers that represents the number of products satisfying
and violating the property, respectively. Note that the sum of
these two integers gives the total number of valid products (it
is 512 for this example). For each verification technique, we
report its run time (in seconds) and maximum memory usages

at https://bitbucket.org/hefei/fumc

(in kilobytes). For fUMC, we also report the number of steps
(#Steps) for giving a conclusive result. The last four columns
compare fBDD (with either dynamic or static ordering) to
fUMC. The symbol “-” indicates timeout (4000 s) and the
symbol “N/A” indicates the variable order file is not available.

The results show dramatic improvement of our approach
over fBDD. In all models and all properties, our approach
succeeds in giving results in less than 22 s, whereas fBDDdyn

failed to give results in 22 out of 35 cases. Note that the
time for computing the static variable order is not included
for fBDDsta, the total time of fBDDsta may be much longer
than that listed in Table 1. When the model size scales, both
BDD-based approaches blow up quickly. Even for cases solv-
able for all approaches, fUMC outperforms both fBDDdyn

and fBDDsta significantly. Depending on cases, the speedup
is between 9.1 and 36000, and the reduction of memory us-
age is between 3.5 and 38.9. There are some cases in which
fUMC can give results within less than 1 s, whereas fBDDdyn

Front. Comput. Sci.
11

Table 2 Properties for the elevator system

ID Properties
p1 ((idle ∧ f loor = 1)→ door = closed)
p2 ((idle ∧ f loor = 3)→ door = closed)

p3
((f loor = 3 ∧ ¬li f tBut3.pressed∧
¬landingBut3.pressed ∧ direction = up)
→ door = closed)

p4
((f loor = 3 ∧ ¬li f tBut3.pressed∧
¬landingBut3.pressed)→ door = closed)

p5 ((f loor = 1 ∧ ¬idle ∧ door = closed)
→ direction = up)

p6 ((door = open ∧ TopLi f tButIsReset)→
direction = down)

p7 ((IsTopFloor ∧ TopLi f tButIsReset)
→ door = open)

Table 3 Features of the email system

Features Descriptions
Keys grant a private key to the client
Encrypt encrypt emails before they are sent
Decrypt decrypt the encrypted incoming emails
Sign write a signature on each outgoing email
Verify verify signatures of incoming emails
AutoResp response automatically on receiving an email
Forward forward incoming emails to another client
AddrBook each client have an addressbook

and fBDDsta need thousands of seconds.
The second experiment was conducted on the email sys-

tem. Features of this system are described in Table 3. Among
these features, there are interactions:

1. the “Decrypt” feature is present if and only if the “En-
crypt” feature is present;

2. the “Verify” feature is present if and only if the “Signa-
ture” feature is present;

3. the “Key” feature is present if either the “Encrypt” or
the “Signature” feature is present.

Denote by “f” + “feature name” the name of the correspond-
ing feature variable. We use λ(v) in the featured safety prop-
erty λ(v) : π(x) to specify the feature interactions. For the
email system, λ(v) is

(f Veri f y↔ f S ign) ∧ (f Decrypt ↔ f Encrypt)
∧ (f S ign ∨ f Encrypt → f Keys)

The results on the email system are listed in Table 4, where
the first column lists the number of clients in the system. Sim-
ilar phenomena as in the first experiment can be observed
from this table. For all cases, our approach finishes in less
than 16 s, whereas fBDDdyn can only produce results for
the smallest model (with two clients). Even for the small-
est model, the speedup of our approach is between 177 and
3400, and the reduction of memory usage is between 3.5 and
5.0.

Table 5 More results: time in seconds, memory in kilobytes

Example Property
fBDDdyn fUMC

Time Mem Time Mem
PaceMaker 2/2 0.003 3354 0.005 3750

Wiper 16/0 0.007 6796 0.007 7630
Vending 6/12 0.065 10616 0.078 13070

MinePump 64/32 0.018 10236 0.012 11514

The third experiment was conducted on other examples.
The results are listed in Table 5. These examples are not pa-
rameterized and thus are not scalable. Both approaches can
finish their verifications in less than 0.1 s.

The fourth experiment illustrates the impact of our op-
timization techniques on the effectiveness of fUMC. Let
fUMC be the standard version. Denote by fUMC-c the ver-
sion without cube enlargement and by fUMC-i the version
without incremental SAT solving. This experiment is per-
formed on the same models and properties as in the first ex-
periment. All cases are solvable for each version of fUMC.
On each model, we sum up the run time and memory usage
in verifying all properties. The results are plotted in Fig. 3,
where (a) shows the run time and (b) shows the memory us-
ages. From the figures, we observe that both optimization
techniques improve our algorithm on this example. On av-
erage, the cube enlargement technique reduces run time by
about 66% and the incremental SAT solving reduces run time
by about 70%. The memory usages of all versions are sim-
ilar. Note that for the largest model, fUMC-i consumes the
least memory. This may be because incremental SAT solv-
ing needs to clone several clauses and thus consumes more
memory.

The experimental results demonstrate the very promising
performance of fUMC, especially when the problem size is
large. For these reasons, we make the following analysis. (1)
fUMC is SAT-based. It does not suffer from the potential
space explosion of BDDs. With modern SAT solvers, it can
handle the model-checking problems with thousands of vari-
ables. (2) fUMC is carefully designed to exploit the knowl-
edge about features and commonality and variability of SPLs.
Both feature cube enlargement and incremental SAT improve
fUMC greatly.

6 Related Work

6.1 Model Checking of SPLs

To specify the metamodel of an SPL, Classen et al. proposed
the so-called featured transition system (FTS) [11,12]. How-
ever, FTS is a formalism between the high-level modeling
languages and the low-level computation models. It cannot
be used directly for verification. In contrast, our SPL-TS
formalism conforms to the standard definition of transition
systems, and is more suitable for SAT-based model check-

12
Fei He, et. al.: Efficient Software Product-line Model Checking using Induction and a SAT Solver

Table 4 Results on the email example: time in seconds, memory in kilobytes

N Prop
fBDDdyn fUMC fBDDdyn/fUMC

Time Mem Time Mem Time Mem

2

20/20 84.5 28198 0.16 7090 528 4.0
40/0 208.6 28848 0.12 6692 1683 4.3

12/28 105.7 29536 0.10 6322 1067 4.7
16/24 533.1 34508 0.16 6964 3396 5.0
20/20 45.5 27866 0.26 7952 177 3.5

3

20/20 - - 0.33 9310 - -
40/0 - - 0.26 8628 - -

12/28 - - 0.20 8138 - -
16/24 - - 0.29 9264 - -
20/20 - - 0.53 10988 - -

5

20/20 - - 0.79 17134 - -
40/0 - - 0.72 15594 - -

12/28 - - 0.48 14110 - -
16/24 - - 0.79 17136 - -
20/20 - - 1.38 20652 - -

8

20/20 - - 11.59 135536 - -
40/0 - - 9.84 121248 - -

12/28 - - 8.19 106992 - -
16/24 - - 11.37 135554 - -
20/20 - - 15.70 165130 - -

ing. Gruler et al. [13] proposed a product line extension of
CCS, called PL-CCS, which can also be used to depict the
metaproduct model. The multi-valued modal µ-calculus is
adapted as the property specification language. However, we
are unaware of any implementations this technique.

Many advances have been made on explicit-state model
checking of SPLs. Classen et al. [11] designed algorithms
for verifying FTSs [11] against linear temporal logic prop-
erties. Their algorithms were implemented in a tool called
SNIP [46]. The FTS was extended to support multi-features
and numeric features in [17], and a simulation relation for
FTS was proposed in [24]. A product line of verifiers that
realizes a family of verification algorithms for SPLs was pro-
posed in ProVeLines [18]. Lauenroth et al. [14] proposed the
use of variable I/O automata to specify and verify the do-
main artifacts. Asirelli et al. [47] proposed the use Of the
action-based branching-time temporal logic to express com-
mon dependencies of variability models, and realized their
verification algorithms in VMC [15]. All these techniques are
based on explicit-state model-checking algorithms, which are
inefficient for large cases. In contrast, our algorithm is fully
symbolic.

The first symbolic model-checking algorithm for SPLs is
proposed in [12], which relies on BDDs to explore the state
space. In their latest publication [20], Classen et al. proposed
a new compositional formal semantics to the fSMV language
and proved the expressiveness equivalence between fSMV
and FTS. However, the verification algorithm remains the
same as in [12]. As shown in our experiments, the BDDs gen-
erated during model checking may quickly blow up when the
problem scales. In contrast, our algorithm can verify much

larger systems by using SAT procedures.

6.2 SAT-based model checking

SAT-based model checking has long been an active area of
research in formal verification [21]. The first SAT-based
bounded model checking is first proposed in [22]. The well-
known techniques for SAT-based unbounded model check-
ing includes the interpolation-based [34] and induction-based
methods [28, 33].

A similar problem of cube enlargement technique was
studied in [32, 48, 49] for ordinary systems. In these ap-
proaches, the cube enlargement is applied to the image com-
putation, to compute as large as possible an image of sets of
states. However, these techniques do not distinguish the fea-
ture variables and state variables and thus cannot be applied
to our problem. Note that we are only interested in reducing
the feature cube.

There have been some attempts at applying SAT proce-
dures to the verification of SPLs. As we have discussed in
the introduction, the tool ProVeLines [18] uses SAT solvers
to check the satisfiability of feature expressions, and the tool
SPLVerifier [25] employs CBMC to verify product-line pro-
grams. Even though, there lacks dedicated SAT-based model-
checking algorithms for SPLs.

6.3 SAT-based analysis of feature models

The SAT techniques have been widely adopted in automated
analysis of feature models [37–39, 50]. Batory proposed to
formulate the semantics of feature models in Boolean formu-
las [38]. The feature models can be translated into Boolean

Front. Comput. Sci.
13

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40

 R
u

n
 t

im
e

 (
s)

Floors

fUMC-i

fUMC-c

fUMC

(a) Run time

0

50

100

150

200

250

300

350

0 10 20 30 40

M
e

m
o

ry
 (

M
B

)

Floors

fUMC-i

fUMC-c

fUMC

(b) Memory

Fig. 3 Experiment on fUMC with different settings

formulas; then the SAT solver is employed to analyze the
feature models automatically. However, all these techniques
work on the feature models only. A feature model describes
the relationships and dependencies of features in an SPL,
which lies in the domain engineering. In contrast, we con-
sider the verification of behavior models of SPLs. If one
wants to check a safety property on valid products only, the
analysis technique for feature models can be combined into
our approach to decide λ(v) in a featured safety property. The
application of SAT techniques to this area provides further
evidence of the scalability of robustness of SAT techniques.

7 Conclusions

We have considered model checking of SPLs. A symbolic
model-checking algorithm for SPLs using induction and a
SAT solver have been proposed. The feature cube enlarge-
ment technique has been developed to reduce the times of
calling the SAT solver, and the incremental SAT-solving tech-
nique has been applied to reduce redundant computations
across SAT instances. The correctness of our algorithms has
been proved. Experimental results on a number of examples
show dramatic improvement of our approach over existing
BDD-based techniques.

ACKNOWLEDGMENTS

This work was supported in part by the Chinese National
973 Plan (2010CB328003), the NSF of China (61672310,
61272001, 60903030, 91218302), and the Chinese National
Key Technology R&D Program (SQ2012BAJY4052).

References

1. Clements P, Northrop L. Software product lines: practices and patterns.

Addison-Wesley, 2002

2. Pohl K, Böckle G, Van Der Linden F. Software product line engineer-

ing. Springer, 2005

3. Thüm T, Apel S, Kästner C, Schaefer I, Saake G. A classification and

survey of analysis strategies for software product lines. ACM Comput-

ing Surveys (CSUR), 2014, 47(1): 6

4. Galster M, Weyns D, Tofan D, Michalik B, Avgeriou P. Variability in

software systems - a systematic literature review. IEEE Transactions

on Software Engineering, 2014, 40(3)

5. Dordowsky F, Hipp W. Adopting software product line principles to

manage software variants in a complex avionics system. In: Proceed-

ings of the 13th International Software Product Line Conference. 2009,

265–274

6. Hutchesson S, McDermid J. Development of high-integrity software

product lines using model transformation. In: Computer Safety, Relia-

bility, and Security, 389–401. Springer, 2010

7. Polzer A, Kowalewski S, Botterweck G. Applying software product

line techniques in model-based embedded systems engineering. In:

ICSE’09 Workshop on Model-Based Methodologies for Pervasive and

Embedded Software (MOMPES’09). 2009, 2–10

8. Van Ommering R. Building product populations with software com-

ponents. In: Proceedings of the 24th International Conference on Soft-

ware Engineering. 2002, 255–265

9. Braga R T V, Junior O T, Branco K R C, Neris L D O, Lee J. Adapting a

software product line engineering process for certifying safety critical

embedded systems. In: Computer Safety, Reliability, and Security,

352–363. Springer, 2012

10. Clarke E M, Grumberg O, Peled D. Model checking. MIT press, 1999

11. Classen A, Heymans P, Schobbens P Y, Legay A, Raskin J F. Model

checking lots of systems: efficient verification of temporal properties

in software product lines. In: Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering. 2010, 335–344

12. Classen A, Heymans P, Schobbens P Y, Legay A. Symbolic model

checking of software product lines. In: Proceedings of the 33rd Inter-

national Conference on Software Engineering. 2011, 321–330

13. Gruler A, Leucker M, Scheidemann K. Modeling and model checking

software product lines. In: Formal Methods for Open Object-Based

Distributed Systems, 113–131. Springer, 2008

14
Fei He, et. al.: Efficient Software Product-line Model Checking using Induction and a SAT Solver

14. Lauenroth K, Pohl K, Toehning S. Model checking of domain artifacts

in product line engineering. In: Automated Software Engineering,

2009. ASE’09. 24th IEEE/ACM International Conference on. 2009,

269–280

15. Beek t M H, Mazzanti F, Sulova A. VMC: A tool for product variability

analysis. In: FM 2012: Formal Methods, 450–454. Springer, 2012

16. Sabouri H, Khosravi R. Efficient verification of evolving software

product lines. In: Fundamentals of Software Engineering, 351–358.

Springer, 2012

17. Cordy M, Schobbens P Y, Heymans P, Legay A. Beyond boolean

product-line model checking: dealing with feature attributes and multi-

features. In: Proceedings of the 2013 International Conference on Soft-

ware Engineering. 2013, 472–481

18. Cordy M, Classen A, Heymans P, Schobbens P Y, Legay A. ProVe-

Lines: a product line of verifiers for software product lines. In: Pro-

ceedings of the 17th International Software Product Line Conference

co-located workshops. 2013, 141–146

19. Tartler R, Lohmann D, Dietrich C, Egger C, Sincero J. Configuration

coverage in the analysis of large-scale system software. In: Proceed-

ings of the 6th Workshop on Programming Languages and Operating

Systems. 2011, 2

20. Classen A, Cordy M, Heymans P, Legay A, Schobbens P Y. Formal

semantics, modular specification, and symbolic verification of product-

line behaviour. Science of Computer Programming, 2014, 80: 416–439

21. Prasad M R, Biere A, Gupta A. A survey of recent advances in SAT-

based formal verification. International Journal on Software Tools for

Technology Transfer, 2005, 7(2): 156–173

22. Biere A, Cimatti A, Clarke E M, Zhu Y. Symbolic model checking

without BDDs. In: Proceedings of the 5th International Conference on

Tools and Algorithms for Construction and Analysis of Systems. 1999,

193–207

23. Shtrichman O. Tuning SAT checkers for bounded model checking. In:

Proceedings of the 12th International Conference on Computer Aided

Verification, CAV ’00. 2000, 480–494

24. Cordy M, Classen A, Perrouin G, Schobbens P Y, Heymans P, Legay A.

Simulation-based abstractions for software product-line model check-

ing. In: Proceedings of the 2012 International Conference on Software

Engineering. 2012, 672–682

25. Apel S, Speidel H, Wendler P, Rhein v A, Beyer D. Detection of feature

interactions using feature-aware verification. In: Proceedings of the

2011 26th IEEE/ACM International Conference on Automated Soft-

ware Engineering. 2011, 372–375

26. Apel S, Rhein A v, Wendler P, Größlinger A, Beyer D. Strategies for

product-line verification: Case studies and experiments. In: Proceed-

ings of the 2013 International Conference on Software Engineering.

2013, 482–491

27. Clarke E, Kroening D, Lerda F. A tool for checking ANSI-C pro-

grams. In: Tools and Algorithms for the Construction and Analysis of

Systems, 168–176. Springer, 2004

28. Eén N, Sörensson N. Temporal induction by incremental SAT solving.

Electronic Notes in Theoretical Computer Science, 2003, 89(4): 543–

560

29. Eén N, Sörensson N. An extensible SAT-solver. In: Theory and appli-

cations of satisfiability testing. 2004, 502–518

30. Biere A. PicoSAT essentials. Journal on Satisfiability, Boolean Mod-

eling and Computation, 2008, 4: 75–97

31. Clarke E, Kroening D, Ouaknine J, Strichman O. Completeness and

complexity of bounded model checking. In: Verification, Model

Checking, and Abstract Interpretation. 2004, 85–96

32. McMillan K L. Applying SAT methods in unbounded symbolic model

checking. In: Computer Aided Verification. 2002, 250–264

33. Sheeran M, Singh S, Stålmarck G. Checking safety properties using

induction and a SAT-solver. In: Formal Methods in Computer-Aided

Design. 2000, 127–144

34. McMillan K L. Interpolation and sat-based model checking. In: Com-

puter Aided Verification. 2003, 1–13

35. Plath M, Ryan M. Feature integration using a feature construct. Sci-

ence of Computer Programming, 2001, 41(1): 53–84

36. McMillan K L. Symbolic model checking. Springer, 1993

37. Mannion M. Using first-order logic for product line model validation.

In: Software Product Lines, 176–187. Springer, 2002

38. Batory D. Feature models, grammars, and propositional formulas. In:

Proceedings of the 9th International Software Product Lines Confer-

ence (SPLC 2005), Rennes, France, September 26-29, 2005. 2005,

7–20

39. Mendonca M, Wasowski A, Czarnecki K. SAT-based analysis of fea-

ture models is easy. In: Proceedings of the 13th International Software

Product Line Conference. 2009, 231–240

40. Biere A, Artho C, Schuppan V. Liveness checking as safety checking.

Electronic Notes in Theoretical Computer Science, 2002, 66(2): 160–

177

41. Cimatti A, Clarke E, Giunchiglia E, Giunchiglia F, Pistore M, Roveri

M, Sebastiani R, Tacchella A. NuSMV 2: An opensource tool for

symbolic model checking. In: Computer Aided Verification. 2002,

359–364

42. Hall R J. Fundamental nonmodularity in electronic mail. Automated

Software Engineering, 2005, 12(1): 41–79

43. Classen A. Modelling with FTS: a collection of illustrative examples.

PReCISE Research Center, University of Namur, Namur, Belgium,

Tech. Rep. P-CS-TR SPLMC-00000001, 2010

44. Fantechi A, Gnesi S. Formal modeling for product families engineer-

ing. In: Software Product Line Conference, 2008. SPLC’08. 12th In-

ternational. 2008, 193–202

45. Ellenbogen K A, Wood M A. Cardiac pacing and ICDs. John Wiley &

Sons, 2008

46. Classen A, Cordy M, Heymans P, Legay A, Schobbens P Y. Model

checking software product lines with SNIP. International Journal on

Software Tools for Technology Transfer, 2012, 14(5): 589–612

47. Asirelli P, Beek t M H, Fantechi A, Gnesi S. A compositional frame-

work to derive product line behavioural descriptions. In: Leveraging

Applications of Formal Methods, Verification and Validation. Tech-

nologies for Mastering Change, 146–161. Springer, 2012

48. Gupta A, Yang Z, Ashar P, Gupta A. SAT-based image computa-

tion with application in reachability analysis. In: Formal Methods in

Front. Comput. Sci.
15

Computer-Aided Design. 2000, 391–408

49. Ganai M K, Gupta A, Ashar P. Efficient SAT-based unbounded sym-

bolic model checking using circuit cofactoring. In: Proceedings of the

2004 IEEE/ACM International conference on Computer-aided design.

2004, 510–517

50. Schobbens P, Heymans P, Trigaux J C. Feature diagrams: A survey

and a formal semantics. In: 14th IEEE International Conference on

Requirements Engineering. 2006, 139–148

Fei He received a B.S. degree from Na-

tional University of Defense Technol-

ogy in 2002 and a Ph.D. from Tsinghua

University in 2008. He is currently an

Associate Professor in the School of

Software at Tsinghua University, Bei-

jing, China. His research interests

include satisfiability, model checking,

compositional reasoning, and their applications to embedded sys-

tems.

Yuan Gao received a B.S. degree from

Nanjing University in 2012 and a Mas-

ter’s degree from Tsinghua University

in 2015. He is currently a software en-

gineer in Thunisoft Information Tech-

nology Co., Ltd, Beijing, China. His

research interests include satisfiability

and model checking.

Liangze Yin received a B.S. degree

from National University of Defense

Technology in 2008 and a Ph.D. from

Tsinghua University in 2014. He is

currently an Assistant Professor in the

School of Computer at National Uni-

versity of Defense Technology, Hunan,

China. His research interests include

satisfiability, model checking, program verification, concurrent pro-

gram verification, and their applications.

