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ABSTRACT

Loop invariant generation has long been a challenging problem.

Black-box learning has recently emerged as a promising method

for inferring loop invariants. However, the performance depends

heavily on the quality of collected examples. In many cases, only

after tens or even hundreds of constraint queries, can a feasible

invariant be successfully inferred.

To reduce the gigantic number of constraint queries and improve

the performance of black-box learning, we introduce interval coun-

terexamples into the learning framework. Each interval counterex-

ample represents a set of counterexamples from constraint solvers.

We propose three different generalization techniques to compute

interval counterexamples. The existing decision tree algorithm is

also improved to adapt interval counterexamples. We evaluate our

techniques and report over 40% improvement on learning rounds

and verification time over the state-of-the-art approach.
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1 INTRODUCTION

Proving the correctness of programs containing loops has long

been a challenging verification problem. Given a precondition, a

postcondition, and a program containing a loop, we would like to

verify whether the postcondition always holds after the program
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is executed from every program state satisfying the precondition.

However, the number of loop iterations is indefinite. The computa-

tion of the loop in the program must be correct and independent

of number of iterations. In order to prove the correctness of loops,

one can find loop invariants to summarize the computation of loop

iterations. Informally, a loop invariant is a predicate characterizing

all program states at the loop head during executions. If a loop in-

variant furthermore includes program states admitted by the initial

precondition and excludes states deviating from the postcondition,

the correctness of the loop is established. Our goal is therefore to

find feasible loop invariants for the loop with respect to the given

pre- and post-conditions.

More specifically, we focus on the black-box learning model for

loop invariant generation [11, 14, 15] in this paper. Intuitively, a

learning model consists of two components: a white-box teacher (i.e.

the verifier) and a black-box learner. The learner is completely ag-

nostic of the program and the specification. Only sampled program

states are revealed to the learner. Based on this limited information,

the learner proposes an invariant to the teacher. If the purported

invariant successfully establishes the correctness of the loop, we

are done. Otherwise, more examples are collected and sent to the

learner to refine its purported invariants. The process repeats until

a feasible loop invariant or a bug is found.

Decision tree inference algorithms have been proposed [16, 20]

as the learner in the black-box learning framework. Recall that

loop invariants are indeed predicates on program states. Decision

trees can also be seen as binary classifiers on program states. From

the collected examples, an algorithm can hence generate decision

trees as loop invariants. More specifically, an example is classified

true or false depending on if it is accepted by the invariant or not.

Garg et al. [15] further argued that merely learning from true and

false examples for invariant synthesis is inherently non-robust, in

that the teacher may get stuck with a non-inductive invariant hy-

pothesis. They proposed a robust learning model, with Implication

Counterexamples and Examples (ICE).

The performance of the learning framework depends heavily on

the quality of collected examples. When complete information is

collected, the loop invariant can certainly be inferred. It however

requires a gigantic amount of examples. Currently, the examples

are mainly obtained from constraint solvers: a model of a satisfiable

query corresponds to a program state. With sufficiently many con-

straint queries, a number of examples are collected. Decision tree

inference algorithms can then infer feasible loop invariants. In prac-

tice, tens or even hundreds of constraint queries are made before

loop invariants are found. Since constructing decision trees and

constraint solving can be expensive, reducing the number of queries

can improve the performance of such verification algorithms.
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On examining models returned by constraint solvers, we find

that the models from constraint solvers are very specialized and

unpredictable. Consider an unknown predicate x > 0 where x is

an integer variable. Any positive integer can be a model (called

a point model) for the constraint. A constraint solver may return

x = 1000, 999, 998, . . . as models of the query. Subsequently, a

decision tree inference algorithm needs lots of examples before

it infers the predicate x > 0. Yet there is no essential difference

among these examples. If a constraint solver could return a so-called

interval model, say x > 0, in one query, the decision tree algorithm

would immediately infer the predicate. Generalized interval models

from constraint solving may greatly improve the performance of

loop invariant inference in the black-box learning framework.

In this paper, we propose three techniques to obtain generalized

interval models from constraint solvers and apply them to loop

invariant inference. By novel applications of UNSAT core com-

putation in constraint solvers, our techniques reduce the number

of learning rounds up to 42%. In order to incorporate generalized

models from constraint solvers, we moreover propose a decision

tree inference algorithm with interval examples for loop invariant

inference. With our new techniques, the total verification time is

reduced up to 47% for 94 benchmarks from prior work and software

verification competitions.

Our contributions are summarized as follows.

(1) We introduce interval counterexamples which represent a

set of counterexamples from constraint solvers.

(2) We propose three different generalization techniques to com-

pute interval counterexamples.

(3) We improve the existing decision tree algorithm to adapt

interval counterexamples.

(4) We evaluate our techniques and report over 40% improve-

ment on learning rounds and verification time.

The paper is organized as follows. We review backgrounds in

Section 2. Our counterexample generalization techniques will be

presented in Section 3. Section 4 develops our decision tree infer-

ence algorithmwith interval examples. It is followed by experiments

and evaluation in Section 5. Section 6 briefly reviews related work.

We conclude the presentation in Section 7.

2 BACKGROUND

2.1 Black-box Loop Invariant Inference

The black-box method for loop invariant inference [11, 14, 15, 36]

consists of a learner and a teacher. The learner tries to find a loop

invariant guided by the teacher without examining details of the

loop body under verification. Rather, only sampled program states

at the loop head are revealed to the learner. Based on the limited

information, the learner proposes an invariant to the teacher. The

teacher, on the other hand, tries to verify the correctness of the

loop with the proposed invariant. If the verification succeeds, a

feasible loop invariant is found. Otherwise, the teacher must find a

counterexample to explain why the invariant fails. There are two

scenarios. The counterexample may reflect a program execution

that rejects the assertion. The teacher then reports that the program

is incorrect. Otherwise, the counterexample is sent to the learner

to improve the proposed invariant.

Entry Loop Assert

S1 S2

S3

Figure 1: A simple loop program

To simplify our presentation, we will consider programs of the

following form throughout the paper:

assume(Φpre ); S1; while(cond) do S3 od S2; assert(Φpost );

where Φpre and Φpost are pre- and post-conditions of the program,

respectively; S1, S2 and S3 are sequences of program statements

before, after, and in the loop, respectively; and cond is the loop

condition. Its control flow graph is shown in Figure 1.

Let ®x be the set of variables occurred in the program. In order to

denote values of a variable at different program locations, we use

®xi ’s to denote copies of ®x at different locations. A (program) state at

a location thus is a valuation on ®xi . A statement sequence moreover

can be seen as a transformation relation between different copies

of program variables. In Figure 1, we use ρ1(®x, ®x
′), ρ2(®x, ®x

′) and
ρ3(®x, ®x

′) to denote the transformation relations of the statement

sequences S1, S2 and S3, respectively.

A loop invariant ϕ(®x) with respect to the precondition Φpre (®x)
and postcondition Φpost (®x) satisfies the following three formulas:

ψ1 : Φpre (®x0) ∧ ρ1(®x0, ®x1) → ϕ(®x1), (1)

ψ2 : ϕ(®x2) ∧ ¬cond(®x2) ∧ ρ2(®x2, ®x3) → Φpost (®x3), (2)

ψ3 : ϕ(®x2) ∧ cond(®x2) ∧ ρ3(®x2, ®x4) → ϕ(®x4), (3)

ψ1 states that the loop invariant must include the program states

resulted from initial states satisfying the pre-condition.ψ2 specifies

that the post-condition must hold when leaving the loop.ψ3 says

that the invariant holds after each iteration. We write Ψ for ψ1 ∧
ψ2 ∧ψ3 for simplicity.

Note that the loop invariant ϕ in the above formulas is a place-

holder. Let H be a hypothetical loop invariant. Ψ(H ) denotes the
formula obtained by replacing ϕ with H in Ψ. The loop invariant

inference problem is to find an H such that Ψ(H ) is valid.
The validity of Ψ(H ) can be checked by constraint solvers. If

Ψ(H ) is valid, we call the hypothesis H a feasible loop invariant.

Otherwise, the solver returns a model σ that falsifies Ψ(H ). Note
that σ is a valuation on ®xi (1 ≤ i ≤ 4) in Ψ. Denote σ (xi ) the
valuation of σ on ®xi . Since Φ(H ) is a conjunction, at least one of
the formulasψ1(H ),ψ2(H ), orψ3(H ) must be false. Ifψ1(H ) is false,
the state σ (®x1) is reachable from σ (®x0), but is not included in the

purported invariant H , we hence call it a positive counterexample.

If ψ2(H ) is false, H includes the state σ (®x2) from which the post-

condition is violated, we get a negative counterexample. If ψ3(H )
is false, we get an implication counterexample (σ (®x2),σ (®x4)) [15].
Informally, the state σ (®x4) should be included by the purported

invariant H if σ (®x2) is. Note counterexamples only contains states

sampled at the loop head.
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Algorithm 1: Black-box learning framework

1 Γ = ∅;H = ⊤;

2 while ∃σ .σ |= ¬Ψ(H ) do
3 if σ is a real counterexample then

4 return assertion failed;

5 end

6 Γ = Γ ∪ σ ;

7 H = Learner(Γ);

8 end

9 return H ;

When a state is both a positive and negative counterexample, it

reflects a real bug in the loop program, since it is reachable from

the initial state (by positive counterexample) and also fails the

postcondition (by negative counterexample).

A high-level view for the black-box loop invariant inference

framework is shown in Algorithm 1. In the algorithm, Γ is the

counterexample set and initially empty. H is the hypothetical loop

invariant purported by the learner and initially ⊤. The algorithm
continues if the teacher finds a counterexample (line 2) and give

counterexamples to the learner to improve the hypotheses (lines

6-7). If the counterexample is a bug (line 3), the algorithm reports a

failure. If no counterexample can be found, the algorithm returns

H as a feasible loop invariant for verification.

For programs with multiple or nested loops, we construct three

formulas as (1) to (3) for each loop, and then try to infer an hypothet-

ical invariant for each loop such that the conjunction of formulas

of all loops are valid.

2.2 Inference with Decision Trees

Decision tree inference [31, 32] is a method commonly used in data

mining and machine learning. It has been proposed in [16, 20] as

the learner in the black-box loop invariant learning framework.

The authors in [15] argued that learning using examples only does

not form a robust learning framework for invariant synthesis. They

proposed a robust learning model, called ICE-learning, that extends

the classical learning framework with implications.

In the ICE framework, a sample to the learner is a triple of three

sets, i.e., S = ⟨S+,S−,SU ⟩, where S+ is the set of examples with

the label true (produced by the positive counterexamples), S− is

the set of examples with the label false (produced by the negative

counterexamples), and SU is the set of examples that have not been

classified (produced by end-points of the implication counterexam-

ples). The ICE learner’s job is to classify all unclassified examples

without breaking their implication relation, and to separate the true

examples and false examples.

LetA be a set of attributes, i.e., certain arithmetic (linear or non-

linear) combinations of integer variables and constants. During the

construction of the decision tree, each internal node represents a

predicate of the form ak ≤ t , where ak is an attribute and t is a

constant, each branch denotes a test on the predicate, and each leaf

(or terminal) node is labeled true or false. The finalized decision

tree represents a Boolean combination of predicates.

Given a sample S and attributes A, the ICE learning algorithm

(Algorithm 2) constructs the decision tree in a top-down fashion.

At each stage of the construction (line 9), it chooses an attribute

ak ∈ A and a threshold t such that the composed predicate ak ≤ t
łbestž (will be explained soon) classifies the sample. Denote Sak ≤t ,
Sak>t the split results, i.e., those that satisfy the predicate and

those that do not satisfy it. The algorithm then recurses on these

two sub-samples (line 10 to 11) and builds two subtrees. If either

S+ or S− is empty (line 3), indicating that the classification is

complete, all unclassified examples in SU are marked using the

same label of classified examples. After an implication example has

been classified, its label should be propagated [16] (with respect to

the implication relation) to as many other unclassified examples as

possible. The propagated examples are recorded in a global data

structure G (at line 6) to be shared to other call to the algorithm.

The crucial step for the decision tree learning algorithm is how

choosing an attribute ak and a threshold t that łbestž classify the

sample. Most learning algorithms (e.g., ID3 [29], C4.5 [30], ICE [15])

use Shannon entropy [33] to measure the impurity of a sample, i.e.,

Entropy(S) = −
p

p + n
log2

p

p + n
−

n

p + n
log2

n

p + n
,

where p and n are numbers of true and false examples in the sam-

ple, respectively. A lower entropy indicates that this sample has

been classified more complete, and hence is more preferred. The

information gain is used to measure the split of S into Sak ≤t and
Sak>t , i.e.,

Gain(S,Sak ≤t ,Sak>t ) =

Entropy(S) − Entropy(Sak ≤t ) − Entropy(Sak>t )

We prefer the pair of attribute and threshold that achieves the most

information gain. Moreover, Garg et al. [16] observed that the two

examples of an implication should be classified as the same class.

They thus suggest to penalize the split that cuts implications (i.e.,

split two examples of an implication to different parts) in the above

information gain formula.

Lemma 2.1. [16] The ICE algorithm, independent of how the at-

tributes and threshold are chosen for the split of the sample, always

terminates and produces a decision tree that is consistent with the

input sample.

3 COUNTEREXAMPLE GENERALIZATION

In this section, we motivate the improvement for the existing black-

box loop invariant inference framework. Three counterexample

generalization methods based on UNSAT cores are then proposed.

3.1 Motivation

In the loop invariant inference framework (Algorithm 1), we only

get one program state as a counterexample in each round. Intu-

itively, the amount of information collected in each round is very

limited. Although the constraint solver only returns one valuation

each time, there may be many similar valuations satisfying the

same constraint. We would like to explore as many valuations for

decision tree inference as possible. By observing counterexamples

from constraint solvers, we find that the standard framework re-

peatedly finds counterexamples from the same control flow path.
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Algorithm2:Decision tree learningwith implication coun-

terexamples [16]

Data: an implication relation impl , and a partial valuationG

of unclassified examples in impl

1 Procedure ICE-DT(S = ⟨S+,S−,SU ⟩,A)

2 Move all classified examples in G to S+ and S−,

respectively ;

3 if S− = ∅ or S+ = ∅ then
4 Let label be true or false, respectively;

5 Mark all examples in SU with label ;

6 G ← Propagate(SU , impl);

7 return a single node tree Root, with label ;

8 else

9 Select an attribute ak and a threshold t that best

classify S ;

10 Split S into two parts Sak ≤t and Sak>t ;

11 T0 ← ICE-DT(Sak ≤t ,A);

12 T1 ← ICE-DT(Sak>t ,A);

13 return a tree with root (labeled with ak ≤ t ), left
subtree T0 and right subtree T1.

14 end

15 end

1 in t x , y ;

2 assume ( x <= 2 ) ;

3 assume ( y >= 0 && y <= 1 ) ;

4 while ( ∗ ) {

5 i f ( x > 0 ) {

6 x : = x − 1 ;

7 y : = y + 1 ;

8 }

9 }

10 a s s e r t ( y >= 0 && y <= 3 ) ;

Figure 2: A simple program example

To reduce repetition, we wish to generalize each counterexample

along its corresponding control flow path. After generalization,

each variable has an interval range. Every valuation in the intervals

will be a counterexample. Subsequently, we call these generalized

counterexamples by interval counterexamples.

Example 3.1. We illustrate our ideas with the program in Fig-

ure 2. Initially, the invariant H0 : ⊤ is proposed. According to

Algorithm 1, the framework tries to find a counterexample to fal-

sify Ψ(H0). The constraint solver may return ⟨x = 0,y = 10⟩.
Under this valuation, the program fails the assertion at line 10 and

hence falsifies ψ2(H0) (the formula (2)). The valuation should be

excluded from the loop invariant. With the negative counterexam-

ple, the learner may propose H1 : y ≤ 9 in the next round. Since

⟨x = 0,y = 9⟩ falsifiesψ2(H1), the teacher may return the new neg-

ative counterexample. The process repeats until the feasible loop

invariant −1 < y ≤ 3 ∧ x + y ≤ 3. Notice that the counterexamples

Algorithm 3: Extended learning framework with interval

generalization

1 Γ = ∅;H = ⊤;

2 while ∃σ .σ |= ¬Ψ(H ) do
3 if σ is a real counterexample then

4 return assertion failed;

5 end

6 Γ = Γ ∪ Generalize(σ );

7 H = IntervalLearner(Γ);

8 end

9 return H ;

⟨x = 0,y = 10⟩ and ⟨x = 0,y = 9⟩ correspond to the same control

flow path (leaving the loop immediately). Our generalization aims

to reduce such repetition. If the teacher could return an interval

counterexample ⟨x ∈ [0, 0],y ∈ [4,∞)⟩, the efficiency would be

greatly improved.

3.2 Generalization Framework

Based on the motivation, we introduce counterexample general-

ization into the loop invariant inference framework. The goal of

generalization is to find more program states at the loop head as

counterexamples to improve loop invariants. The new framework

is shown in Algorithm 3. Compared to Algorithm 1, there are two

modifications. At line 6, the counterexample σ is generalized be-

fore putting into the counterexample set Γ. At line 7, the classical

decision tree learner is extended to support interval examples (Sec-

tion 4).

Let σ be a valuation falsifying Φ(H ) for a purported invariant H .

A program state (called a seed state) at the loop head is obtained

from σ . From a seed state, a set of states (called generalized states)

is obtained. Generalized states must also be counterexamples to the

hypothetical invariantH . Specifically, if σ falsifiesψ1, the seed state

σ (®x1) is a positive counterexample.Wewant to findmore valuations

on ®x1 falsifyingψ1. These valuations are the generalized states to

σ (®x1). Formally, consider the set V + of valuations falsifying the

formula

∃®x0.Φpre (®x0) ∧ ρ1(®x0, ®x1) → ϕ(®x1). (4)

Note σ (®x1) ∈ V
+. All valuations in V + are positive counterexam-

ples.

Similarly, if σ falsifies ψ2, the state σ (®x2) is a negative coun-

terexample. We compute the set V − of valuations falsifying the

formula

∃®x3.ϕ(®x2) ∧ ¬cond(®x2) ∧ ρ2(®x2, ®x3) → Φpost (®x3). (5)

Apparently, σ (®x2) ∈ V
−. All valuations inV − are negative examples.

Note that in the above generalization formulas (4) and (5), the

transformation relations (ρ1 or ρ2) may contain other intermediate

variables. In that case, these intermediate variables should also be

existentially quantified.

3.3 Path-Driven Quantifier Elimination

Many efficient SMT solving algorithms require quantifer-free for-

mulas [3]. To eliminate the existential quantifiers in (4) and (5),
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we need to use the loop-head variables to substitute all other vari-

ables. This substitution is in general impossible due to the program’s

branching structure, we propose to limit the substitution along one

control flow path in the program fragment (S1 or S2).

Recall that the counterexample σ is a valuation on all variables

in Ψ. If σ falsifiesψ1(H ), the program states σ (®x0) and σ (®x1) expose
a path segment from the entry location to the loop head, denoted

by π1. Similarly, if σ falsifiesψ2(H ), σ (®x2) and σ (®x3) expose a path
segment from the loop head to the assert location, denoted by π2.

Given the path segment π1, we collect all conditions along the

path segment and use their conjunction to replace the SSA encoding

ρ1 in ψ1(H ). Similarly, we replace the SSA encoding ρ2 in ψ2(H )
with the conjunction of conditions along π2. Each assign statement

on the path is treated as a substitution. Specifically, we use ®x1 (at the
end of π1) to replace all other variables inψ1(H ) for each assign

statement along π1. Similarly, we use ®x2 (at the beginning of π2) to

substitute all variables inψ2(H ) along π2 in the reverse order. After

substitution, we obtain generalization formulasψ�1 (H ) andψ
�
2 (H )

from (4) and (5) respectively. Both formulas are quantifier-free and

contain only variables at the loop head.

Example 3.2. Let us assume both π1 and π2 contain two assign

statements, i.e., łx1 = x0+1; x3 = x1ž. These two statements on π1
correspond to the substitutions x0 7→ x1−1 and x1 7→ x3; and them

on π2 correspond to the substitutions x3 7→ x1 and x1 7→ x0 + 1.

Note that for π2, the substitutions need to be applied in the reverse

order. Moreover, if there is an assign statement where the right

operand uses more than one variable, e.g., ły2 = x3+z2ž, we cannot

use ły2−z2ž to substitute łx3ž (because z2 needs also to be removed).

This problem can be solved by replacing z2 with its concrete value

in σ .

3.4 Generalization by Variable Elimination

Let ψ be a generalization formula ψ�1 (H ) or ψ
�
2 (H ), ®x the set of

variables inψ , andσ a valuation falsifyingψ . The program stateσ (®x)
(at the loop head) is hence a positive or negative counterexample.

One can generalize σ (®x) by computing the UNSAT core as fol-

lows. Denote σ (x) by µx for x ∈ ®x . The seed state σ (®x) can be

represented by the formula
∧
x ∈ ®x (x = µx ). Recall that σ (®x) falsi-

fiesψ . The following formula is hence unsatisfiable:

ψ ∧
∧

x ∈ ®x

(x = µx ) (6)

Usingψ as the hard constraint and equalities x = µx for x ∈ ®x as

soft constraints, an UNSAT core of the formula (6) gives a subset

U of the soft constraints such that ψ ∧
∧
{x = µx |x = µx ∈ U }

is still unsatisfiable. Denote ®xc ⊆ ®x the set of variables in the

UNSAT core. A variable not in ®xc means its value is inessential to

the unsatisfiability of the formula (6). By eliminating µx for x < ®xc ,
generalized states are obtained from the seed state σ (®x). Intuitively,
generalized states are obtained by taking an arbitrary value for

each variable not in the UNSAT core.

Example 3.3. In our motivating example, we find a negative

counterexample σ : ⟨x = 0,y = 10⟩ from the initial invariant

H : ⊤. Note that the statement sequence after the loop and before

the assertion in the program is empty. By (5), the formula ψ is

−dm . . . −d2 −d1 µx +d1 +d2 . . . +dm
x

Figure 3: Range Generalization

⊤∧⊤∧⊤ → y ≥ 0∧y ≤ 3, and y ≥ 0∧y ≤ 3 after simplification.

By (6), the formula isψ ∧ x = 0 ∧ y = 10. Observe that the above

formula is still not satisfiable after removing x = 0. We thus obtain

generalized states where x ∈ (−∞,+∞) and y = 10. All of them are

negative counterexamples.

3.5 Generalization by Boundary Constraints

Generalization by variable elimination however is too coarse in

practice. When a variable is removed from the seed state, its value

is irrelevant to the counterexample. This is possible but unlikely.

In most cases, a variable is not removable but can be generalized

to a smaller range. In order to restrict ranges of generalization, we

propose the boundary generalization technique.

Let D = {d0,d1,d2, . . . ,dm } be a sequence of distances with

d0 = 0 and dj < dj+1 for every 0 ≤ j < m. We would like to use D
to determine the boundaries of generalization ranges incrementally.

Specifically, we generalize the value µx for the variable x by 2m + 2

boundary inequalities {x ≥ µx − di , x ≤ µx + dj | 0 ≤ i, j ≤ m}.
Using ψ as the hard constraint and these boundary inequalities

as soft constraints, we compute an UNSAT core of the following

formula:

ψ ∧
∧

x ∈ ®x

∧
{x ≥ µx − di , x ≤ µx + dj | 0 ≤ i, j ≤ m} (7)

Each inequality of the soft constraint in (7) corresponds to a half-

bounded interval [µx − di ,+∞) or (−∞, µx + dj ] (Figure 3). Intu-
itively, an UNSAT core gives us a subset of such intervals.

If the equality x = µx cannot be generalized, the UNSAT core

must containx ≥ µx andx ≤ µx . If the variablex can be generalized
to any value in its domain, the UNSAT core contains no inequalities

of x . Generalization by boundary constraints is therefore more

general than variable elimination.

From the boundary inequalities in the UNSAT core, we compute

the greatest left boundary lb and the least right boundary rb. The

value µx for the variable x is generalized to x ∈ [lb, rb] for each x ∈
®x .We thus obtain an interval counterexample by generalization. Note

that the interval counterexample does not necessarily be symmetric

to the value µx for the variable x .

Example 3.4. In our motivating example, recall the formulaψ :

y ≥ 0 ∧ y ≤ 3 and the negative counterexample σ : ⟨x = 0,y = 10⟩.
Choose D = {0, 1, . . . , 10}. By (7), we have

ψ ∧
∧

0≤i , j≤10

{x ≥ 0− i, x ≤ 0+ j} ∧
∧

0≤i , j≤10

{y ≥ 10− i,y ≤ 10+ j}.

The UNSAT core computation returns {y ≥ 4}, i.e., x was elimi-

nated, and y was generalized to [4,+∞). The interval counterexam-

ple is thus x ∈ (−∞,+∞),y ∈ [4,+∞).
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Figure 4: Interval Digging Generalization

Theorem 3.5. Let [lb, rb] be the interval counterexample obtained

from the UNSAT core of the formula (7), any state satisfying [lb, rb]
falsifiesψ .

3.6 Generalization by Interval Digging

Recall that UNSAT cores aim to minimize the number of constraints.

It does not necessarily ensure the most general interval of each

variable. Recall the generalization formula in Example 3.4, both

{y ≥ 4} and {y ≥ 5} are its UNSAT cores. They both have only one

constraint and are hence minimal. Observe that y ≥ 5 ⇒ y ≥ 4.

To maximize the interval range, the UNSAT core {y ≥ 4} is of
course preferred. Computing minimal UNSAT cores may not yield

the most general interval for y.

In order to find the most general intervals among minimal UN-

SAT cores, we propose the digging generalization. This technique

ensures that the soft constraints are pairwisely disjoint, and mini-

mal UNSAT cores always lead to maximal generalization ranges.

Let x ∈ ®x , and µx its value in a seed state. Similar to the previous

technique, we also use the distance sequence D to incrementally

determine the boundaries of the generalization range. The differ-

ence lies in the way how we specify the constraints. As shown

in Figure 4, the domain of x (excluding µx ) is the union of the

following 2m + 2 intervals:

Ix ,µx ,k :=




x < µx − dm, if k = −∞

x ≥ µx − d |k | ∧ x < µx − d |k |−1, if −m ≤ k ≤ −1

x > µx + dk−1 ∧ x ≤ µx + dk , if 1 ≤ k ≤ m

x > µx + dm, if k = ∞

Note that Ix ,µx ,k ⇏ Ix ,µx ,k ′ when k , k ′. The problem in

boundary constraint generalization is thus prevented. Now consider

the following query

ψ ∧
∧

x ∈ ®x

∧
{¬Ix ,µx ,k | k = −∞,−m, . . . ,−1, 1, . . . ,m,∞} (8)

with the hard constraint ψ and soft constraints Ix ,µx ,k . Its unsat
core gives a subset of intervals that should be excluded from the

generalization of x .

For an UNSAT core {I1,I2, . . . ,Im }, note that
∧m
i=1 ¬Ii may

represent several disjoint intervals for a variable x ∈ ®x . We choose

the interval containing µx as the interval counterexample.

Theorem 3.6. Let {I1,I2, . . . ,Im } be the UNSAT core of the for-

mula (8), any state satisfying
∧m
i=1 ¬Ii falsifiesψ .

Table 1: Interval examples

x y z x + y x − y

[4, 4] [1, 1] [1, 1] [5, 5] [3, 3]
[2, 6] [1, 4] [2, 2] [3, 10] [−2, 5]

4 INTERVAL DECISION TREE LEARNING

The classical decision tree learning framework deals with point

examples only. This section presents our new decision tree learning

algorithm that extends the classical learning model with interval

examples.

Our learning algorithm builds on the ICE framework. The high-

level description of our algorithm is identical to that of the ICE

algorithm (in Algorithm 2). However, many low-level mechanisms

need to be adapted to the interval setting.

4.1 Interval Examples

LetA = {a0,a1, . . . ,a |A |−1} be the set of attributes. A point exam-

ple v is a valuation that assigns a value to each ak inA. An interval

example I (produced by an interval counterexample) is a mapping

that assigns a closed interval to each ak in A. In the following, we

use v(ak ) to refer to the value of v at ak , and I (ak ) to refer to the

interval of I at ak . We also use I (ak ).lb and I (ak ).rb to refer to the

left and right boundaries of I (ak ), respectively.
An interval example can be denoted in the constraint form as

I =
∧

ak ∈A

I (ak ).lb ≤ ak ≤ I (ak ).rb

We say that a point example v is covered by an interval example I

if v (as a valuation) is a model of I (as a constraint).

Example 4.1. Consider the interval examples in Table 1, where

each row corresponds to an example, and each column stands for

an attribute. Observe that the first interval example covers a single

point example, while the second interval example covers 5×4×1 =
20 point examples.

4.2 Extending Entropy to Interval Examples

The existing mechanism for computing Shannon entropy applies

to point examples only. We extend it to interval examples.

Formally, let S = ⟨S+,S−,SU ⟩ be an interval sample. For each

interval example I in the sample, we compute its weight as

weight(I ) = min





√ ∏

ak ∈A

(I (ak ).rb − I (ak ).lb),MAX_WEIGHT




,

where I (ak ).rb, I (ak ).lb are boundaries of the interval I (ak ), and
MAX_WEIGHT is a value representing the maximum of weights.

Note that the weight of any point example evaluates to 1. In the

above definition, we use square roots and MAX_WEIGHT to bal-

ance the weight values between examples, thus to prevent a certain

large-interval example dominates the whole learning process.

The entropy of an interval sample S is:

Entropy(S) = −
w+

w+ +w−
log2

w+

w+ +w−
−

w−

w+ +w−
log2

w−

w+ +w−
,
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where w+ and w− are sum weights of examples in S+ and S− of
the sample, respectively. Note that the set SU does not contribute

to the entropy, since its examples are all unclassified. The above

entropy can be used to measure the impurity of interval samples.

Especially, the entropy of a sample is 0 if either S+ = ∅ or S− = ∅,
and the entropy gets a high value if the sample contains nearly the

same numbers of true and false examples.

4.3 Selecting Attributes and Thresholds with

Interval Examples

Selecting an attribute and a threshold that best classify the sample

is the most intricate and most time-consuming operation in the

decision tree learning. To get the best solution, it often needs to cal-

culate and compare the information gains of all pairs of candidate

attributes and candidate thresholds. The situation is even worse af-

ter the introduction of interval samples, since with which the point

set implied by the sample is greatly enlarged. Without specialized

technique, searching in this large space is far from efficient.

As previously mentioned, an interval example covers a number

of point examples. If an interval example is classified, all covered

point examples are classified. Therefore, when split the sample, we

prefer not to divide the intervals. Formally, we say that an interval

example I is cut by Sak ≤t and Sak>t if I (ak ).lb ≤ t < I (ak ).rb.
In this case, we also say that the split of Sak ≤t and Sak>t cuts

the interval example, or that the predicate ak ≤ t cuts the interval
example. Especially, a split is non-crossing if it cuts no interval

example in the sample.

To find the best split, we need to select an attribute and synthesize

a threshold. In the case of point examples, with the information

gain function (Section 2.2), the best threshold is always among the

values occurring in the points in the sample [30]. By regarding each

interval example as a set of point examples, a similar conclusion

can be drawn in our interval setting.

Lemma 4.2. The best threshold for an attribute ak is among the

values in
⋃
I ∈S I (ak ), i.e., the union of intervals at ak of all examples

in the sample.

Moreover, taking the nature of intervals into consideration, we

have the following stronger conclusions.

Theorem 4.3. The best threshold for an attribute ak is among the

values in LBk,−1 ∪ RBk, where LBk,−1 = {I (ak ).lb − 1 | I ∈ S} and
RBk = {I (ak ).rb | I ∈ S} are sets of values by respectively subtracting
1 from the left boundaries and taking the right boundaries of intervals

at ak of all examples in the sample.

Proof. Assume there are n examples in the sample, and their

intervals at ak are I1(ak ), I2(ak ), · · · , In (ak ), respectively. Let t be
an arbitrary threshold of ak . The predicate ak ≤ t may cut several

intervals, say Ii1 (ak ), · · · , Iik (ak ). Let B = {Ii1 (ak ).lb−1, Ii1 (ak ).rb,
· · · , Iik (ak ).lb − 1, Iik (ak ).rb} and v ∈ B the nearest value to t . The

value v is a better threshold than t . There is one interval that is

cut by the predicate ak ≤ t but not by ak ≤ v . In other words, for

any threshold t < LBk,−1 ∪ RBk, there always exists a better one in
LBk,−1 ∪ RBk. □

Theorem 4.4. If non-crossing splits for an attribute ak exist, the

best non-crossing threshold for ak is among the values in RBk =

{I (ak ).rb | I ∈ S}, i.e., the set of right boundaries of intervals at ak
of the examples in the sample.

Proof. By premise, let t be a threshold that leads to a best non-

crossing split on the sample. According to Theorem 4.3, the best

threshold is among the values in LBk,−1 ∪RBk. Assume t ∈ LBk,−1.
Let Ii1 (ak ), . . . , Iik (ak ) be the set of intervals at the left side of the
split (i.e., satisfy ak ≤ t ), and v the largest right boundary among

these intervals. Setting v as the new threshold will not change the

split result. In other words, for any threshold t ∈ LBk,−1, we can
always find a threshold in RBk that leads to the same classification

result. Therefore, it is sufficient to search in RBk. □

According to Theorem 4.3 and Theorem 4.4, we develop the fol-

lowing strategies for selecting attributes and thresholds for interval

examples:

(1) Find the best non-crossing split with the attribute ak ∈ A and

the threshold t ∈ RBk . Goto the next step if no non-crossing

split exists.

(2) Find the best crossing split with the attribute ak ∈ A and the

threshold t ∈ LBk ,−1 ∪ RBk .

When a cross splitting happens, at least one interval is divided.

Example 4.5. Considering an interval example: x ∈ [0, 3] ∧ y ∈
[−2, 0], the split x < 2 cuts the interval [0, 3]. After the splitting,
the original interval example is divided into two examples: x ∈
[0, 1] ∧ y ∈ [−2, 0] and x ∈ [2, 3] ∧ y ∈ [−2, 0].

4.4 Properties

According to Lemma 2.1, the ICE learning framework is correct,

independent of how the attributes and thresholds are chosen to

split the sample. Our adaptions of the ICE learning framework to

interval examples exactly lie in this category, we therefore have

the following deduction.

Theorem 4.6. The interval decision tree algorithm always termi-

nates and produces a decision tree that is consistent with the input

sample.

Example 4.7. Figure 5 shows the split result on the program

in Example 3.1. In this figure, the green region, filled with back-

ward diagonal lines, represents a true (interval) example of x ∈
(−∞, 2],y ∈ [0, 1], and the two blue regions, filled with diagonal

lines, represent two false examples of x ∈ (−∞,+∞),y ∈ (−∞,−1]
and x ∈ (−∞,+∞),y ∈ [4,+∞), respectively. Arrows in the figure

represent implications. Initially, by applying the implication prop-

agation, the examples (1, 3) and (2, 2) are classified as false (since

(0, 4) is false) and the example (1, 2) is classified as true (since (2, 1)
is true). The learning algorithm then starts to split the examples.

With three times of split (dashed red lines), all examples are classi-

fied. The final conjectured invariant is y > −1 ∧ y ≤ 3 ∧ x + y ≤ 3,

with which the correctness of the program can be established.

5 EXPERIMENTS AND EVALUATION

We implemented a prototype1 of our approach in the ICE learn-

ing framework [15]. This section reports experimental results of

1Available at: https://doi.org/10.5281/zenodo.3898483.
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Figure 5: Learning result for example in Section 3.1

our approach on counterexample generalization techniques and

interval-supported decision tree algorithm. The ICE implementa-

tion, combined with the corresponding decision tree as the learner

(ICE-DT [16]), is the baseline for our experiments.

We use octagonal predicates (of the form ±x ± y ≤ c) as the

templates for invariant synthesis. Inferred invariants are hence

Boolean combinations of octagonal predicates instantiated from

the templates. In some benchmarks, non-linear terms and other

linear expressions are also used in templates. These additional tem-

plates are used in the ICE implementation. Our settings are the same

as in the ICE implementation so as to perform a fair comparison. For

boundary constraints and interval digging generalizations, the dis-

tances in D are 0, 1, 2, 3, 4, 5, 10, 20, 30, . . . , 90, 100. The constraint

solver Z3 is used in our implementation [9].

Environment. All experiments are conducted on an Intel (R) Core

(TM) computer with i7-9700 CPU (3.00 GHz) and 16 GB memory

on Windows 10 platform.

Benchmarks. 94 benchmarks are collected from two sources. ICE-DT

provides 55 benchmarks; the remaining 39 benchmarks are from the

loop-new, loop-lit, and loop-invgen categories in SV-COMP 20192.

For the SV-COMP benchmarks, we remove the falsified programs

to focus on loop invariant inference instead of bug finding.

5.1 Experiment on Generalization Methods

Table 2 shows the experimental results. We only report benchmarks

requiring at least 15 rounds in ICE-DT to save space. In the table,

ICE-DT is the baseline [16]. Elimination, Boundary, and Digging

correspond to generalizations by variable elimination, boundary

constraint, and interval digging respectively. Each technique has

four columns: the number of learning rounds R, the total time T ,

the time for constraint solver TC , and the time for learner TL . All

time is in seconds. Timeout means the technique does not finish in

a minute.

2Available at: https://github.com/sosy-lab/sv-benchmarks/.

We summarize experiments (including the benchmarks skipped

in the table) in the bottom three lines of Table 2. All of our gener-

alization techniques solve 91 and one additional benchmark than

ICE-DT. Also, our three techniques outperform ICE-DT signifi-

cantly for the 90 benchmarks solved by the existing technique. The

three benchmarks łgj2007ž, łnestedž and łgr2006ž cannot be solved

by all approaches because they all contain a large constant that

leads to overmuch implication examples. The variable elimination

generalization reduces about 36% in total round number and time.

Boundary constraint and interval digging perform even better than

variable elimination. For both generalization techniques, the total

round numbers improve by 43% and the total time by 46%.

Further analyses on time for constraint solving and learning

are instructive. Our generalization techniques require additional

constraint queries with UNSAT core computation. Yet the time for

constraint solving is reduced by 17% for variable elimination and by

more than 27% for boundary constraint and 24% for interval digging.

Moreover, our decision tree algorithm for interval counterexamples

is more complex than standard algorithms. One would expect the

new algorithm might be slower. Yet the total time for the new

learner is improved by 46% for variable elimination and at least 56%

for the other two techniques. This is because the new techniques

need less rounds. Overhead in constraint solving and learning is

compensated by the reduction in learning rounds.

To compare effectiveness among different generalization tech-

niques, we further analyze the 86 non-trivial benchmarks verified

by our techniques (Table 3). The 5 trivial benchmarks are verified

by the trivial loop invariant ⊤ and hence ignored. In the table,

Bench represents the ratio of benchmarks where generalization is

effective. Pos+Neg, Pos, and Neg respectively represent the ratio of

generalized non-implication, positive, and negative counterexam-

ples. Generalization by variable elimination works for about half

of the benchmarks. Boundary constraint and interval digging are

effective for about 80% of the non-trivial benchmarks. In positive

and negative counterexamples from constraint solvers, 26% are

generalized by variable elimination and more than 47% by the other

two techniques. This confirms our intuition. Removing variables

from counterexamples is unlikely to generalize counterexamples.

Interval generalization techniques such as boundary constraint or

interval digging are more effective in our experiments.

Between positive and negative counterexamples, we find nega-

tive counterexamples are much easier to generalize. Recall that pos-

itive counterexamples are obtained from the entry location to loop

head whereas negative counterexamples are from the loop head to

assert location. Forward substitution used in positive counterexam-

ple generalization may fail and hence disable generalization.

Our implementation only asks Z3 to compute an UNSAT core.

We have also compared the performance of minimal UNSAT cores

in our implementation. Compared to generalization with UNSAT

cores, we find round numbers are reduced but verification time

is increased. Computing minimal UNSAT cores appears to have

significant overhead but limited benefits.
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Table 2: Experiment results on interval generalization methods

ICE-DT Elimination Boundary Digging

Benchmarks R T TC TL R T TC TL R T TC TL R T TC TL

· · · · · · · · · · · · · · ·

dillig24 15 0.63 0.11 0.46 9 0.39 0.09 0.21 7 0.29 0.07 0.16 7 0.29 0.07 0.16

css2003 16 0.6 0.06 0.47 10 0.35 0.07 0.22 11 0.44 0.09 0.27 11 0.42 0.1 0.24

dillig28 17 0.7 0.09 0.52 17 0.62 0.11 0.39 16 0.61 0.11 0.36 16 0.61 0.11 0.37

sum4c 18 0.74 0.12 0.54 14 0.54 0.12 0.31 12 0.48 0.13 0.27 12 0.49 0.13 0.27

jm2006 19 0.74 0.08 0.57 9 0.33 0.06 0.21 15 0.56 0.11 0.34 15 0.6 0.12 0.35

matrixl2 19 0.87 0.2 0.57 13 0.63 0.19 0.33 16 0.72 0.26 0.36 16 0.74 0.27 0.37

sendmail-close 19 0.86 0.18 0.59 11 0.49 0.11 0.27 8 0.38 0.12 0.19 8 0.39 0.12 0.19

SpamAssassin 19 0.81 0.13 0.58 10 0.41 0.1 0.23 7 0.32 0.1 0.16 7 0.33 0.1 0.16

array 20 0.81 0.11 0.6 24 0.98 0.18 0.57 31 1.14 0.19 0.71 31 1.18 0.21 0.72

tacas 20 0.75 0.08 0.59 10 0.37 0.07 0.22 17 0.65 0.13 0.39 17 0.68 0.15 0.4

up 20 0.81 0.11 0.61 13 0.51 0.09 0.3 12 0.47 0.1 0.27 12 0.48 0.1 0.27

dillig17 21 0.83 0.1 0.62 16 0.65 0.13 0.37 21 0.81 0.13 0.49 21 0.81 0.14 0.49

dtuc 21 0.86 0.12 0.64 8 0.36 0.09 0.19 13 0.54 0.1 0.31 13 0.52 0.1 0.31

id_build 21 0.83 0.11 0.64 10 0.39 0.08 0.23 6 0.25 0.06 0.13 6 0.25 0.06 0.13

down 22 0.89 0.1 0.69 10 0.4 0.08 0.22 13 0.49 0.08 0.3 13 0.48 0.08 0.29

cegar2 22 0.84 0.08 0.65 28 1.1 0.17 0.66 16 0.59 0.1 0.36 16 0.61 0.11 0.37

gj2007b 23 0.91 0.1 0.7 11 0.44 0.08 0.25 12 0.46 0.08 0.27 12 0.46 0.09 0.27

nested-if3 23 0.92 0.11 0.69 11 0.44 0.08 0.26 11 0.42 0.08 0.25 11 0.42 0.08 0.25

arrayinv2 24 0.99 0.15 0.72 18 0.68 0.13 0.4 23 0.9 0.18 0.53 23 0.9 0.19 0.52

formula22 28 1.08 0.1 0.84 42 1.58 0.2 0.99 37 1.32 0.17 0.85 37 1.33 0.18 0.86

dillig05 30 1.18 0.13 0.92 20 0.82 0.11 0.47 14 0.57 0.13 0.33 14 0.56 0.13 0.32

half 30 1.24 0.17 0.94 41 1.88 0.38 1.12 29 1.22 0.26 0.72 29 1.29 0.26 0.75

nested6 30 1.36 0.26 0.95 17 0.77 0.19 0.41 15 0.68 0.19 0.35 15 0.7 0.2 0.36

matrixl2c 33 1.52 0.35 1.01 29 1.53 0.46 0.82 32 1.64 0.58 0.84 32 1.66 0.61 0.83

fragtest_simple 36 1.54 0.25 1.12 18 0.79 0.17 0.44 18 0.72 0.15 0.41 18 0.73 0.15 0.42

apache-escape 40 1.87 0.4 1.27 17 0.78 0.23 0.41 8 0.38 0.19 0.16 8 0.45 0.2 0.18

seq 45 2.19 0.39 1.56 31 1.61 0.36 0.93 33 1.69 0.42 0.96 33 1.76 0.47 0.97

sqrt 49 2.08 0.34 1.51 89 6.64 2.03 3.61 24 1.04 0.27 0.59 24 1.06 0.3 0.58

sum4 50 2.12 0.31 1.54 56 2.11 0.39 1.31 53 1.97 0.33 1.22 53 2.05 0.35 1.26

formula25 57 2.19 0.23 1.75 34 1.33 0.18 0.83 13 0.49 0.1 0.29 13 0.51 0.12 0.3

bhmr2007 58 2.6 0.39 1.93 57 2.91 0.47 1.81 26 1.17 0.3 0.67 26 1.2 0.34 0.67

dillig12 70 3.22 0.42 2.37 89 4.66 0.8 3.03 61 2.54 0.44 1.56 61 2.57 0.45 1.58

cggmp 72 3.18 0.53 2.24 44 1.77 0.43 1.03 57 2.39 0.56 1.34 57 2.38 0.57 1.33

ddlm2013 76 3.18 0.45 2.4 41 2 0.33 1.28 36 1.78 0.4 1.09 36 1.84 0.47 1.08

dillig25 76 4 0.5 2.98 72 3.53 0.66 2.23 66 2.95 0.43 1.87 66 2.92 0.44 1.85

ex23 78 3.36 0.45 2.42 55 2.2 0.33 1.34 57 2.21 0.32 1.39 57 2.24 0.34 1.39

half2 80 3.79 0.59 2.75 48 2.25 0.44 1.33 44 1.9 0.36 1.14 44 1.94 0.39 1.15

cggmp2005 81 3.32 0.38 2.52 57 2.26 0.46 1.36 60 2.31 0.38 1.4 60 2.31 0.38 1.4

heapsort 82 3.94 0.8 2.71 32 1.73 0.39 1.03 27 1.3 0.41 0.66 27 1.35 0.44 0.67

inc 103 4.03 0.36 3.02 102 4 0.42 2.51 102 3.73 0.39 2.38 102 3.79 0.38 2.39

formula27 137 5.49 0.56 4.35 69 3.32 0.38 2.27 29 1.18 0.21 0.74 24 0.99 0.2 0.6

arrayinv1 186 10.95 1.91 7.73 124 7.79 1.48 4.88 106 5.5 0.92 3.58 106 5.51 0.93 3.6

cggmp2005_b 186 8.78 1.27 6.07 159 6.28 1.01 3.88 168 6.67 0.98 4.04 168 6.77 0.98 4.05

gsv2008 205 8.49 1.06 6.49 11 0.42 0.08 0.26 7 0.28 0.07 0.15 7 0.29 0.07 0.16

large_const 411 21.56 4.18 14.02 23 1.12 0.31 0.59 43 2.32 0.67 1.21 43 2.42 0.73 1.23

string_concat Timeout 118 4.98 0.75 3.11 112 4.67 0.62 2.91 112 4.71 0.65 2.87

nested Timeout Timeout Timeout Timeout

gj2007 Timeout Timeout Timeout Timeout

gr2006 Timeout Timeout Timeout Timeout

# solved 90 91 91 91

total
3007 135.79 20.95 97.51 1916 87.47 17.48 52.46 1717 72.27 15.15 42.41 1712 73.41 15.87 42.55

- - - - 36.3% 35.6% 16.6% 46.2% 42.9% 46.8% 27.7% 56.5% 43.1% 45.9% 24.2% 56.4%
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Figure 6: Experiment results on interval decision tree learning

Table 3: Generalization ability for different methods

Elimination Boundary Digging

Bench 44/86 (51.2%) 69/86 (80.2%) 69/86 (80.2%)

Pos+Neg 265/1031 (25.7%) 375/788(47.6%) 371/784(47.3%)

Pos 36/204 (17.6%) 51/182 (28.0%) 51/182 (28.0%)

Neg 229/827 (27.7%) 324/606 (53.5%) 320/602 (53.2%)

5.2 Experiment on Learning Methods

Our generalization techniques improve the ICE framework by ex-

tracting more information from a counterexample. Standard deci-

sion tree inference algorithms might also benefit from generalized

counterexamples and perform as well as our interval decision tree

algorithm. It is therefore unclear whether our new decision tree

algorithm is necessary. To answer this question, we design exper-

iments to pass interval counterexamples to the baseline decision

tree algorithm. More concretely, we use two counterexamples for

each interval in an interval counterexample from the boundary

constraint generalization technique. These counterexamples are

then passed to the decision tree inference algorithm in ICE to mimic

the interval counterexample. We would like to know if the base-

line decision tree algorithm suffices to attain similar performance

with similar information from generalized counterexamples. Fig-

ure 6(a) compares the number of rounds needed for the baseline

and our interval decision tree algorithms. The total time is shown

in Figure 6(b) and the time for learning is compared in Figure 6(c).

Round numbers in both inference algorithms are similar. The

difference between our new learning algorithm and the baseline

decision tree algorithm is no more than 10%. Some information is

lost when an interval counterexample is simulated by several coun-

terexamples. Yet the additional information is still useful compared

to counterexamples without generalization. However, Figure 6(b)

and 6(c) show that our new decision tree inference algorithm still

outperforms the baseline algorithm in most benchmarks. On aver-

age, we find 5.7 counterexamples are needed for an interval coun-

terexample. The baseline decision tree inference algorithm has to

process many counterexamples and is hence less efficient. Our in-

terval decision tree inference algorithm is essential in utilizing

additional information from our generalization techniques.

6 RELATED WORK

Invariant Synthesis. The traditional approaches for invariant syn-

thesis are mainly focused on white-box techniques, which can

be classified into the following categories: abstract interpretation-

based [7, 8, 19, 26], interpolation-based [18, 22ś25], counterexample

guided abstraction refinement (CEGAR)-based [2, 6, 17, 40], logical

abduction-based [4, 10] and so on.

Among black-box invariant learning techniques, Daikon [11] is

an early but prominent one, which uses program states produced

by dynamic test to learn conjunctive boolean invariants. The major

shortcoming of Daikon is that the learned invariants may not be

inductive, which was solved by Houdini [14]. With the help of

constraint solvers, Houdini ensures the inductiveness of learned

invariant. Garg et. al. [15] shows that merely learning from labeled

examples for invariant synthesis is non-robust. They introduced

the ICE learning framework for the implication counterexamples.

A similar concept of implication examples is also proposed in [36].

However, because the pair of program state is unlabeled, [36] does

not handle these examples directly.

There are a variety of techniques that can be used as the invariant

learner, including random search [34], decision tree [12, 16, 20, 39],

support vector machine [21, 37], PAC (Probably Approximately

Correct) learning [36], reinforcement learning [38] and logic mini-

mization [40], etc. Moreover, [35] uses the null space operation on

matrix to learn the invariants in the form of algebraic equation. Garg

et al. [16] extended the classical decision tree learning using implica-

tion examples. Their technique is called ICE-DT, which was further

extended in [12] using Horn-ICE samples. Our interval-supported

decision tree learning technique extends ICE-DT with interval ex-

amples. Compared to the previous decision trees [12, 16, 20, 39],

our interval examples are more expressive. Given the same amount

of examples, the learning result of our method is more likely to be

more accurate.

Most of the learning approaches are format-restricted or template-

based. For example, the decision tree learning is based on attribute
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templates which might need to be manually predefined. Many au-

tomatic feature inference techniques have emerged recently. PIE

[27] uses a search-based program synthesis to achieve a strong ex-

pression ability of features. [5] mines existing codebase to provide

features for static analysis. [39] utilizes machine learning to con-

struct arbitrarily-linear features. These techniques are orthogonal

to ours, and can be integrated into our approach. Actually, [39]

show a vivid example where the learned features can further be

delivered to the decision tree learner.

Counterexample Generalization. The purpose of generalization is to

expand the amount of information to reduce iterations and improve

performance. In white-box approaches, [22] generalizes the con-

straint conditions to construct the inductive invariants using the

squeeze of interpolation. Another technique [1] also uses interpo-

lation to find the generalized commonalities in positive or negative

examples to help the correctness proof. Ivy [28] is an interactive

systemwhere the user can guide the counterexample generalization

to help find the inductive invariants.

A similar idea in invariant learning is proposed in [21]. Except

of the examples provided by the verification prover, [21] proposes

the selective sampling by dynamic test execution to overcome the

lack of sufficient examples. Another sampling technique in [13]

suggests to find more "representative" examples by sampling from

candidates with high priorities. Differing form these works, our

generalization is based on results from constraint solvers rather

than the dynamic testing. Note that the examples provided by the

dynamic testing are relatively concrete.

7 CONCLUSION

We proposed a new invariant learning technique based on inter-

val counterexamples. Three novel generalization techniques were

devised to compute the interval counterexamples. The existing

decision tree algorithm was improved to adapt interval counterex-

amples. We implemented a prototype of our approach in the ICE

framework. Experimental results on 94 benchmarks show promis-

ing performance of our approach.
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