
Data Mining Based Decomposition for
Assume-Guarantee Reasoning

He Zhu∗, Fei He∗, William N. N. Hung†, Xiaoyu Song‡ and Ming Gu∗
∗ Tsinghua National Laboratory for Information Science and Technology
Key Laboratory for Information System Security, Ministry of Education

School of Software, Tsinghua University, Beijing, China
Email: hefei@tsinghua.edu.cn

†Synopsys Inc., Mountain View, California, USA
‡Department of ECE, Portland State University, Oregon, USA

Abstract—Automated compositional reasoning using assume-
guarantee rules plays a key role in large system verification. A
vexing problem is to discover fine decomposition of system con-
tributing to appropriate assumptions. We present an automatic
decomposition approach in compositional reasoning verification.
The method is based on data mining algorithms. An associa-
tion rule algorithm is harnessed to discover the hidden rules
among system variables. A hypergraph partitioning algorithm
is proposed to incorporate these rules as weight constraints for
system variable clustering. The experiments demonstrate that our
strategy leads to order-of-magnitude speedup over previous.

I. INTRODUCTION

Model checking is a popular formal verification technique.
However, it suffers from the state explosion problem. Model
checking of large scale systems such as microprocessors is
known to be extremely difficult, and the problem will only get
worse as the complexity scales exponentially with multi-core
or distributed systems. To avoid the blow-up, people tend to
utilize a divide-and-conquer strategy, i.e., decomposing large
problems into multiple pieces and work on them separately.
Assume-guarantee reasoning [1], [2] has been proposed as
a useful technique to enhance model checking, especially
when there are mutual dependencies between components.
In this approach, individual component is verified separately
according to the assumptions on its environment (i.e. other
components), and then this assumption must be discharged by
the rest of the system.

Assume-guarantee reasoning has been studied by many
researchers for a long time [3], [4]. In this paper, we mainly
use the following assume-guarantee rule [4]:

M1||A |= ϕ (n1)

M2 � A (n2)

M1||M2 |= ϕ

The rule above says that if M1 combined with an assump-
tion A satisfies the property ϕ (in n1 step), and A is further an
abstraction of M2 (in n2 step), then we conclude the system
composed of M1 and M2 satisfies ϕ.

This work was supported in part by the Chinese National 973 Plan under
grant No. 2004CB719400, the NSF of China under grants No. 60553002,
60635020, 60903030 and 90718039.

Assume-guarantee reasoning requires that correct assump-
tions be provided, which imposes additional hurdles for this
method. [5] proposed a new method based on language learn-
ing to automatically learn assumptions from an alphabet over
I/O (Input/Output) variables between components. However,
this method may be insufficient when the construction of
assumption needs to exhaust a large alphabet. In fact, the
natural structure of components may be not applicable for
system or modular verification. Hence, it is important to
explore various decomposition boundaries that are independent
of the original modular structure of the system.

Inspired by the work in [6], we present an effective auto-
matic decomposition approach. Given a state transition system,
the proposed method decomposes it into n sub-modules. We
want to find a partition that converges to smaller assumption
construction and early verification termination. In [6], the
objective function is defined as partitioning the system to
minimize the number of I/O variables between modules. In
this paper, we modify the goal not only to reduce the I/O
variables but also to enhance each module’s cohesion.

If we define state variables’ relation as distance which is a
common measure concept in data mining, our partitioning goal
is to minimize the intra-cluster distances within each module
and to maximize the inter-cluster distances between modules.
To quantify the distances we propose to use association rule
mining to reveal the hidden variable implications and provide
qualified information for decomposition. In this way, we find
a partition which put state variables frequently communicate
to each other together.

To evaluate our method, we incorporate the NuSMV model
checker [7] with a synchronous model checker SYMODA [8].
Experimental results show some encouraging improvements of
our approach over previous [6].

II. PRELIMINARIES

In this section, we define the concept of decomposition
of a state transition system and composition which are used
through our paper. Our formalisms use notations similar to [6].

Given any set of state variables X , for each x ∈ X , x is a
typed variable defined over a finite domain of values Dx. An
assignment s : X → V maps each x in X to one certain value

978-1-4244-4966-8/09/$25.00 ©2009 IEEE 116



v in Dx. We write boolean formula ϕ(s) for a property over
X and we say ϕ(s) is true if the assignment s(X) satisfies ϕ.
We use V ar(ϕ) to denote the set of state variables appearing
in ϕ in our context.

Formally, a state transition system S is a tuple 〈X, InitX ,
TX〉, where

1) X is a set of state variables of the system.
2) InitX =

∧
x∈X Initx(X) is an initial predicate over X

where Initx(X) is an initial predicate for variable x.
3) TX =

∧
x∈X Tx(X,X ′) is a transition predicate over X

and X ′, where X ′ denotes the next statues of X and
Tx(X,X ′) is the transition predicate for variable x.

A state transition system S may comprise several sub-
modules. A sub-module Mi is a tuple 〈Xi, IXi

, OXi
, InitXi

,
TXi

〉, where
• Xi ⊆ X is a set of state variables controlled by Mi.
• IXi

is a set of input variables that are controlled by
some other modules and are readable by Mi. Note IXi

is disjoint from Xi.
• OXi

⊆ Xi is a set of output variables that are controlled
by Mi and are accessible by some other modules.

• InitXi
=

∧
x∈Xi

Initx(X) is an initial predicate over
Xi ∪ IXi

.
• TXi

=
∧

x∈Xi
Tx(X,X ′) is a transition predicate over

Xi ∪ X ′
i ∪ IXi

.
We use IOXi

to denote the input and output variables of Mi,
i.e. IOXi

= IXi
∪ OXi

.
The semantic of a state transition system is the set of runs

it exhibits. A run of S is a sequence s0, s1, . . . of states where
each si represents a variable assignment mapping each value
in X to its domain, such that InitX(s0) holds and for every
j ≥ 0, TX(sj , sj+1) holds.

Given a state transition system S(X, InitX , TX) and an
integer n, decomposition problem is to decompose S into
n sub-modules Mi(Xi, IXi

, OXi
, InitXi

, TXi
), 1 ≤ i ≤ n,

where X =
⋃

1≤i≤n Xi and
∧i�=j

i,j=1,...,n Xi ∩ Xj = ∅.
Given a property ϕ over ∪1≤i≤nIOXi

, let S |= ϕ denote ϕ
holds in S, i.e., for each run s0, s1, . . . of S, ϕ(s0), ϕ(s1), . . .
holds. According to [6], there is

(S |= ϕ) ⇔ (M1|| . . . ||Mn |= ϕ).

III. PROBLEM FORMULATION

In this section, we formulate the system decomposition
problem into a hypergraph partitioning problem.

A. Hypergraph Partitioning

A hypergraph is a special graph, which can be defined as
G(V,E), where

• V is a set of vertices.
• E is a set of hyperedges that connect arbitrary number

of vertices. For a hyperedge e ∈ E, let vertex(e) denote
the set of vertexes connected by e.

A weighted hypergraph is one that assigns each hyperedge
a numerical value. More formally, a weighted hypergraph is a
triple G(V,E,W ), where V , E are defined identically as in

normal hypergraph, and W : E → R defines a weight value
for each hyperedge.

The K-way hypergraph partitioning problem P (G,K, λ) is
to partition the original hypergraph G into K parts by clus-
tering the vertexes of G into K disjoint subsets V1, . . . , VK ,
such that V =

⋃
1≤i≤K Vi. After partitioning, a hyperedge

may span different parts. The concept of connectivity λ helps
to distinguish whether a hyperedge crosses some parts or lies
inside one single part. Connectivity λj of a hyperedge ej ∈ E
is 1 if the number of different parts ej crosses is greater than 1;
otherwise λj is 0. A hyperedge ej is called as a hyperedge-cut
if λj = 1.

The K-way hypergraph partitioning algorithm tries to find
a partition to minimize Cp =

∑
ej∈E wj · λj , where wj is the

weight of hyperedge ej . It also imposes a constraint that the
cardinality of each set Vi is bounded by |V |/(cK) ≤ |Vi| ≤
|V |(c/K) where |V | is the number of vertexes contained
in V . The imbalance tolerance c is a parameter outside the
partitioning algorithm. A large value of c causes imbalance
clusters while a small value of c makes each Vi roughly the
same size.

Many researchers have studied hypergraph partitioning in-
tensively and there already exists fast algorithms and tools.
Among them we choose hMETIS [9].

B. Decomposition as Hypergraph Partitioning

Given a state transition system S(X, InitX , TX), we say
there exists variable dependency between x and x′, if x′

appears in Tx(X,X ′). Formally, let Y denote the set of
variables appearing in Tx(X,X ′), the variable dependencies
of x is the power set of Y .

Given a hypergraph G(VX , E), we call a vertex vy is an
adjacency of another vertex vx if it is connected to vx by some
hyperedge in E. The vertex adjacencies of vx is a set in which
each element is a set of vertexes connected by a hyperedge
involving vx i.e.,

⋃
e∈E{vertex(e)|vx ∈ vertex(e)}.

Based on above points, if the state variables in X are linked
to the vertices in VX , the power set of variable dependencies
of a variable x can be modeled as hyperedges involving vx.
Furthermore, the power sets of variable dependencies cer-
tainly have different occurrence in system’s state transitions.
Intuitively some sets of variables occur more times than the
other sets in TX . If one applies certain precise measure to
assign each subset of variable dependencies a numerical value,
the hypergraph G(VX , E) can be upgraded to a weighted
hypergraph G(VX , E,W ).

IV. DATA MINING BASED DECOMPOSITION

The flow of our method is shown in Fig. 1. In essence, a
state transition system is modeled by a weighted hypergraph
then the partition of hypergraph model uniquely determines
the system decomposition.

The challenge in our method is how to measure weight
values for each hyperedge in the hypergraph model. In this
paper, we propose a novel method by applying data mining
algorithm to generate these weight values.

117



State transition 
system

Variable 
dependencies

Weighted 
hypergraph model

Variable 
partition 1

Variable 
partition n

Variable
partition 2

Decomposed 
sub-modules

weights mining

partitioning into n parts

...

Fig. 1. Our Decompsition Method

A. Association Rule Mining

Association rule mining [10] aims to discover the hidden
patterns and correlations from a large dataset. Given an itemset
I = {I1, I2, . . . , In} and a set of transactions T where t ∈ T
is a subset of I . Let X,Y denote two disjoint subsets of I , i.e.
X,Y ⊆ I , X ∩ Y = ∅. An association rule is an implication
in the form of X ⇒ Y . We define a function f : 2I → N

mapping each subset of I to a natural number which represents
the number of transactions (in T ) containing this subset.

An association rule is defined by two important notions, the
support and confidence of the rule. The support of a rule is
defined as sup(X∪Y ) = f(X∪Y )/|T |, i.e. the percentage of
transactions that contain X ∪Y , where |T | is the total number
of transactions contained in T . While the confidence of a rule
is defined as conf(X ∪ Y ) = f(X ∪ Y )/f(X), i.e. the ratio
of number of transactions that contain X ∪ Y to the number
of transactions that contain X .

Given a set of transactions T , association rule mining first
finds frequent itemsets by generating all combinations of items
in I with their supports above user supplied minsup threshold.
For a frequent itemset fi, all the association rules with the type
X ⇒ fi − X (X ⊂ fi) are outputted if their confidences are
above user supplied minconf threshold.

There are many association rule mining algorithms, among
which Apriori [10] is a fast and popular algorithm. We use
the Apriori algorithm implemented in [11].

B. Weights Mining for Hypergraph Model

Given a state transition system S(X, InitX , TX), we con-
vert it into a weighted hypergraph G(VX , E,W ). There are
two steps in mining hyperedge weights from S.

1) First step: collect variable dependencies as transactions:
In this step, we generate the transactions as the input of associ-
ation rule mining algorithm by deriving variable dependencies
from the system’s state transitions.

For each x ∈ X , there is a transaction tx containing variable
x and a variable y belongs to tx if y ∈ V ar(Initx)∪V ar(Tx).
Intuitively, tx represents the corresponding variable x and all
variables that are read by x. The transactions for S is finally

the set of VT = {tx|x ∈ X}. We apply Apriori algorithm to
transactions VT to generate frequent itemsets and association
rules upon X . Suppose the generated frequent itemset is Efi

=
{fi|fi ⊆ tx ∧ tx ∈ VT ∧ sup(fi) > minsup}.

2) Second step: combine association rules with weighted
hypergraph model: In this step, we provide a precise measure
to assign each hyperedge a numerical value which is explained
in section III.

Each variable x in X corresponds to a vertex vx in VX such
that VX = {vx|x ∈ X}. For each frequent itemset fi ∈ Efi

,
we make a hyperedge efi

and a vertex vx is connected by
efi

if its corresponding variable x ∈ fi. The weight of the
hyperedge efi

is the average of confidences of all the associa-
tion rules derived from the frequent itemset fi, i.e., W (efi

) =
∀X⊂fi

{conf(X, fi − X)|conf(X, fi − X) > minconf}.
We apply hypergraph partitioning algorithm to the generated

weighted hypergraph model. After partitioning, we classify
variables X1, . . . , Xn according to the vertex partitioning
result V1, . . . , Vn. Then we use the results in section II to
build each sub-module Mi(Xi, IXi

, OXi
, InitXi

, TXi
), where

1 ≤ i ≤ n.
Note there are two intrinsic differences between our method

and the counterpart of [6] in modeling a hyperedge. First, given
a variable x, let x and all the variables that read x compose a
set Y ; let x and all the variables that are read by x compose
Z. The method in [6] models the whole set Y as a hyperedge;
while our method models the subsets of Z as corresponding
hyperedges. Second, our method incorporates numerical value
into hyperedge by using association rules.

Association rule mining is applied to help us find groups of
variables with dense dependencies. The generated rules with
high confidence indicate the variables referenced by the rules
have close dependency between them. While the rules with low
confidence indicate the variables referenced by the rules have
sparse correlation. Thus in our weighted hypergraph model,
heavy weighted hyperedges are more likely to be partitioned
in the same cluster while light weighted hyperedges are more
likely to be the hyperedge-cuts.

According to the assume-guarantee rule, we need to verify
M1||A |= ϕ (n1) and M2 � A (n2). Suppose we partition
the system model into two modules and assign M1 to be the
module which manages almost or all the variables in V ar(ϕ).
As M1 has compact state space related to ϕ, an appropriate
assumption A which satisfies M1||A |= ϕ (n1) can then be
constructed with fewer interventions from M2. In this case,
A avoids to be strengthened too much times to prevent M1

from getting to the error state and the state space to be visited
is reduced. On the other hand, as M1 and M2 have relatively
few communications, M2 � A (n2) can also be verified readily
because we have very loose bound on assumption A and A is
weak enough in this case.

V. EXPERIMENT RESULTS

We have implemented our method and integrated it with the
symbolic model checkers NuSMV [7] and SYMODA [8]. We
use NuSMV as a front-end to parse NuSMV model file and

118



TABLE I
EXPERIMENTAL RESULTS

Weighted Hypergraph Unweighted Hypergraph General
Example var minsup c IO Mem Candi Total minsup c IO Mem Candi Total Total
s1a 23 0.05 1.0 2 0.03 0.17 0.32 0.05 1.0 2 0.04 0.15 0.31 15.77
s1b 25 0.05 1.0 6 0.14 0.07 0.49 0.05 1.0 6 0.20 0.12 0.60 16.03
msi3 61 0.05 1.8 17 0.90 0.22 2.81 0.05 1.8 19 1.20 0.66 3.53 10.23
msi5 97 0.05 1.8 24 2.31 0.40 5.86 0.05 1.8 32 3.62 1.41 8.81 27.17
msi6 121 0.05 1.8 27 3.42 0.55 9.69 0.05 1.8 33 5.16 1.36 12.11 43.80
syncarb10 74 0.01 1.0 32 26.85 23.18 76.13 0.01 1.0 33 68.94 46.18 129.2 TO
peterson 9 0.01 1.0 7 0.18 0.31 0.65 0.01 1.0 7 19.89 70.34 113.8 27.67
guidance 76 0.05 1.0 37 11.19 4.11 19.93 0.05 1.0 13 1.03 2.00 4.11 18.75

generate sub-modules by our weighted hypergraph model. We
use Symoda, a synchronous modular analyzer, to verify the
above generated decomposed modules. All experiments were
performed on a 1GB memory 3 GHz Intel machine running
Ubuntu Linux System.

All benchamrks are obtained form the public places [6],
[12], [13]. Table I compares the decomposition results by
verification time for our weighted hypergraph model aided,
unweighted hypergraph model [6] aided verification and gen-
eral model checking without decomposition. All examples are
partitioned into two components.

In Table I, minsup is a parameter for Apriori. The other
threshold minconf is always assigned to its default value
(0.8). c is a parameter for hMETIS. We try five different
values (i.e. 1.0, 1.2, . . . , 1.8) and pick one that is suitable
for each benchmark. var represents the number of variables.
IO gives the input/output variables between sub-modules.
Note we count up the number of typed variables instead
of boolean variables. Except guidance, all benchmarks have
more than (or about) one hundred boolean variables. Mem
and Candi are the total membership and candidate query
time respectively. Total gives the overall verification time. All
times are in seconds. TO means verification doesn’t terminate
in 1200s.

It is obvious that assume-guarantee reasoning with appro-
priate decomposition performs much better than the general
modular method without decomposition as the decomposi-
tion either reduced verification time or converted infeasible
problem into feasible one. In most cases, our solution that
incorporates association rule mining and weighted hypergraph
model obtains significantly better result than the approach in
[6] which used unweighted hypergraph partitioning method
solely. In peterson and syncarb10 examples, our solution
achieves dramatic improvements.

However our method obtained negative result as shown
in guidance example. It is probably because the transition
relations between the variables in original guidance model
are so sparse, i.e., a large portion of variables in this example
only interact with no more than two variables directly. In this
case, Apriori algorithm can’t mine meaningful rules but leads
to inappropriate decomposition.

VI. CONCLUSION

In this paper, we presented an automatic method to de-
compose system model into simpler sub-modules. The use

of association rule mining improves the partitioned modules’
inner cohesion and the confidence of association rules restricts
to put related variables together. As a result, inter-connections
between modules are reduced and each module is compact.
The experiments demonstrate our method not only leads to
good decomposition but also improves verification scalability
in the context of assume-guarantee reasoning.

We used non-circular assume-guarantee rule in this paper.
In future, we plan to extend our framework to make it scalable
to circular assume-guarantee rules [14] too. Furthermore, data
mining remains an active subject; we also intend to apply
some other classification algorithms to find even better system
decompositions contributing to simple assumptions.

REFERENCES

[1] A. Pnueli, “In transition from global to modular temporal reasoning
about programs,” Logics and models of concurrent systems, 1985.

[2] C. B. Jones., “Specification and design of (parallel) programs,” in
Proceedings of the IFIP 9th World Congress, 1983, p. 321332.

[3] T. Henzinger, S. Qadeer, and S. Rajamani, “You assume, we guarantee:
Methodology and case studies,” in Proc. Computer Aided Verification
(CAV), 1998, pp. 521–525.

[4] K. S. Namjoshi and R. J. Trefler, “On the completeness of compositional
reasoning,” in Proc. Computer Aided Verification (CAV), 2000, pp. 139–
153.

[5] J. M. Cobleigh, D. Giannakopoulou, and C. S. Pasareanu, “Learning
assumptions for compositional verification,” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), 2003.

[6] W. Nam and R. Alur, “Learning-based symbolic assume-guarantee
reasoning with automatic decomposition,” in Automated Technology for
Verification and Analysis (ATVA), 2006, pp. 170–185.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” in Proc. Computer
Aided Verification (CAV), 2002, pp. 359–364.

[8] N. Sinha and E. Clarke, “Sat-based composition verification using lazy
learning,” in Proc. Computer Aided Verification (CAV), 2007, pp. 3–5.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in VLSI domain,” IEEE Trans.
VLSI Systems, vol. 7, no. 1, pp. 69–79, 1999.

[10] R. Agrawal, T. Imielienski, and A. Swami, “Mining Association Rules
between Sets of Items in Large Databases,” in Proc. Conf. Management
of Data, 1993, pp. 207–216.

[11] C. Borgelt, “Efficient implementations of apriori and eclat,” in Proc.
ICDM workshop on frequent itemset mining implementations, 2003.

[12] NuSMV examples: the collection. [Online]. Available:
http://nusmv.irst.itc.it/examples/examples.html

[13] VIS verification benchmarks. [Online]. Available:
ftp://vlsi.colorado.edu/pub/vis/vis-verilog-models-1.0.tar.gz

[14] H. Barringer, D. Giannakopoulou, and C. S. Pasareanu, “Proof rules for
automated compositional verification,” in 2nd Workshop on Specification
and Verification of Component-Based Systems (ESEC/FSE), 2003.

119



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


