
Reusing Search Tree for Incremental SAT Solving of
Temporal Induction

Liangze Yin, Fei He, Min Zhou and Ming Gu
Key Laboratory for Information System Security, Ministry of Education

Tsinghua National Laboratory for Information Science and Technology

School of Software, Tsinghua University, Beijing 100084, PR China

Emails: yinliangze@163.com, {hefei, guming}@tsinghua.edu.cn, zhoumin03@mails.tsinghua.edu.cn

Abstract—Temporal induction is a SAT-based model checking
technique. We prove that the SAT instances generated by its
induction rule can be reduced to the so called Incremental CNFs.
A new DPLL procedure is customized for Incremental CNFs,
so that the intermediate results in solving previous instances,
including the learnt clauses and the search tree, can be reused
in solving the next instance. To the best of our knowledge, this
is the first result on reusing the search tree in SAT solving of
temporal induction. Experimental results on a large number of
benchmarks show significant performance gain of our approach.

Keywords—search tree; Incremental SAT; bounded model
checking; temporal induction;

I. INTRODUCTION

Bounded model checking (BMC) [1] [2] has made great
success in both hardware and software verification. With the
help of a SAT solver, it limits the search within a bounded
length, and then reduces the model checking to a propositional
satisfiability problem. Temporal induction [3] [4] [5] [6] is an
enhancement to the bounded model checking. It can not only
find the counterexamples, but can also prove the correctness.

Given a safety property, the temporal induction proof
consists of two parts: the base case and the induction step.
The base case states that the property should hold on all states
that are reachable within k cycles from the initial states. The
induction step states that the property should hold on the
(k + 1)-th state whenever it holds on k consecutive states.
The length k is initialized to be 0, and increases by 1 each
time, until either a counterexample is found or the property is
verified.

With different values of k, the temporal induction proof
gives off a series of SAT instances. Note that these SAT
instances are generated by the same induction rule, and they
are much similar in their structures. There are some works on
exploiting the similarity of these SAT instances [6] [7] [8] [9]
[10]. However, in all existing works, only learnt clauses are
reused to help solving the next instance.

We prove in this paper that the SAT instances generated by
the induction step can be reduced to the so called Incremental
CNFs. With the Incremental CNFs, we observed that the
counterexample (solution) for the instance of length k can
possibly be extended (or is close to be extended) to the instance
of length k+1, which in practice can reduce the running time
of temporal induction on the designs with the large total time

of intermediate induction queries. Based on this observation,
we customize the DPLL procedure for Incremental CNFs so
that the search tree of the previous instance can be reused.
Given a new instance, the modified DPLL procedure starts
the search from the last node of the former SAT solving, and
then continues to traversal the search space. However, in each
new iteration, some unit clauses might be added incrementally,
which makes the search process backtrack to the 0-th decision
level and consequently results in the whole search tree been
cleared. To make maximal use of the previous search tree, a
preprocessing step is proposed to eliminate unit clauses from
the increments.

To the best of our knowledge, this is the first work on
reusing the search tree in solving incremental SAT instances
of temporal induction. The temporal induction by incremental
SAT solving has been proposed in [6]. But their approach
reuses the learnt clauses only. We implement our ideas in
NuSMV, and compare it with the approaches in [6]. Ex-
perimental results on benchmarks of HWMCC’2011 show
significant performance gain of our approach over theirs.

The rest of this paper is organized as follows. Section
2 briefly reviews temporal induction and SAT. Section 3
introduces our incremental SAT solving algorithm. Section
4 describes our method to reduce the temporal induction to
incremental CNFs. The experimental results are reported in
Section 5. Finally the paper is concluded in Section 6.

A. Related Works

Many research studies have been conducted on exploiting
the similarity of the SAT problems in BMC. In [9], Shtrichman
suggests adding replicated learnt clauses, some new clauses
symmetric to the original learnt clauses. In [10], Wang et al.
proposes to determine the variable decision order of the current
problem by analyzing all previous unsatisfiable instances. An-
other successful technique is solving the sequence of problems
incrementally by an incremental satisfiability engine [6] [7]
[8]. This idea is based on the fact that most of the SAT
solvers can learn learnt clauses, which act as a cache for the
same type of conflicts in later search parts. The motivation for
incremental temporal induction is that the learnt clauses are
not only useful in later search parts of the same SAT problem,
but can also be used in later similar problems.

An incremental SAT solver is proposed in [11], which
reuses the search tree in solving a series of SAT instances.
Their idea for incremental SAT solving is similar to ours.

2013 International Conference on Engineering of Complex Computer Systems

978-0-7695-5007-7/13 $26.00 © 2013 IEEE

DOI 10.1109/ICECCS.2013.21

85

However, we further utilize the incremental SAT solving
to perform temporal induction. Additionally, their approach
requires that the new coming SAT instance has exactly one
more clause than the former instance. Our approach loosens
this constraint and the increment can contain a set of clauses.
Consequently, when a new clause is added, [11] tries to find a
solution as soon as possible, while our algorithm backtracks to
the first point making the clause unit if it is a unit or conflict
clause. Our approach is more efficient in cases where a large
number of clauses need to be added.

Another work related to ours is the random restarts [12]
[13], which has also been considered as a successful im-
provements in modern SAT solvers. It frequently clears the
search tree and backtracks to the top level to avoid the “heavy
tails” phenomenon [13]. On the surface, our work is contrary
to this technique, for that we try to reuse the search tree
while it clears the search tree. But in fact, our work can be
combined with it effectively. Our motivation is to extend the
counterexample of the previous instance to the next instance.
If the counterexample can be extended, a solution for the next
instance can be found quickly; otherwise it will leads to the
“heavy tails” phenomenon, and the restarts technique will clear
the search tree and restart the search process.

II. PRELIMINARIES

A. Temporal Induction

A Finite State Machine (FSM) is a triple
M(x, I(x), T (x,x′)), where x is the set of variables,
I(x) is the initial condition predicate and T (x,x′) is the
transition relation predicate. Throughout the paper, we assume
|x| = n, and let x = {x0, x1, . . . , xn−1}. A valuation of x
gives a state of M . We use subscripts to denote the cycles,
with xi (i ≥ 0) being a copy of x, representing the state
variables at the i-th cycle. In this paper, the computation
tree logic (CTL) [14] [15] is used to specify the properties.
Given a propositional formula P (x), AGP (x) denotes a
safety property on M , which states that P (x) holds at every
reachable state of M . Another operator AX specifies that a
property holds in the second state of all the path. We can
write AGP (x) = P (x) ∧AXAGP (x). Temporal induction
focuses on the safety property verification on FSMs. In the
following, we do not distinguish P (x) from AGP (x). We
use Ii, Ti, Pi as a shorthand to denote I(xi), T (xi,xi+1),
and P (xi), respectively. The temporal induction with length
k consists of two steps: Basek and Inductk, which are
formulated as:

Basek = I0 ∧ (
∧k−1

i=0 (Ti ∧ Pi)) ∧ (¬Pk)

Inductk = (
∧k

i=0(Ti ∧ Pi)) ∧ (¬Pk+1) ∧ Uniquek+1

Uniquek = (
∧

0≤i<j≤k xi �= xj)

= (
∧

0≤i<j≤k(
∨n−1

t=0 (x
t
i �= xtj)))

(1)

The basic temporal induction algorithm is demonstrated
in Algorithm 1, which has been proved sound and complete
[6]. In this algorithm, solve(f) computes the satisfiability of
formula f , and length k keeps increasing monotonically until
either Basek becomes satisfiable (a counterexample is found)

or Inductk turns unsatisfiable (the property is proved to be
true).

Algorithm 1 Een-Sorensson

Input: InitState I0, Transition T , Property P
1: for k = 0 to ∞ do
2: if solve(Basek) == SAT then
3: return Property P is false
4: end if
5: if solve(Inductk) == UNSAT then
6: return Property P is true
7: end if
8: end for

B. SAT Solving

Most modern SAT solvers take conjunctive normal form
(CNF) as input. Given a propositional variable x, a literal
is either the positive- or negative-form of x. Given a literal
l, var(l) is used to denote the variable of l. A CNF is a
conjunction of clauses, where each clause is a disjunction
of literals. In this paper, a CNF f is represented by a tuple
〈Xf , CLf 〉, which denote the variable set and clause set of f
respectively. Given a CNF f , an assignment τ is a valuation of
Xf . Specially, if just a part of the variables in Xf are assigned,
then τ is called a partial assignment. For each variable x ∈ Xf ,
τ(x) is used to denote the value of x in τ . Given τ , an
assignment (or a partial assignment) of CNF f , and a clause
C ∈ CLf , τ conflicts C iff C is false in τ ; otherwise, if C
is true in τ , then we say that τ satisfies C; τ conflicts f iff
∃C ∈ CLf so that τ conflicts C; τ satisfies f iff ∀C ∈ CLf , τ
satisfies C. Any propositional formula f can be converted into
CNF f in linear time by importing intermediate variables [16]
[17] [18] [19]. In most of the CNF conversion algorithms,
a new name is given to every subformula of f , which is
known as the definitional clause, and the resulting CNF is
equisatisfiable to the original formula f . For example, formula
f = ((a ∧ b) ∨ c) ∧ d can be represented by formula set
S = {x ⇔ a ∧ b, y ⇔ x ∨ c, z ⇔ y ∧ d, z} where each
subformula t ∈ S can be converted to clauses trivially. Here
{x, y, z} is the imported intermediate variable set, and z, the
new name of formula f , is called the formula literal of f .

Most modern SAT solvers are based on the DPLL algo-
rithm [20] [21]. It is a Depth-First-Search (DFS) algorithm on
exploration of the variable space, which implicitly transverse
the search space of 2n possible assignments to the problem
variables. The paths traversed by the DFS algorithm establish
a tree gradually, which is called the search tree. At each node
of the search tree, the DPLL algorithm selects a variable
and assigns it true or false; this process is called making a
decision. The depth when a variable x is assigned is called
the decision level of x. A clause is unit iff it has only one
free (unassigned) literal and all the other literals are false. The
free literal of a unit clause must be set true to make the clause
satisfiable; this is called the Unit Clause Rule. The process
of applying the Unit Clause Rule iteratively is called Boolean
Constrain Propagation (BCP). A clause is a conflict clause iff
all its literals are false. A conflict is encountered in the search
process iff some conflict clause is found. The DPLL algorithm
iteratively makes decisions and applies BCP, until either a
satisfiable assignment is found or a conflict is encountered.

86

If it is the latter case, it backtracks and makes a new decision
unless the search space is fully explored, which indicates that
the CNF is unsatisfiable. In the last decades, clause learning
has been substantiated as the most popular technique in modern
SAT solvers. It is based on the idea that whenever a conflict is
detected during the search process, it analyzes the reason for
the conflict that can be encoded as a clause (the learnt clause).
All the learnt clauses are managed in a learnt clause database,
which acts as a cache to prune the search space in the later
parts.

In the search tree of the DPLL algorithm, every path
from the root to a leaf node is an assignment (or a partial
assignment) of the CNF. In modern SAT solvers, these paths
are implicitly represented by the variable assignments when
a conflict is encountered or the search process ends. If the
problem is satisfiable, then all the assignments corresponding
to these paths conflict the CNF, except the one from the root
to the last node examined.

III. INCREMENTAL SAT SOLVING WITH SEARCH TREE

REUSED

Definition 1 (f1 < f2): For two CNFs f1, f2, f1 < f2 iff
CLf1 ⊂ CLf2 and Xf1 ⊆ Xf2 .

Let Incf1,f2 = CLf2 \ CLf1 . Obviously, Incf1,f2 �= ∅ if
f1 < f2.

Theorem 1: Given two CNFs f1, f2 where f1 < f2, for any
partial assignment τ of f1, if τ conflicts with f1, then τ conflicts
with f2.

Proof: Since τ conflicts f1, there must exist a clause C ∈
CLf1 so that C is false in τ . According to the definition of
f1 < f2, CLf1 ⊂ CLf2 , then C ∈ CLf2 . Thus τ conflicts with
f2.

Given two CNFs f1, f2 where f1 < f2, Theorem 1 gives
us the possibility to conclude f2’s unsatisfiability from f1’s
unsatisfiability. The reverse does not hold. If f1 is satisfiable,
we cannot directly decide whether f2 is satisfiable or not.

Theorem 2: Given two CNFs f1, f2 where f1 < f2, suppose
f1 is satisfiable, Ψ is the set of assignments corresponding to
the paths in f1’s search tree which start from the root and end at
a leaf node, and τ0 is the assignment corresponding to the path
from the root to the last node examined, then ∀τ ∈ {Ψ \ τ0},
τ conflicts with f2.

Proof: Since f1 is satisfiable, ∀τ ∈ {Ψ \ τ0}, τ conflicts
with f1. According to Theorem 1, ∀τ ∈ {Ψ \ τ0}, τ conflicts
with f2.

From Theorem 2, if f1 is satisfiable and we are going to
determine f2’s satisfiability, then the search tree of f1 can be
reused. As the search tree does not explicitly exists in modern
SAT solvers, reusing the search tree here means that there
is no need to look again at any path that has already been
traversed in solving f1, except the path from the root to the
last node examined. So it is possible for us to keep all middle
results in solving f1. In addition to conflict clauses (used in
the previous work), the current state of the decision stack
and all the propagations, etc, can also be reused. To solve f2,
we simply add Incf1,f2 to the solver, and continue the search
process from the last node examined.

Definition 2 (Incremental CNFs): Given a set of CNFs
F = {f1, f2, · · · , fn}, F is a set of incremental CNFs iff
∀i(1 ≤ i < n), fi < fi+1.

If a series of incremental CNFs F = {f1, f2, · · · , fn} is to
be solved sequentially, then for any i < n, we can continue
the search process of fi to solve fi+1. Algorithm 2 outlines
our algorithm Incremental-Solving for incremental CNFs F =
{f1, f2, · · · , fn}, which supports reusing the search tree of fi to
speed up the solving of fi+1 (i < n). It returns false (Line 11)
if all the CNFs are satisfiable, and returns true (Line 8) if
there is an index i (1 ≤ i ≤ n) such that ∀j(j ≥ i) fj is
unsatisfiable, and ∀j(j < i) fj is satisfiable.

Algorithm 2 Incremental-Solving

Input: Incremental CNFs F = {f1, f2, · · · , fn}
1: s = new satSolver()
2: s.addClause(CLf1)
3: for i = 1 to n do
4: ret = s.incSolve()
5: if ret == SAT then
6: s.furtherAddClauses(Incfi,fi+1

)
7: else
8: return true
9: end if

10: end for
11: return false

Note that from the beginning to the end, the Incremental-
Solving algorithm has only one solver instance s. Function
addClause adds a set of clauses to the solver instance when the
search tree is empty, while furtherAddClauses adds clauses
after the solver instance starts its search process. Function
incSolve continues the search process of the solver instance.
When incSolve returns, it does not clear the search tree or
any clauses learnt in the solving process of previous CNFs.
The incSolve() function returns true if the current problem is
satisfiable, and false otherwise.

A. Modified DPLL Procedure

This section customizes the DPLL procedure to support
search tree reuse. Note this technique can easily be applied
to any modern SAT solver if only it is based on the DPLL
procedure.

From Algorithm 2, to conform our Incremental-Solving
algorithm, the SAT solver should have two special functions:
incSolve and furtherAddClauses . Function incSolve contin-
ues its search from the last node of the previous solving, which
requires the SAT solver to keep all its data structures after
solving one problem, including its search tree, learnt clauses,
and variable assignments, etc. Function furtherAddClauses
provides the scheme of adding some new clauses to a solver
instance that has already started its search process. As it is
believed in modern SAT solvers that the earlier a unit clause
is found, the more search space it may prune. So if some clause
C is found to be unit when added to the solver, we backtrack
to the first point making it unit, and assign the unassigned
literal true. If C is found to be a conflict clause, as it should
be found to be unit as soon as there is only one unassigned
literal, we backtrack to that point and assign the unassigned
literal true.

87

Algorithm 3 outlines the procedure for furtherAddClauses
function. In this algorithm, C is a clause with no duplicate
literals, and |C| is the number of literals in C. Function
backtrack(lv) backtracks to level lv; assign(lit) assigns literal
lit true; clauseAdd(C) adds clause C to the original clause
set. It returns true (Line 20) if C is added correctly, and
returns false (Line 2, 7) if the problem in the solver instance is
UNSAT . The crucial function is UnitPointAnalysis (Line 5),
which analyzes the first point making C unit if C is a unit or
conflict clause. If C is a unit clause when adding to the solver
instance, let l be its last literal to be assigned false, then C
should become unit as soon as l is assigned, thus the decision
level of l is the first point making C unit. If C is a conflict
clause, then it should be unit when the literal with the second
maximal decision level is assigned, and the literal with the
maximal decision level is the unassigned literal at that point.
Specially, if the two maximal decision level literals have the
same decision level lv, then we backtrack to lv− 1, and there
are two unassigned literals at that point. The procedure for
UnitPointAnalysis function is shown in Algorithm 4. Here
var(l) is the variable of literal l; level(x) is the decision level
of variable x; l1 and l2 are the two literals of C with the
maximal and the second maximal decision level respectively.

Algorithm 3 Further-Add-Clause

Input: Solver s, Clause C
1: if |C| == 0 then
2: return false
3: else
4: if C is a unit or conflict clause then
5: lv = UnitPointAnalysis(s, C)
6: if lv < 0 then
7: return false
8: else
9: s.backtrack(lv)

10: s.clauseAdd(C)
11: if C is a unit clause then
12: let l be the unassigned literal
13: s.assign(l)
14: end if
15: end if
16: else
17: s.clauseAdd(C)
18: end if
19: end if
20: return true

IV. REDUCE INDUCTION STEP TO INCREMENTAL CNFS

The SAT instances generated by the the temporal induction
are highly related. This section focuses on the problems in
the induction step, and tries to convert them into incremental
CNFs by variable substitution, then they can be solved by our
Incremental-Solving algorithm.

In the following, we let

θk = (
k∧

i=0

(Ti ∧ Pi)) ∧ (¬Pk+1)

ψk = (¬P0) ∧ (
k∧

i=0

(T ′i) ∧ Pi+1))

Algorithm 4 Unit-Point-Analysis

Input: Solver s, Clause C
1: assert(C is a unit or conflict clause)
2: if C is a unit clause then
3: if |C| == 1 then
4: return 0
5: else
6: return level(var(l1))
7: end if
8: else if C is a conflict clause then
9: if level(var(l1)) > level(var(l2)) then

10: return level(var(l2))
11: else
12: assert(level(var(l1)) == level(var(l2)))
13: return level(var(l2))− 1
14: end if
15: else
16: return Error
17: end if

where T ′i = T (Xi+1, Xi).

Theorem 3: The satisfiability of θk and that of ψk are
equivalent.

Proof: Suppose x = {x0, x1, . . . , xn−1} is the variable
set of the model. Consider formula θk, if we substitute each
variable xti (0 ≤ t < n and 0 ≤ i ≤ k+1) in θk with xtk+1−i,
then we can get ψk. As we didn’t change the structure of the
formula, if there exists a solution τ for θk, then τ ′ must be
a solution of ψk, where τ(xti) = τ ′(xtk+1−i) (0 ≤ t < n,
0 ≤ i ≤ k + 1). The converse is also true, i.e., if there exists
a solution τ ′ for ψk, then τ must be the solution of θk.

Thus the satisfiability of ψk and θk is equivalent.

Theorem 4: The satisfiability of θk ∧Uniquek+1 and that
of ψk ∧ Uniquek+1 are equivalent.

Proof: We first prove that if θk∧Uniquek+1 is satisfiable
then ψk∧Uniquek+1 is satisfiable too. Suppose τ is one of the
solutions of θk ∧ Uniquek+1, let τ ′ be the assignment where
τ(xti) = τ ′(xtk+1−i) (0 ≤ t < n, 0 ≤ i ≤ k+1). As τ satisfies
θk, according to the analysis in the proof of Theorem 3,
τ ′ satisfies ψk. As τ satisfies Uniquek+1, according to the
symmetrical structure of τ and τ ′, τ ′ satisfies Uniquek+1 too.
Thus τ ′ is a solution of ψk∧Uniquek+1, and ψk∧Uniquek+1
is satisfiable.

Similarly, if ψk ∧ Uniquek+1 is satisfiable then we can
prove that θk ∧ Uniquek+1 is satisfiable too.

Therefore, the satisfiability of θk ∧Uniquek+1 and that of
ψk ∧ Uniquek+1 is equivalent.

Based on Theorem 4, instead of checking the satisfiability
of Inductk = θk ∧ Uniquek+1, we can check the satisi-
fiability of Induct ′k = ψk ∧ Uniquek+1. This approach is
also mentioned in [6], which is called “growing the trace
backwards” in its Dual algorithm. It is easy to see that
Induct ′k = Induct ′k−1 ∧ F(i−1,i) where F(i−1,i) = (Pi+1 ∧
T ′i)∧ (

∧
0≤i<k+1(xi �= xk+1)). After converting the problems

of Induct ′k (k ≥ 0) into CNFs, it is easy to make them to

88

be incremental CNFs, and then they can be solved by our
Incremental-Solving algorithm.

A. Incremental Clause Set Preprocess

The notable feature of our algorithm is that it can reuse the
search tree of the previous problem. But according to Further-
Add-Clause algorithm in Algorithm 3, if there exists some
clause C so that UnitPointAnalysis(s, C) == 0, then the
SAT solver backtracks to the top level, and clears the current
search tree.

According to Algorithm 4, UnitPointAnalysis returns 0 if
C is a unit clause at the top level. It can be divided into two
cases:

1) C is a one-literal-clause (|C| == 1).
2) |C| > 1, but at the top level it has only one

unassigned literal, and all the other literals are false.

These cases are familiar in real problems. For example, for
any i ≥ 1, when adding clauses in Incfi−1,fi to the solver
instance, the definitional clause of the increment is just in
the first case, which contains only the formula literal of the
increment. This section tries to avoid these cases according to
the characteristics of the temporal induction, so that the search
tree can be reused to a certain extent. Our idea is to eliminate
these clauses from the increments before they are added to the
solver instance, in precondition of keeping the satisfiability of
Induct ′j (j ≥ i).

Definition 3 (Literal Elimination): Given a CNF f =
〈Xf , CLf 〉 and a literal lit, eliminating lit from f means:
∀C ∈ CLf , if C contains ¬lit then remove ¬lit from C;
otherwise if C contains lit, then remove C from CLf .

∀C ∈ CLf where C = {lit}, eliminating lit from f
does not change the satisfiability of f . Let fi denote the
CNF of Induct ′i. To solve {Induct ′0, Induct ′1, · · · , Induct ′n}
sequentially, {CLf0 , Incf0,f1 , · · · , Incfn−1,fn} are added to the
solver instance orderly in the Incremental-Solving algorithm.
Obviously CLfi = {CLf0 , Incf0,f1 , · · · , Incfi−1,fi}. Suppose
we are going to add Incfi−1,fi , where xi is the set of state vari-
ables in cycle i, and wi is the set of imported medium variables
when converting Incfi−1,fi = (Pi+1 ∧ T ′i) ∧ (

∧
0≤i<k(Si �=

Sk)) to CNF, the following discusses how to eliminate unit
clauses in these two cases respectively:

1) |C| == 1:

Theorem 5: Suppose C = {lit} is a one-literal-clause in
Incfi−1,fi , and v = var(lit), then either v ∈ xi or v ∈ xi+1

or v ∈ wi.

Proof: As (
∧

0≤i<k+1(xi �= xk+1)) does not imply any

unit clause, C is deduced by (Pi+1 ∧ T ′i), which contains
variables only in xi and xi+1. Thus (v ∈ xi) or (v ∈ xi+1)
or (v ∈ wi).

In the following we discuss how to eliminate lit in the 3
cases listed in Theorem 5.

Theorem 6: If v ∈ wi, then eliminating lit from Incfi−1,fi
does not change the satisfiability of fj (j > i).

Proof: Since v ∈ wi, v exists only in Incfi−1,fi . So, to
CNF fj (j > i), eliminating lit from Incfi−1,fi is equivalent

with eliminating lit from CLfj . Thus it does not change the
satisfiability of fj (j > i).

Theorem 7: If v ∈ xi+1, then eliminating lit from all
Incfk−1,fk (i ≤ k ≤ j) does not change the satisfiability of
fj (j > i).

Proof: Since v ∈ xi+1, then for CLfj (j > i), v
exists only in {Incfi−1,fi , · · · , Incfj−1,fj}. So, to CNF fj ,
eliminating lit from all Incfk−1,fk (i ≤ k ≤ j) is equivalent
with eliminating lit from CLfj . Thus it does not change the
satisfiability of fj (j > i).

If v ∈ xi, then v may exists in Incfi−2,fi−1
, which has

already been added to the solver instance, so lit cannot be
eliminated. We first analyze that in which situation this case
happens. Without loss of generality, we suppose that v = xti
and lit = xti.

Theorem 8: If v ∈ xi then Pi ∧ Ti ⇒ xti+1.

Proof: As (
∧

0≤i<k+1(xi �= xk+1)) does not imply any

unit clause, then (Pi+1 ∧ T ′i) ⇒ xti. Swap xi and xi+1, then
Pi ∧ Ti ⇒ xti+1.

When we consider the satisfiability of Induct ′k, as Basej
(j ≤ k) must be unsatisfiable, Pj (j ≤ k) is always true.
According to Theorem 8, if v ∈ xi, then xtj (j ≤ k + 1) is

always true except xt0.

Suppose the model is M = {x, I(x0), T (xi,xi+1)}, to
avoid that there exists an one-literal-clause (C = {lit}) ∈
Incfi−1,fi where v = var(list) and v ∈ xi, we verify P (x) ∧
AXAGP (x) instead of AGP (x). To verify AXAGP (x),
we construct a new model M∗ which sets the second state
of M as its initial state. In M∗, the literals xtj (j ≥ 0)
are all true, so the corresponding literal can be eliminated
from the transition relation T (xi,xi+1). The new model
M∗ = {X, I∗(x1), T

∗(xi,xi+1)} can be formulated as (2),
where L is the literal set which can be deduced by Pi ∧ Ti,
and T (xi,xi+1)|L is the formula obtained by eliminating all
the literals in L from T (xi,xi+1).

{
I∗(x1) = I(x0) ∧ T (x0,x1)

T ∗(xi,xi+1) = T (xi,xi+1)|L, i ≥ 1
(2)

2) |C| > 1: Suppose lit is the unassigned literal of C and
v = var(lit), then either v ∈ wi or v ∈ xi+1 (otherwise lit
should be assigned true instead of unassigned). So lit can be
eliminated just as discussed in Theorem 6 and 7. The difference
is that to determine which clause is a unit clause at the top
level, we should know the variable assignments at the top level.
Another issue is that when a literal is eliminated, it may imply
other unit clauses, i.e., it is a propagation process, and all the
propagated literals have to be eliminated.

V. EXPERIMENTAL RESULTS

Zigzag and Dual [6] are two state-of-the-art incremental
algorithms for temporal induction. They reuse learnt clauses
only and have already been realized in NuSMV. Our al-
gorithm (named “IncUST ”) is implemented on the top of

89

Dual algorithm of NuSMV 2.5.31. In IncUST , the prob-
lems in base step are solved similarly as in Dual , and the
problems in induction step are solved by our algorithm. We
compare IncUST to both Zigzag and Dual . The SAT solver
is minisat2-v0707212. To implement our idea, the function
incSolve and furtherAddClauses discussed in Section III are
added to minisat. All experiments are conducted on a computer
with Intel(R) Core(TM) i5 CPU 2.67GHz with 4GB memory.

The test cases are taken from the main single safety/bad-
state property track (called single track for short) of HWMCC
(Hardware Model Checking Competition) 20113. The single
track has 467 instances in total, including 67 instances from
intel which are listed as symbolic links and have to be obtained
separately due to license restrictions, leaving 400 instances
available. All of these instances are in new AIGER 1.9 format.
We utilize the aiger-1.9.34 to translate the AIG file to SMV
format.

In our experiments, the time limit is set as 900 seconds.
Among the 400 instances, Zigzag algorithm can solve only
153 instances, including 110 trivial instances which can be
solved in less than one second by all algorithms. We take the
remaining 43 instances to compare IncUST to Zigzag and
Dual .

The experimental results are listed in TABLE I, where
“Benchmark” represents the instance name, “# Step” is the
number of cycles to solve this instance, “# Result” indicates the
verification result, and “Type” is a flag we used for analyzing
the results, which will be discussed later. Since the search tree
reusing works only for the induction step, we compare both
the time spent on induction step and the total runtime among
these three algorithms, which are listed in “Induct” and “Total”
columns respectively. The bold values indicate the best results
among these algorithms.

From the table we can see that, IncUST runs the fastest
for most of the instances. For induction time, there are 35
instances IncUST runs the fastest, 7 instances Dual runs the
fastest, and 1 instances Zigzag runs the fastest. For total time,
there are 29 instances IncUST runs the fastest, 8 instances
Dual runs the fastest and 6 instances Zigzag runs the fastest.
The following compares our algorithm with Zigzag and Dual
algorithm respectively in detail.

A. IncUST vs. Zigzag

Zigzag algorithm has only one SAT instance for base and
induction step together, so learnt clauses of the two steps can
be shared, which may bring some benefits for both the base
and induction step. But for two instances algorithm (Dual and
IncUST), those learnt clauses related with I0 in base step and
¬Pk+1 in induction step can also be reused. In this sense, two
instances algorithm is preferable.

The comparison of IncUST and Zigzag algorithm is
illustrated in Fig. 1, where 1(a) compares the induction time
and 1(b) compares the total time. In these two figures, the x-
axis is the instances ID in TABLE I, while the y-axis indicates

1http://nusmv.fbk.eu/
2http://minisat.se/MiniSat.html
3http://fmv.jku.at/hwmcc11/benchmarks.html
4http://fmv.jku.at/aiger/

15.00
Zigzag/IncUST

15.00�

1.00�
0 10 20 30 40 50

0.07�

(a) induction time

5.00
Zigzag/IncUST
5.00�

1.00�
0 10 20 30 40 50

0.20�

(b) total time

Fig. 1. Comparison between IncUST and Zigzag

the ratio of Zigzag’s time and IncUST ’s time. The bold line
in the two figures represents Zigzag’s time equals IncUST ’s
time. And for each instance, if the corresponding point is
above the bold line then IncUST runs faster, otherwise Zigzag
runs faster. The distance between the point and the bold line
represents the ratio degree of the two algorithms. Fig. 2 in next
section is the same. From the figure we can see that IncUST
algorithm runs faster for almost all the instance in induction
step. In the best case, it even runs 15 times faster. For the
total time, IncUST also runs faster for most instances. For
some special instances, as the base step of Zigzag may be
much faster than IncUST algorithm due to its sharing of learnt
clause between base and induction step, Zigzag wins over our
IncUST algorithm in total time.

B. IncUST vs. Dual

The only difference between IncUST and Dual algorithm
is that IncUST can reuse the search tree of Induct ′k to
help solving Induct ′k+1. Specially, when adding clauses, Dual
uses the addClause function in minisat while IncUST uses
the furtherAddClauses function; when solving the problem,
Dual uses the solve function in minisat while IncUST uses
the incSolve function; and in IncUST algorithm, all the
increments will be preprocessed as discussed in Section IV-A.
Fig. 2 demonstrates the comparison of IncUST and Dual
algorithm. From TABLE I and Fig. 2 we can see that IncUST
runs faster for most instances in both induction and total
time. In fact, as the approaches of the two algorithms in base
step are the same, the total time has the same distribution
with induction time, except the ratio is reduced. But there
are still some instances on which IncUST gets only a little
improvement or even worse. To analyze them in detail, we

90

TABLE I. EXPERIMENTAL RESULTS ON BENCHMARKS IN SINGLE TRACK OF HWMCC 2011

Benchmark # Step # Result
Zigzag Dual IncUST

Type
Induct Total Induct Total Induct Total

pdtswvqis10x6p0.smv 82 FALSE 41.06 58.93 14.73 31.76 4.22 20.92 0
pdtswvqis8x8p0.smv 66 FALSE 22.79 35.69 9.65 20.18 1.78 12.95 0
pdtswvsam6x8p0.smv 48 FALSE 12.07 23.68 16.78 31.23 4.63 18.75 0
pdtswvibs8x8p1.smv 39 TRUE 3.64 6.84 1.27 4.50 0.42 3.19 0

pdtswvroz10x6p1.smv 67 TRUE 13.75 22.38 11.98 20.53 4.82 13.24 0
pdtswvroz8x8p1.smv 55 TRUE 5.54 10.12 6.73 12.50 2.83 8.74 0
pdtswvroz8x8p2.smv 73 TRUE 13.27 28.64 18.29 116.26 5.65 105.81 0
pdtswvsam4x8p4.smv 46 TRUE 12.72 17.87 11.19 24.66 6.10 18.57 0
pdtswvsam6x8p1.smv 44 TRUE 9.64 16.21 11.39 17.98 6.91 13.88 0
pdtswvsam6x8p2.smv 44 TRUE 8.98 15.81 11.14 17.82 8.27 15.54 0
pdtswvsam6x8p3.smv 55 TRUE 18.33 30.23 31.93 50.37 13.49 33.53 0

bc57sensorsp0.smv 105 FALSE 81.95 199.22 100.49 204.53 36.72 126.36 0
bc57sensorsp0neg.smv 105 FALSE 141.24 214.18 95.77 191.36 33.63 124.86 0

bc57sensorsp1.smv 105 FALSE 118.33 204.24 176.14 277.63 100.63 198.57 0
bc57sensorsp1neg.smv 105 FALSE 111.56 215.59 201.65 318.47 103.87 218.92 0

bc57sensorsp2.smv 105 FALSE 89.48 218.50 223.47 325.74 100.92 201.82 0
bc57sensorsp2neg.smv 105 FALSE 104.97 224.55 198.76 311.69 94.74 213.20 0

bc57sensorsp3.smv 105 FALSE 104.51 225.79 203.78 306.80 96.81 191.13 0

pdtswvtma6x4p2.smv 37 TRUE 17.92 19.41 5.13 6.99 3.99 5.94 1
pdtswvtma6x4p3.smv 44 TRUE 24.67 26.61 5.20 7.94 4.51 7.23 1
pdtswvtma6x6p1.smv 37 TRUE 4.38 6.30 0.81 3.37 0.59 3.13 1
pdtswvtma6x6p2.smv 37 TRUE 35.62 37.62 14.73 17.23 13.05 15.42 1
pdtswvtma6x6p3.smv 44 TRUE 45.81 48.66 12.38 15.71 10.77 14.11 1
pdtvsar8multip29.smv 4 TRUE 5.05 5.32 1.41 1.62 1.22 1.45 1

pj2013.smv 9 TRUE 5.45 11.49 2.24 8.31 1.82 7.87 1
pj2019.smv 9 TRUE 23.44 31.48 16.66 23.47 11.89 19.76 1

visprodcellp22.smv 48 TRUE 158.03 165.70 28.82 40.11 27.17 38.85 2
neclaftp3001.smv 13 FALSE 751.86 769.54 289.60 304.25 233.80 253.06 2
neclaftp3002.smv 15 FALSE 828.27 855.62 357.49 371.63 313.69 326.80 2

bobsynth06neg.smv 29 FALSE 53.33 114.53 38.34 67.32 66.74 94.69 3
bobsynth08neg.smv 28 FALSE 74.94 151.85 30.18 72.54 27.06 69.90 3
bobsynth11neg.smv 17 FALSE 6.49 27.32 5.42 14.62 11.64 20.88 3
bobsynth12neg.smv 15 FALSE 6.53 21.38 5.17 12.39 5.33 12.58 3
bobsynth13neg.smv 18 FALSE 14.03 37.51 13.18 25.10 13.25 25.35 3
mentorbm1and.smv 11 FALSE 14.72 33.34 13.86 22.93 15.59 24.63 3
mentorbm1p10.smv 16 FALSE 42.80 80.94 34.39 51.63 48.03 63.26 3
mentorbm1p11.smv 14 FALSE 29.45 56.52 30.66 48.52 23.70 41.57 3
mentorbm1p12.smv 11 FALSE 12.00 30.16 9.18 18.05 12.20 21.05 3

bobpci215.smv 11 FALSE 1.03 17.59 0.14 7.82 0.12 7.83 4
abp4ptimo.smv 21 FALSE 1.31 13.05 0.75 4.12 0.42 3.87 4

abp4ptimoneg.smv 21 FALSE 0.60 4.18 0.49 6.18 0.38 6.11 4
irstdme4.smv 52 FALSE 22.31 444.38 4.79 516.76 2.41 519.14 4
irstdme5.smv 52 FALSE 34.29 722.66 13.54 391.65 4.03 355.41 4

divide the 43 instances into 5 groups by the label “Typ” in
TABLE I, which are also displayed in Fig. 2. We discuss the
5 groups in detail in the following.

1) In Type 1, the properties are TRUE, and the main
time of induction step is on the last UNSAT problem.
So there are not much duplicate search in solving
Induct ′i(i ≥ 0) sequently.

2) According to Algorithm 3, the search tree may back-
track when adding Incfi−1,fi . In the instances of type
2, the algorithm backtracks to a high level, which
clears most of the generated tree, so IncUST gets
only a little improvement on these instances.

3) When the algorithm backtracks to some high level,
as it has learned some learnt clauses and changed the
score of some variables, the variable decision order
will be different from the original method, which
makes the result unpredictable. Type 3 is in this
situation, and for some instances of this type Dual
runs faster.

4) In Type 4, induction time accounts for a small portion
of the total time, so it makes little sense to improve
the induction time.

5) Type 0 does not have the problems of the above 4
cases. It is the case that’s suitable for IncUST , and

also the motivation of this paper.

VI. CONCLUSIONS

To reduce the duplicate workload in solving the prob-
lems of induction step in temporal induction, we propose
an algorithm which can reuse the search tree of Inductk to
help solving Inductk+1. To realize this idea, the problems of
induction step are converted to incremental CNFs by variable
substitution. We further customize the DPLL procedure to
support search tree reuse. Experimental results demonstrate the
significant performance improvement of our algorithm in the
induction step.

ACKNOWLEDGMENT

This work was supported by the Chinese National 973
Plan under grant No. 2010CB328003, the NSF of China
under grants No. 61272001, 60903030, 91218302, the Chi-
nese National Key Technology R&D Program under grant
No. SQ2012BAJY4052, and the Tsinghua University Initiative
Scientific Research Program.

91

0 10 20 30 40 50

0.17�

1.00�

6.00�
Dual/IncUST

(a) induction time

0 10 20 30 40 50

0.50�

1.00�

2.00�
Dual/IncUST

(b) total time

Fig. 2. Comparison between IncUST and Dual

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” Tools and Algorithms for the Construction and Analysis
of Systems, pp. 193–207, 1999.

[2] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Vardi, “Benefits of bounded model checking at an industrial setting,”
in Computer Aided Verification. Springer, 2001, pp. 436–453.

[3] C. Van Eijk., “Sequential equivalence checking without state space
traversal,” in Design, Automation and Test in Europe, 1998., Proceed-
ings. IEEE, 1998, pp. 618–623.

[4] P. Bjesse and K. Claessen, “SAT-based verification without state space
traversal,” in Formal Methods in Computer-Aided Design. Springer,
2000, pp. 409–426.

[5] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a SAT-solver,” in Formal Methods in Computer-
Aided Design. Springer, 2000, pp. 127–144.

[6] N. Eén and N. Sorensson, “Temporal induction by incremental SAT
solving,” Electronic Notes in Theoretical Computer Science, vol. 89,
no. 4, pp. 543–560, 2003.

[7] J. Whittemore, J. Kim, and K. Sakallah, “SATIRE: A new incremental
satisfiability engine,” in Design Automation Conference, 2001. Proceed-
ings. IEEE, 2001, pp. 542–545.

[8] H. Jin and F. Somenzi, “An incremental algorithm to check satisfiability
for bounded model checking,” Electronic Notes in Theoretical Computer
Science (ENTCS), vol. 119, no. 2, pp. 51–65, 2005.

[9] O. Shtrichman., “Tuning SAT checkers for bounded model checking,”
in Computer Aided Verification. Springer, 2000, pp. 480–494.

[10] C. Wang, H. Jin, G. Hachtel, and F. Somenzi, “Refining the SAT
decision ordering for bounded model checking,” in Proceedings of the
41st annual Design Automation Conference. ACM, 2004, pp. 535–538.

[11] J. Hooker, “Solving the incremental satisfiability problem,” The Journal
of Logic Programming, vol. 15, no. 1-2, pp. 177–186, 1993.

[12] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,

“Chaff: Engineering an efficient SAT solver,” in Proceedings of the 38th
annual Design Automation Conference. ACM, 2001, pp. 530–535.

[13] C. P. Gomes, B. Selman, N. Crato, and H. Kautz, “Heavy-tailed phe-
nomena in satisfiability and constraint satisfaction problems,” Journal
of automated reasoning, vol. 24, no. 1, pp. 67–100, 2000.

[14] M. Ben-Ari, A. Pnueli, and Z. Manna, “The temporal logic of branching
time,” Acta informatica, vol. 20, no. 3, pp. 207–226, 1983.

[15] E. Clarke and E. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” 25 Years of Model
Checking, pp. 196–215, 2008.

[16] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” Studies in Constructive Mathematics and Mathematical Logic, p.
115C125, 1962.

[17] D. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,” Journal of Symbolic Computation, vol. 2, no. 3, pp. 293–
304, 1986.

[18] P. Jackson and D. Sheridan, “Clause form conversions for boolean
circuits,” in Theory and Applications of Satisfiability Testing. Springer,
2005, pp. 899–899.

[19] P. Manolios and D. Vroon, “Efficient circuit to CNF conversion,” Theory
and Applications of Satisfiability Testing–SAT 2007, pp. 4–9, 2007.

[20] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” J. ACM, vol. 7, pp. 201–215, 1960.

[21] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem proving,” Comms. ACM, vol. 5, pp. 394–397, July 1962.

92

