
P4b: A Translator from P4 Programs to Boogie
Chong Ye

School of Software, Tsinghua University
Key Laboratory for Information System Security, MoE

Beijing National Research Center for Information Science
and Technology
Beijing, China

yc_thu@163.com

Fei He∗
School of Software, Tsinghua University

Key Laboratory for Information System Security, MoE
Beijing National Research Center for Information Science

and Technology
Beijing, China

hefei@mail.tsinghua.edu.cn

ABSTRACT
P4 is a mainstream language for Software Defined Network (SDN)
data planes. P4 is designed to achieve target-independent, protocol-
independent, and configurable SDN data planes. However, logic
errors may occur in P4 programs, resulting in improper packet pro-
cessing, which may cause serious network errors and information
disclosure. In addition, P4 programs contain many branches and
thus are more challenging to ensure correctness.

Formal verification is a powerful technique to verify the cor-
rectness of P4 programs. Unfortunately, current P4 verification
studies lack basic toolchains, and their intermediate languages
are not expressive enough. We present P4b, an efficient translator
from P4 programs to Boogie, a verification-oriented intermediate
representation. We provide formal translation rules to ensure the
correctness of the translation process. The translated results can
be verified by the toolchain of Boogie. We conducted experiments
on 170 P4 programs collected from GitHub, and the experimental
results demonstrate that our translator is useful and practical.

The screencast is available at https://youtu.be/8_rEj3QFQeM.
The tool is available at https://github.com/Invincibleyc/P4B-Translator.

CCS CONCEPTS
• Networks → Network reliability; • Software and its engi-
neering → Formal software verification.

KEYWORDS
Software defined networking, formal verification, P4 programming
language, data plane

ACM Reference Format:
Chong Ye and Fei He. 2023. P4b: A Translator from P4 Programs to Boogie. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),
December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3611643.3613091

∗Fei He is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3613091

1 INTRODUCTION
Programming protocol-independent packet processors (P4) [2] is a
domain-specific language designed for the data plane of Software
Defined Network (SDN). Compared with traditional networks, the
main advantage of P4 is programmability. Both parameters and the
function of P4 switches can be reconfigured. P4 is designed to be
reconfigurable, protocol-independent, and target-independent. P4
greatly simplifies the development of new network protocols with
abstraction on the forwarding model and well-designed APIs. In
addition, it supports user-defined header format and actions.

The programmability provided by P4 also brings more challenges.
Users may easily introduce bugs to their network devices when
implementing protocols. Moreover, match-action rules are not pro-
vided at compile time, so programmers may leave corner cases
unhandled. Formal methods are needed to ensure safety and cor-
rectness. However, the P4 Community currently has not provided
formal semantics for the P4 language, and the details of some fea-
tures are not well-defined and even contradictory [8], which makes
verification and static analysis tools hard to design.

An efficient solution is translating P4 to an intermediate lan-
guage with a full verification toolchain because P4 semantics can
be clearly described, and the toolchain can verify the translation
results. In this paper, we choose Boogie as the intermediate lan-
guage. Boogie[1] is a powerful verification-oriented language de-
signed by Microsoft Research. Based on Boogie, many verifiers
have been developed, including Corral [11], VCC [4], Dafny [12],
and HAVOC [3]. These tools are widely used in commercial and
academic fields. Furthermore, Boogie’s grammar features are sim-
ilar to high-level programming languages, with built-in supports
of pre-conditions, post-conditions, and assertions, making Boogie
very competent being the intermediate language.

This paper presents P4b, a translator from P4 programs to Boogie.
In our implementation, P4b is integrated into the P4 compiler pro-
vided by P4 Community. It supports P4 programs in both 𝑃414 [5]
and 𝑃416 [6] standards and follows the P4 specifications. P4bmodels
P4 components and abstracts P4 APIs for verification and analysis
purposes. It also adds constraints on the initialization and value
range of global variables. After translation, desired properties can
be described as assertions and verified by the toolchain.

Recently, researchers have developed verification tools for P4.
Most of themuse symbolic execution, such as Vera [15] andASSERT-
P4 [10]. They also translate P4 into intermediate languages: SEFL
and C. p4v [14] uses GCL to describe P4 semantics and can effi-
ciently verify P4 programs. bf4[9] follows the idea of p4v and can
fix some of the bugs found in P4 programs. However, these tools

https://doi.org/10.1145/3611643.3613091
https://doi.org/10.1145/3611643.3613091

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chong Ye and Fei He

lack translation rules, and their intermediate languages used are not
designed for verification purposes. Compared with these tools, we
believe our tool is competent because it provides formal translation
rules to support main P4 features, and the intermediate language
Boogie has a powerful toolchain for further process.

To evaluate P4b, we collected 170 P4 programs from Github and
used P4b to translate them to Boogie. All the programs can be
translated in under 0.5 min. And all the translated programs are
grammatically correct.

2 BACKGROUNDS
In this section, we introduce the core syntax of P4 and Boogie,
which is the basis of our translation rules in section 3. We also
introduce the forwarding model of P4 programs.

2.1 P4 Syntax
Figure 3 shows the core syntax of P4, including types, expressions,
and statements. 𝑥 describes the vector of 𝑥 . 𝑋 {𝑥} shows that 𝑋 has
members 𝑥 .

P4 basic types include 𝑏𝑖𝑡𝑛 and 𝑏𝑜𝑜𝑙 . A variable of type 𝑏𝑖𝑡𝑛 is a
bit vector with length 𝑛. 𝑏𝑜𝑜𝑙 is the boolean type. Based on basic
types, P4 supports headers and structs. ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 𝑖𝑒𝑙𝑑} stores the
protocol fields in packets. 𝑠𝑡𝑟𝑢𝑐𝑡{𝑓 𝑖𝑒𝑙𝑑} is similar to structures in
high-level languages. 𝑓 𝑖𝑒𝑙𝑑 < 𝜌 > represents the fields of headers
and structs, and the field type 𝜌 can be any P4 type. P4 also supports
ℎ𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘 , which is a stack of headers with a constant size.

Figure 1: The forwarding model of P4

𝜌𝑏 = 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝜌𝑝) =



𝑏𝑜𝑜𝑙, 𝜌𝑝 = 𝑏𝑜𝑜𝑙

𝑖𝑛𝑡, 𝜌𝑝 = 𝑖𝑛𝑡

𝑏𝑣𝑛, 𝜌𝑝 = 𝑏𝑖𝑡𝑛
𝑅𝑒 𝑓 , 𝜌𝑝 = ℎ𝑒𝑎𝑑𝑒𝑟

𝑅𝑒 𝑓 , 𝜌𝑝 = 𝑠𝑡𝑟𝑢𝑐𝑡

[𝑅𝑒 𝑓] 𝜌 ′
𝑏
, 𝜌𝑝 = 𝑓 𝑖𝑒𝑙𝑑 < 𝜌 ′𝑝 >,

𝑤ℎ𝑒𝑟𝑒 𝜌 ′
𝑏
= 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝜌 ′𝑝)

[𝑖𝑛𝑡] 𝑅𝑒 𝑓 , 𝜌𝑝 = ℎ𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘

Figure 2: The translation rules of P4 types

As for expressions, P4 provides constants 𝑐 and variables 𝑥 . Com-
mon unary and binary operations are supported. P4 provides 𝑥 [𝑒]
for accessing arrays and stacks. For bit vectors, the expression

𝑒 [𝑒1 : 𝑒2] extracts bits from the index 𝑒1 to 𝑒2. (𝜌)𝑒 is used to
transform 𝑒 to type 𝜌 .

P4 supports multiple statement formats. Among them, assign-
ment statements, conditional statements, and statement sequences
are similar to statements in high-level languages and will not be
introduced here. 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒 is used in the P4 parser for
transition between parser states. Function call statements include
calls to parsers, parser states, tables, actions, and library functions.

2.2 Boogie Syntax
Figure 4 is the core syntax of Boogie. Boogie supports bit vectors,
booleans, and integers. Boogie also allows users to define mapping
types [𝜌1]𝜌2, which maps 𝜌1 to 𝜌2. Constants and variables are ba-
sic expressions. Moreover, Boogie supports array accessing and bit
vector slicing. Besides common statements such as assignment state-
ments, conditional statements, and statement sequences, Boogie
provides statements for verification purposes. Assumption state-
ments and assertion statements are used to describe verification
properties. The statement ℎ𝑎𝑣𝑜𝑐𝑥 assigns x to a random value.

2.3 Forwarding Model
A typical P4 program that follows the standard execution model,
V1Switch1, declares the format of packet headers and is executed in
the order of the parser, the match-action pipeline, and the deparser.
The Figure 1 shows the forwarding process of P4’s V1Switch model.
P4 programs interact with the network environment to receive
packets and forwarding rules. The parser parses P4 headers and then
the match-action pipeline modifies packets based on forwarding
rules. Finally, the deparser encapsulates packets and forwards them
to the output port. There are also other execution models, such as
Tofino. Compared to V1Switch, Tofino is a complex commercial
model, but the core components are similar.

3 TRANSLATOR DESIGN
Based on the syntax of P4 and Boogie, we introduce the translation
rules from P4 to Boogie in this section. In each translation rule, the
translation details are indicated above the line, and the translation
results are provided below the line. Translation rules use formulas
such as ⊢ 𝑠𝑟𝑐 ↩→ 𝑑𝑠𝑡 to translate from P4 expression 𝑠𝑟𝑐 to Boogie
expression 𝑑𝑠𝑡 . Similarly, ⊢ 𝑠𝑟𝑐 ⇝ 𝑑𝑠𝑡 represents the translation
from P4 statement 𝑠𝑟𝑐 to Boogie statement 𝑑𝑠𝑡 . Next, we introduce
the translation of types, expressions, declarations, and statements.

Types. Figure 2 shows the translation of types. The function
𝜌𝑏 = 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝜌𝑝) defines the translation from P4 type 𝜌𝑝 to
Boogie type 𝜌𝑏 . Both P4 and Boogie support bit vectors, booleans,
and integers, and the translation is trivial. For header and struct
instances, we define the Boogie type 𝑅𝑒 𝑓 to represent the reference
to an instance. And fields are translated to [𝑅𝑒 𝑓]𝜌 ′

𝑏
, which maps

an reference to its fields. We use [𝑖𝑛𝑡]𝑅𝑒 𝑓 to represent the header
stack, which maps the index to the corresponding header.

Expressions (Figure 5). We use 𝑒 and 𝜖 to represent expressions
of P4 and Boogie, respectively, and 𝑥 and 𝜒 to represent variables
of P4 and Boogie, respectively. When translating binary operations,
unary operations, slicing, and stack accessing, we first translate
the expressions that participate in the operation and then perform
1https://github.com/p4lang/p4c/blob/master/p4include/v1model.p4

P4b: A Translator from P4 Programs to Boogie ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

𝜌 ::= 𝑏𝑖𝑡𝑛 | 𝑏𝑜𝑜𝑙 | ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 𝑖𝑒𝑙𝑑} | 𝑓 𝑖𝑒𝑙𝑑 < 𝜌 > | 𝑠𝑡𝑟𝑢𝑐𝑡{𝑓 𝑖𝑒𝑙𝑑} | ℎ𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘 ℎ𝑒𝑎𝑑𝑒𝑟𝑆𝑡𝑎𝑐𝑘 ::= ℎ𝑒𝑎𝑑𝑒𝑟 [𝑐]
𝑒 ::= 𝑐 | 𝑥 | 𝑒 [𝑒] | 𝑒 op 𝑒 | op 𝑒 | 𝑒 [𝑒 : 𝑒] | (𝜌)𝑒 𝑜𝑝 ::= + | − | ∗ | ...
𝑠 ::= 𝑥 := 𝑒 | if (𝑒){𝑠} else{𝑠} | 𝑠; 𝑠 | transition 𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒 | 𝑐𝑎𝑙𝑙 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑒)

𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ::= 𝑝𝑎𝑟𝑠𝑒𝑟 (𝑒){𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒}| 𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒 (𝑒){𝑠} | 𝑡𝑎𝑏𝑙𝑒 (𝑘𝑒𝑦, 𝑎𝑐𝑡𝑖𝑜𝑛) | 𝑎𝑐𝑡𝑖𝑜𝑛(𝑒){𝑠} | 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝑒){𝑠} | 𝑒𝑥𝑡𝑒𝑟𝑛𝐹𝑢𝑛𝑐
𝑒𝑥𝑡𝑒𝑟𝑛𝐹𝑢𝑛𝑐 ::= 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (ℎ𝑒𝑎𝑑𝑒𝑟) |𝑚𝑎𝑟𝑘_𝑡𝑜_𝑑𝑟𝑜𝑝 () | ℎ𝑎𝑠ℎ(𝑒, 𝑒) | 𝑠𝑒𝑡𝑉𝑎𝑙𝑖𝑑 (𝑥) | 𝑠𝑒𝑡𝐼𝑛𝑣𝑎𝑙𝑖𝑑 (𝑥)

Figure 3: The Syntax of P4 Language

𝜌 ::= 𝑏𝑣𝑛 | 𝑏𝑜𝑜𝑙 | 𝑖𝑛𝑡 | [𝜌]𝜌 𝑒 ::= 𝑐 | 𝑥 | 𝑥 [𝑒] | 𝑒 𝒐𝒑 𝑒 | 𝒐𝒑 𝑒 | 𝑒 [𝑒 : 𝑒] 𝑜𝑝 ::= + | − | | | ...
𝑠 ::= 𝑥 := 𝑒 | 𝑎𝑠𝑠𝑢𝑚𝑒 (𝑒) | 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑒) | ℎ𝑎𝑣𝑜𝑐 𝑥 | 𝑖 𝑓 (𝑒){𝑠} 𝑒𝑙𝑠𝑒{𝑠} | 𝑐𝑎𝑙𝑙 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 () | 𝑥 := 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛() | 𝑠; 𝑠

Figure 4: The Syntax of Boogie Language

⊢ 𝑒1 ↩→ 𝜖1 ⊢ 𝑒2 ↩→ 𝜖2
⊢ 𝑒1 𝑏𝑜𝑝 𝑒2 ↩→ 𝜖1 𝑏𝑜𝑝 𝜖2

(𝐵𝑖𝑛𝑎𝑟𝑦 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) ⊢ 𝑒 ↩→ 𝜖

⊢ 𝑢𝑜𝑝 𝑒 ↩→ 𝑢𝑜𝑝 𝜖
(𝑈𝑛𝑎𝑟𝑦 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

⊢ 𝑒 ↩→ 𝜖 ⊢ 𝑒2 ↩→ 𝜖2 ⊢ 𝑒3 ↩→ 𝜖2

⊢ 𝑒1 [𝑒2 : 𝑒3] ↩→ 𝜖1 [𝜖2 : 𝜖3]
(𝑆𝑙𝑖𝑐𝑖𝑛𝑔)

⊢ 𝑥 ↩→ 𝜒 ⊢ 𝑒 ↩→ 𝜖

⊢ 𝑥 [𝑒] ↩→ 𝜒 [𝜖]
(𝐻𝑒𝑎𝑑𝑒𝑟 𝑆𝑡𝑎𝑐𝑘 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔)

⊢ 𝑒 : 𝑏𝑖𝑡𝑛2 ↩→ 𝜖1 : 𝑏𝑣𝑛2
𝑖 𝑓 (𝑛1 > 𝑛2) 𝜖 ≡ 0𝑏𝑣𝑛1−𝑛2 + +𝜖1
𝑒𝑙𝑠𝑒 𝜖 ≡ 𝜖1 [𝑛1 − 1 : 0]

⊢ (𝑏𝑖𝑡𝑛1)𝑒 ↩→ 𝜖
(𝐵𝑖𝑡 𝑉𝑒𝑐𝑡𝑜𝑟 𝐶𝑎𝑠𝑡)

𝜌𝑏 ≡ 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝜌𝑝)
⊢ 𝑥 : ℎ𝑒𝑎𝑑𝑒𝑟 ↩→ 𝜒 : 𝑅𝑒 𝑓
⊢ 𝑓 : 𝑓 𝑖𝑒𝑙𝑑 < 𝜌𝑝 >↩→𝑚 : [𝑅𝑒 𝑓]𝜌𝑏 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠

⊢ 𝑥 .𝑓 ↩→𝑚[𝜒]
(𝐹𝑖𝑒𝑙𝑑 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑛𝑔)

Figure 5: The translation rules of P4 expressions

𝜌𝑏 ≡ 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 (𝜌𝑝)
⊢ 𝑓 : 𝑓 𝑖𝑒𝑙𝑑 < 𝜌𝑝 >↩→ 𝜒 : [𝑅𝑒 𝑓]𝜌𝑏

(𝐹𝑖𝑒𝑙𝑑)
⊢ 𝑓 : 𝑓 𝑖𝑒𝑙𝑑 ↩→ 𝜒 𝑓 𝜒 𝑓 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠

⊢ 𝑥 : ℎ𝑒𝑎𝑑𝑒𝑟 {𝑓 : 𝑓 𝑖𝑒𝑙𝑑}⇝ 𝜒 : 𝑅𝑒 𝑓
(𝐻𝑒𝑎𝑑𝑒𝑟)

⊢ 𝑓 : 𝑓 𝑖𝑒𝑙𝑑 ↩→ 𝜒 𝑓 𝜒 𝑓 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠

⊢ 𝑥 : 𝑠𝑡𝑟𝑢𝑐𝑡{𝑓 : 𝑓 𝑖𝑒𝑙𝑑}⇝ 𝜒 : 𝑅𝑒 𝑓
(𝑆𝑡𝑟𝑢𝑐𝑡) ⊢ 𝑠 ↩→ 𝜔

⊢ 𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒 𝑝 (){𝑠}⇝ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑝 (){𝜔}
(𝑃𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒)

⊢ 𝑥 ↩→ 𝜒 ⊢ 𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒 ⇝ 𝜔𝑠𝑡𝑎𝑡𝑒

𝜔𝑝𝑎𝑟𝑠𝑒𝑟 ≡ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑝 (𝜒){𝑐𝑎𝑙𝑙 𝑠𝑡𝑎𝑟𝑡 (); }

⊢ 𝑝𝑎𝑟𝑠𝑒𝑟 𝑝 (𝑥){𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒}⇝ 𝜔𝑝𝑎𝑟𝑠𝑒𝑟 ; 𝜔𝑠𝑡𝑎𝑡𝑒

(𝑃𝑎𝑟𝑠𝑒𝑟)

𝑎𝑐𝑡𝑖𝑜𝑛_𝑟𝑢𝑛𝑡 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠 𝑎𝑐𝑡 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛

𝜔𝑠𝑒𝑙𝑒𝑐𝑡𝑎𝑐𝑡 ≡ 𝑖 𝑓 (𝑎𝑐𝑡𝑖𝑜𝑛_𝑟𝑢𝑛𝑡 == 𝑎𝑐𝑡) 𝑐𝑎𝑙𝑙 𝑎𝑐𝑡 ();
𝜔 ≡ ℎ𝑎𝑣𝑜𝑐 𝑎𝑐𝑡𝑖𝑜𝑛_𝑟𝑢𝑛𝑡 ; 𝜔𝑠𝑒𝑙𝑒𝑐𝑡𝑎𝑐𝑡

⊢ 𝑡𝑎𝑏𝑙𝑒 𝑡 (𝑘𝑒𝑦, 𝑎𝑐𝑡𝑖𝑜𝑛) ⇝ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑡 (){𝜔}
(𝑇𝑎𝑏𝑙𝑒)

⊢ 𝑥 ↩→ 𝜒 ⊢ 𝑠 ↩→ 𝜔

⊢ 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎(𝑥){𝑠}⇝ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑎(𝜒){𝜔}
(𝐴𝑐𝑡𝑖𝑜𝑛)

⊢ 𝑥 ↩→ 𝜒 ⊢ 𝑠 ↩→ 𝜔

⊢ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑐 (𝑥){𝑎𝑝𝑝𝑙𝑦{𝑠}}⇝ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑐 (𝜒){𝜔}
(𝐶𝑜𝑛𝑡𝑟𝑜𝑙)

Figure 6: The translation rules of P4 declarations

operations on the resulting expressions. The translation of casting
considers the size of the source and destination types and decides
to add zeros or perform slicing. Field accessing uses the reference
to a header or a struct to access the value.

Declarations (Figure 6). The declaration of variable 𝑥 is written
as 𝑥 : 𝑡𝑦𝑝𝑒 . For header and structure declarations, we first translate
each field and then add the translated variables to the global variable

set 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠 . The translation of fields follows the rules of types
above, and each field is translated to a new variable. P4 parsers,
states, actions, and controls are similar to functions in high-level
languages and are translated to Boogie procedures. Note that the
parser always calls the 𝑠𝑡𝑎𝑟𝑡 state first. The translation of P4 tables
is complex because we need to simulate the matching process. Since

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Chong Ye and Fei He

⊢ 𝑒 ↩→ 𝜖 ⊢ 𝑠1 ⇝ 𝜎1 ⊢ 𝑠2 ⇝ 𝜎2

⊢ 𝑖 𝑓 (𝑒){𝑠1} 𝑒𝑙𝑠𝑒{𝑠2}⇝ 𝑖 𝑓 (𝜖){𝜎1} 𝑒𝑙𝑠𝑒{𝜎2}
(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

⊢ 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒 ⇝ 𝑐𝑎𝑙𝑙 𝑝𝑎𝑟𝑠𝑒𝑟𝑆𝑡𝑎𝑡𝑒 ();
(𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛)

⊢ 𝑒1 ↩→ 𝜖1 ⊢ 𝑒2 ↩→ 𝜖2
⊢ 𝑒1 := 𝑒2 ⇝ 𝜖1 := 𝜖2

(𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)
𝑑𝑟𝑜𝑝 : 𝑏𝑜𝑜𝑙 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠

⊢𝑚𝑎𝑟𝑘_𝑡𝑜_𝑑𝑟𝑜𝑝 () ⇝ 𝑑𝑟𝑜𝑝 := 𝑡𝑟𝑢𝑒
(𝐷𝑟𝑜𝑝)

⊢ 𝑥 ↩→ 𝜒 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 : [𝑅𝑒 𝑓]𝑏𝑜𝑜𝑙 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠

⊢ 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 (𝑥 : ℎ𝑒𝑎𝑑𝑒𝑟) ⇝ 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 [𝜒] := 𝑡𝑟𝑢𝑒
(𝐸𝑥𝑡𝑟𝑎𝑐𝑡)

⊢ 𝑥 ↩→ 𝜒 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 : [𝑅𝑒 𝑓]𝑏𝑜𝑜𝑙 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠

⊢ 𝑠𝑒𝑡𝑉𝑎𝑙𝑖𝑑 (𝑥 : ℎ𝑒𝑎𝑑𝑒𝑟) ⇝ 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 [𝜒] := 𝑡𝑟𝑢𝑒
(𝑆𝑒𝑡𝑉𝑎𝑙𝑖𝑑)

⊢ 𝑥 ↩→ 𝜒 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 : [𝑅𝑒 𝑓]𝑏𝑜𝑜𝑙 ∈ 𝐺𝑙𝑜𝑏𝑎𝑙𝑉𝑎𝑟𝑠

⊢ 𝑠𝑒𝑡𝐼𝑛𝑣𝑎𝑙𝑖𝑑 (𝑥 : ℎ𝑒𝑎𝑑𝑒𝑟) ⇝ 𝑖𝑠𝑉𝑎𝑙𝑖𝑑 [𝜒] := 𝐹𝑎𝑙𝑠𝑒
(𝑆𝑒𝑡𝐼𝑛𝑣𝑎𝑙𝑖𝑑)

⊢ 𝑥 ↩→ 𝜒 ⊢ 𝑒1 ↩→ 𝜖1 ⊢ 𝑒2 ↩→ 𝜖2
𝜔 ≡ ℎ𝑎𝑣𝑜𝑐 𝜒 ; 𝑎𝑠𝑠𝑢𝑚𝑒 (𝜖1 ≤ 𝜒 ≤ 𝜖2)

⊢ ℎ𝑎𝑠ℎ(𝑥, 𝑒1, 𝑒2) ⇝ 𝜔
(𝐻𝑎𝑠ℎ)

Figure 7: The translation rules of P4 statements

Table 1: Translation and Verification Results

P4File loc table action control parser state translation time (s) total time (s) bugs (p4b) bugs (bf4)
07-FullTPHV2.p4 788 6 2 5 1 0.01962 0.63858 0 0
05-FullTPHV.p4 834 6 2 5 1 0.02548 0.69951 0 0
08-FullTPHV3.p4 1051 6 2 5 1 0.01508 1.05674 0 0
header-stack-ops-bmv2.p4 1424 84 168 8 3 0.02002 1.47222 0 0
block.p4 5767 110 381 70 67 1.05362 22.1443 > 50 160
switch.p4 6473 129 460 77 66 1.39436 27.2275 > 85 176
...
total (170) 35955 678 1516 1000 446 2.808283 95.415345 > 189 511

forwarding rules are not provided, we regard the matching process
as random and select an action to execute randomly.

Statements (Figure 7). We use 𝑠 and 𝜔 to represent statements
of P4 and Boogie, respectively. The translation of assignment and
condition statements is trivial. Transitions are translated to method
calls. API functions are translated to Boogie functions.𝑚𝑎𝑟𝑘_𝑡𝑜_𝑑𝑟𝑜𝑝
marks the packet to be dropped. 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 , 𝑠𝑒𝑡𝑉𝑎𝑙𝑖𝑑 , and 𝑠𝑒𝑡𝐼𝑛𝑣𝑎𝑙𝑖𝑑
change the header validity. ℎ𝑎𝑠ℎ assigns the 𝑥 randomly.

To improve the practicality of P4b, we automatically insert asser-
tions for header validity[14], which is the most concerned property
in current P4 verification studies. Header validity requires P4 head-
ers to be valid before being accessed, avoiding access to uninitialized
memory. We insert an assertion before each header access.

4 IMPLEMENTATION AND EVALUATION
We implemented P4b using about 2000 lines of C code. P4b works as
the back-end of the compiler p4c [7]. First, we reuse the front-end
of p4c, which parses a P4 program into AST. Then we follow the
translation rules to translate P4 into Boogie.

We collected 170 publicly available P4 programs from GitHub
and literature [10, 15]. These programs cover most of the language
features of P4, including headers definition, match-action pipeline,
forwarding behaviors, etc. All experiments were performed on a
laptop with an Intel Core i7-7700HQ CPU and 8GB RAM.

Table 1 shows the experimental results of the six largest pro-
grams and a summary of full benchmarks. The first six columns
show the basic information. The next two columns show the exe-
cution time of our translator and the total tool. Note that the total
time contains the time of the front-end and the translator. The

results show that most time is spent on the front-end, proving our
tool’s efficiency. We also check the syntax correctness, and experi-
ments show that our translation results can be parsed and verified
by the most popular Boogie back-ends, i.e., the Boogie verifier[1],
Corral[11], and Symbooglix[13].

We also compared our tool with bf4 [9] for verifying header
validity. We verified with Boogie back-ends and found more than
189 bugs. After manual confirmation, these bugs we reported are
real bugs also found by bf4, proving the basic correctness of our
translation process. The verification timeout is 4 hours. For large
P4 programs such as switch.p4, Boogie back-ends cannot finish in 4
hours, so we report fewer bugs than bf4. Boogie back-ends perform
general algorithms, but bf4 provides efficient algorithms for P4
verification, which is beyond the design purpose of our translator
and may be studied in our future work.

5 CONCLUSION
This paper presents P4b, a tool that translates network data plane
programs written in P4 to Boogie following the forwarding model.
After translation, we can insert assert statements to describe de-
sired properties. We currently consider action matching to be ran-
dom. In future work, we plan to add abstraction and provide APIs
to describe constraints for the control plane.

ACKNOWLEDGMENTS
This work was supported in part by the National Key Research
and Development Program of China (No. 2018YFB1308601), and
the National Natural Science Foundation of China (No. 62072267
and No. 62021002).

P4b: A Translator from P4 Programs to Boogie ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

REFERENCES
[1] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-

tan M. Leino. 2005. Boogie: A Modular Reusable Verifier for Object-Oriented
Programs. In Formal Methods for Components and Objects, 4th International Sym-
posium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 2005, Revised
Lectures (Lecture Notes in Computer Science, Vol. 4111), Frank S. de Boer, Mar-
cello M. Bonsangue, Susanne Graf, and Willem P. de Roever (Eds.). Springer,
364–387. https://doi.org/10.1007/11804192_17

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: programming protocol-independent packet processors.
Computer Communication Review 44, 3 (2014), 87–95. https://doi.org/10.1145/
2656877.2656890

[3] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric.
2007. A Reachability Predicate for Analyzing Low-Level Software. In Tools
and Algorithms for the Construction and Analysis of Systems, 13th International
Conference, TACAS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4424), Orna Grumberg and Michael Huth
(Eds.). Springer, 19–33. https://doi.org/10.1007/978-3-540-71209-1_4

[4] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. 2009. VCC: A
Practical System for Verifying Concurrent C. In Theorem Proving in Higher Order
Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, August
17-20, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5674). Springer,
23–42. https://doi.org/10.1007/978-3-642-03359-9_2

[5] P4 Langhuage Consortium. 2018. 𝑃414 language specifcation. https://p4.org/p4-
spec/p4-14/v1.1.0/tex/p4.pdf

[6] P4 Langhuage Consortium. 2022. 𝑃416 language specifcation. https://p4.org/p4-
spec/docs/P4-16-v-1.2.3.html

[7] P4 Langhuage Consortium. 2023. P4 reference compiler. https://github.com/
p4lang/p4c

[8] Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander Chang,
Newton Ni, Samwise Parkinson, Rudy Peterson, Alaia Solko-Breslin, Amanda
Xu, and Nate Foster. 2021. Petr4: formal foundations for p4 data planes. Proc.
ACM Program. Lang. 5, POPL (2021), 1–32. https://doi.org/10.1145/3434322

[9] Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin Raiciu. 2020.
bf4: towards bug-free P4 programs. In SIGCOMM ’20: Proceedings of the 2020

Annual conference of the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer communication,
Virtual Event, USA, August 10-14, 2020, Henning Schulzrinne and Vishal Misra
(Eds.). ACM, 571–585. https://doi.org/10.1145/3387514.3405888

[10] Lucas Freire, Miguel C. Neves, Lucas Leal, Kirill Levchenko, Alberto E. Schaeffer
Filho, and Marinho P. Barcellos. 2018. Uncovering Bugs in P4 Programs with
Assertion-based Verification. In Proceedings of the Symposium on SDN Research,
SOSR 2018, Los Angeles, CA, USA, March 28-29, 2018. ACM, 4:1–4:7. https://doi.
org/10.1145/3185467.3185499

[11] Akash Lal, Shaz Qadeer, and Shuvendu Lahiri. 2011. Corral: A whole-program
analyzer for Boogie. In These informal proceedings contain the papers presented
at BOOGIE 2011, the First International Workshop on Intermediate Verification
Languages held on 1 August 2011 in Wroc law. There were 8 submissions. Each
submission was reviewed by at least 3 pro-gram committee members. The committee
decided to accept 7 papers, repre. Citeseer, 78.

[12] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional
Correctness. In Logic for Programming, Artificial Intelligence, and Reasoning - 16th
International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised
Selected Papers (Lecture Notes in Computer Science, Vol. 6355), Edmund M. Clarke
and Andrei Voronkov (Eds.). Springer, 348–370. https://doi.org/10.1007/978-3-
642-17511-4_20

[13] Daniel Liew, Cristian Cadar, and Alastair F Donaldson. 2016. Symbooglix: A sym-
bolic execution engine for Boogie programs. In 2016 IEEE International Conference
on Software Testing, Verification and Validation (ICST). IEEE, 45–56.

[14] Jed Liu, William T. Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee,
Robert Soulé, Han Wang, Calin Cascaval, Nick McKeown, and Nate Foster. 2018.
p4v: practical verification for programmable data planes. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, SIGCOMM
2018, Budapest, Hungary, August 20-25, 2018, Sergey Gorinsky and János Tapolcai
(Eds.). ACM, 490–503. https://doi.org/10.1145/3230543.3230582

[15] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. 2018. Debugging P4 programs with vera. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication, SIGCOMM
2018, Budapest, Hungary, August 20-25, 2018, Sergey Gorinsky and János Tapolcai
(Eds.). ACM, 518–532. https://doi.org/10.1145/3230543.3230548

Received 2023-05-11; accepted 2023-07-20

https://doi.org/10.1007/11804192_17
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1007/978-3-540-71209-1_4
https://doi.org/10.1007/978-3-642-03359-9_2
https://p4.org/p4-spec/p4-14/v1.1.0/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.1.0/tex/p4.pdf
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://doi.org/10.1145/3434322
https://doi.org/10.1145/3387514.3405888
https://doi.org/10.1145/3185467.3185499
https://doi.org/10.1145/3185467.3185499
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230548

	Abstract
	1 Introduction
	2 Backgrounds
	2.1 P4 Syntax
	2.2 Boogie Syntax
	2.3 Forwarding Model

	3 Translator Design
	4 Implementation and Evaluation
	5 Conclusion
	Acknowledgments
	References

