
Clause Replication and Reuse in Incremental
Temporal Induction

Liangze Yin, Fei He, Ming Gu, and Jiaguang Sun
Key Laboratory for Information System Security, Ministry of Education

Tsinghua National Laboratory for Information Science and Technology

School of Software, Tsinghua University, Beijing 100084, PR China

Emails: yinliangze@163.com, {FeiHe, guming}@mails.tsinghua.edu.cn

Abstract—Temporal induction is one of the most popular SAT-
based model checking techniques. It consists of two parts, the base
case and the induction step. With the search length increment,
both parts generate a sequence of SAT problems. This paper
focuses on learnt clause replication and reuse in incremental
temporal induction. Firstly, with the aid of assumption literals, we
present an alternative clause replication scheme, which is much
easier to implement than existing works. Secondly, based on our
clause replication scheme, we present several clause reuse schemes
to maximally explore the learnt clauses and their replications in
temporal induction. Based on above ideas, we propose two new
incremental temporal induction algorithms. Experimental results
on a large number of benchmarks show significant performance
improvement of our technique.

Keywords—Temporal induction; bounded model checking;
Boolean satisfiability; clause learning;

I. INTRODUCTION

Bounded model checking (BMC) [1] [2] is one of the most
successful techniques to alleviate the state explosion problem.
It tries to answer the question whether there is a counterexam-
ple within some given number of steps. This problem is then
reduced to a problem of propositional satisfiability and solved
by a propositional SAT solver. Temporal induction [3] [4] [5]
[6] is an enhancement to BMC. Given a safety property, a proof
of temporal induction [6] consists of two parts: the base case
and the induction step. The base case acts as a “bug-finder”,
trying to disprove the property by finding a counterexample,
and the induction step acts as a “prover”, trying to prove the
property by induction.

With the search length increment, both the base case and
the induction step generate a sequence of SAT problems,
called Base sequence (Basek, k ≥ 0) and Induct sequence
(Inductk, k ≥ 0) respectively. During the SAT solving,
conflict-driven clause learning has been proved an efficient
technique. A learnt clause can prune the search space and then
accelerate the search procedure. As the structures of the SAT
problems generated in temporal induction are similar, a natural
idea is to explore the structural similarities to maximally reuse
the learnt clauses.

Observed that the transition relations of all time-frames
in BMC are identical, Shtrichman proposed that, whenever a
clause is learnt, some replicated clauses, which are new clauses
symmetric to the original learnt clause, can be added to help
prune later search space [7] [8]. However, the problems in
BMC are asymmetric due to their initial and end formulas (the

initial predicate I0 and the negation of the property ¬φk). To
solve this problem, he proposes to simulate an assignment for
every potential replicated clause and checks if it leads to a
conflict [7]. Alternatively, each clause is marked if it does not
depend on I0 and ¬φk, and a learnt clause can be replicated if
all the clauses leading to the corresponding conflict are marked
[8], which requires extra marking during the actual solving
process. Some other works solve a sequence of problems with
an incremental satisfiability engine [6] [9] [10]. The motivation
is that the clauses learnt in one instance are not only useful in
later search parts of the same SAT problem, but can also be
used in later similar problems. To guarantee that all the learnt
clauses can be safely added to subsequent problems, Een et al.
proposed the scheme of setting assumption literals, which is
very simple to implement and expressive enough to guarantee
the correctness [6].

In this paper, with the aid of assumption literals proposed
in [6], we present an alternate scheme of learnt clause repli-
cation. The idea is that, by setting the definition literals of
all the initial, transition relation, and property predicates to
be assumption literals, the learnt clauses are independent of
any of the above parts, so all their replications can be safely
added. This scheme is much easier to implement compared
with the works in [7] [8]. There is no need for any simulation
or extra marking. In other words, even if the initial and end
formulas are considered, or the transition relations in different
time-frames are different due to techniques like BCOI [11],
we prove that all the replications of learnt clauses can still be
safely added without any other computation.

Based on our clause replication scheme, we further propose
that all the learnt clauses and their replications are not only
useful in later search parts of the same problem, but can also
be used to help solve subsequent problems. Actually, they can
be reused in subsequent problems of the same sequence, and
also in subsequent problems of the other sequence, even if the
two sequences grow in different directions. In this sense, our
work perfectly integrates the ideas of clause replication [7] [8]
and incremental temporal induction [6].

Above techniques have been applied to two state-of-the-art
temporal induction algorithms, Dual and Zigzag [6], which
have been implemented in the NuSMV package. The new
algorithms can make full use of clause replication and reuse.
Experimental results on benchmarks from HWMCC’20111

show significant performance improvement of our technique.

1http://fmv.jku.at/hwmcc11/benchmarks.html

2014 19th International Conference on Engineering of Complex Computer Systems

978-1-4799-5482-7/14 $31.00 © 2014 IEEE

DOI 10.1109/ICECCS.2014.23

108

The rest of this paper is organized as follows. In Section 2,
we briefly review preliminaries on SAT solving and temporal
induction. Then in Section 3 and Section 4, we present our
clause replication and reuse schemes. Our incremental tempo-
ral induction algorithms are described in Section 5. Empirical
evaluation is reported in Section 6. Finally, Section 7 concludes
the paper.

II. PRELIMINARIES

A. SAT Solving

Let x be a set of Boolean variables. A literal is either the
positive- or negative-form of a variable, i.e., either x or ¬x,
where x ∈ x. A clause λ is a disjunction of literals. Denote ε
the empty clause. Let Λ denote a set of clauses. We write Λ�
λ if λ can be deduced by Λ. A conjunctive normal form (CNF)
is a conjunction of clauses. A CNF can be represented by the
set of its involved clauses. Any propositional formula can be
converted into a CNF in linear time by importing intermediate
variables [12] [13] [14]. When a formula ϕ is converted into
a CNF, the literal representing the whole formula is called
its definition literal. Given a propositional formula ϕ and its
definition literal p, we denote [ϕ]p the set of clauses defining
ϕ (not including p), and [ϕ] the set of clauses [ϕ]p ∪ {p}.

Most of modern SAT solvers are based on the DPLL
algorithm [15] [16]. It is based on the exploration of the
variable space, and can be seen as a Depth-First-Search (DFS)
process. At each node, it selects a variable and assigns it true or
false. This process is called making a decision. If a clause has
only one free literal and all the other literals are false, then it is
called a unit clause. The free literal of every unit clause must be
set true to make the clause satisfiable. This is called the Unit
Clause Rule. The process of applying the Unit Clause Rule
iteratively is called Boolean Constrain Propagation (BCP). In
the DPLL algorithm, it iteratively makes decisions and applies
BCP, until either a satisfiable assignment is found or a conflict
is encountered. If it is the latter case, the procedure backtracks
and makes a new decision unless the search tree has been fully
explored. For a DPLL algorithm, the number of BCPs reflects
the size of the search tree and is usually used to evaluate the
efficiency of a SAT solver.

In last decades, clause learning has been substantiated
as one of the most encouraging techniques in modern SAT
solvers. It is crucial to enable SAT solvers to solve large
instances encoding real-world problems. The idea is that
whenever a conflict is detected during the search process, it
analyzes the reason for the conflict and encodes it as a so called
learnt clause. All the learnt clauses are managed in a learnt
clause database, which acts as a cache to prune the search
space in later search parts.

B. Temporal Induction

Let a Finite State Machine (FSM) be
M(x, I(x),R(x,x′)), where x and x′ denote respectively
the sets of current and next-state variables, I(x) is the initial
condition predicate, and R(x,x′) is the transition relation
predicate. Denote φ(x) the safety property to be checked
on M . Throughout the paper, we assume |x| = n, and let
x = {x0, x1, . . . , xn−1}. A valuation of x gives a state of
M . We use subscripts to denote the time-frames. In detail,

xi (i ≥ 0) represents the set of state variables at the i-th
time-frame, and xj

i ∈ xi is the corresponding variable of xj

at the i-th time-frame. φi, Ii and Ri are used as shorthands
to denote φ(xi), I(xi) and R(xi,xi+1) respectively.

A temporal induction proof [5] consists of two parts: the
base case and the induction step. The proof for the base case
on length k can be formulated as

Basek = I0 ∧ (
k−1∧

i=0

(Ri ∧ φi)) ∧ (¬φk). (1)

The proof for the induction step on length k can be formulated
as

Inductk = (
k∧

i=0

(Ri ∧ φi)) ∧ (¬φk+1) ∧ Uniquek+1, (2)

where

Uniquek = (
∧

0≤i<j≤k

xi �= xj) = (
∧

0≤i<j≤k

(
n∨

t=1

(xt
i �= xt

j))).

In temporal induction, the trace of states can either start
from the initial states and then go forward along the transition
relation, or start from the bad states and then go backward
along the transition relation. Especially, proving the induction
step in backward direction may get good results in some cases
[6]. Let R′i be a short hand of R(xi+1,xi). The proof for the
induction step in backward direction can be formulated as

InductBackk = (¬φ0)∧ (
k∧

i=0

(R′i∧φi+1))∧Uniquek+1, (3)

where Uniquek is defined as same as in the forward version.

Model checking based on temporal induction is straight-
forward. It repeatedly checks the satisfiability of Basek and
Inductk. Here length k starts from 0 and keeps increas-
ing monotonically until either Basek becomes satisfiable (a
counterexample is found) or Inductk turns unsatisfiable (the
property is proved to be true).

In [6], Een et al. proposed a technique called assumption
literals. It assumes some literals (namely unit clauses) to be
true before starting the SAT solving. Given a problem ϕ and a
set of literals A, if the SAT solver regards all the literals in A
as internal assumptions when solving ϕ, then all the clauses
learnt in the search procedure are independent of those literals
in A. As a result, when solving another SAT problem ϕ′ that
contains all the clauses in ϕ except those unit clauses in A, all
the clauses learnt in solving ϕ can be reused to help solve ϕ′.
For example, suppose that z and pk are the definition literals
of I0 and ¬φk respectively, when solving Basek in (1), we

give [I0]z , [¬φk]
pk , and [

∧k−1
i=0 (Ri∧φi)] to a SAT solver, and

make {z, pk} as assumption literals. Note that
∧k−1

i=0 (Ri ∧φi)
is also a part of Basek+1. All the learnt clauses in solving
Basek can be safely added to help solve Basek+1.

With this technique, Een et al. provided two interface
functions for a SAT solver:

• addClause(Λ) adds a set of clauses to the solver; and

109

• solve(Assump) solves the current instance by assum-
ing all literals included in the set Assump to be true.

Then the solving for the SAT problems in temporal induction
can be performed in an incremental fashion.

Two incremental temporal induction algorithms, Zigzag
and Dual , have been proposed in [6]. In the Zigzag algorithm,
the proofs for the base case and for the induction step are
merged together, and only one SAT solver is involved to solve
them. In the Dual algorithm, two different SAT solvers are
used to solve these two sequences of problems respectively.
Additionally, in the Dual algorithm, the proof for the base
case starts from the initial states and go forward, while the
proof for the induction step can start from the bad states and
go backward.

III. FORMULA REPLICATION

Definition 1 (Shift Formula): Given a constant m and a
propositional formula ϕ(x0,x1, . . . ,xl) where xi is the set of
state variables at the i-th time-frame, ϕ�m is the shift formula
of ϕ obtained by substituting each variable xj

i (0 ≤ i ≤ l, 0 ≤
j < n) in ϕ with xj

i+m.

For example, if ϕ = ¬x2 ∨ y3 ∨ z5, then ϕ�2 = ¬x4 ∨
y5 ∨ z7. Note that the value of m can be negative as long
as i ≥ 0 for any variable xj

i in ϕ�m. In above example,
ϕ�−2 = ¬x0 ∨ y1 ∨ z3. Especially, ϕ�0 is ϕ, and ε�m is ε
for any m.

Lemma 1: If [ϕ] � λ, then [ϕ�m] � λ�m, where m is
a constant.

Proof: If [ϕ]� λ, there must exist a proof leading from
[ϕ] to λ, denote it by Θ. A proof leading from [ϕ�m] to λ�m

can be obtained by substituting each variable xj
i in Θ to xj

i+m.
Then the conclusion holds.

Definition 2 (Reverse Formula): Given a constant m and
a propositional formula ϕ(x0,x1, . . . ,xl) where xi is the set
of state variables at the i-th time-frame, ϕ!m is the reverse
formula of ϕ obtained by substituting each variable xj

i (0 ≤
i ≤ l, 0 ≤ j < n) in ϕ with xj

m−i.

For example, if ϕ = ¬x2∨y3∨z5, then ϕ!8 = ¬x6∨y5∨z3.
Again, the value of m must satisfy that i ≥ 0 for any variable
xj
i in ϕ!m. Especially, ε!m is ε for any m.

Lemma 2: If [ϕ] � λ, then [ϕ!m] � λ!m, where m is a
constant.

Proof: If [ϕ]� λ, there must exist a proof leading from
[ϕ] to λ, denote it by Θ. A proof leading from [ϕ!m] to λ!m

can be obtained by substituting each variable xj
i in Θ to xj

m−i.
Then the conclusion holds.

Given a propositional formula ϕ, any shift formula or
reverse formula of ϕ is called a replication of ϕ.

IV. CLAUSE REPLICATION AND REUSE

A. Clause Reuse for Base Sequence

For any clause learnt in solving Basek, to guarantee that
all of its shifted clauses can be safely added to help solve later
parts of Basek and subsequent problems, we solve Basek as

in Algorithm 1. Different from traditional approaches, here all
definition literals of I0,Ri (i < k), φi (i < k) and ¬φk, which
are denoted by z, ri (i < k), pi (i < k) and qk respectively,
are made as assumption literals. In this manner, all the learnt
clauses of Basek are independent of I0,Ri (i < k), φi (i < k)
and ¬φk.

Algorithm 1 solveBase(Basek)

Require: model M(x, I,R), property φ, step k
1: addClause([I0]z)
2: Assump ← {z}
3: for i = 0 to k − 1 do
4: addClause([Ri]

ri , [φi]
pi)

5: Assump ← Assump ∪ {ri, pi}
6: end for
7: addClause([¬φk]

qk)
8: Assump ← Assump ∪ {qk}
9: return solve(Assump)

Theorem 1: In Algorithm 1, for any learnt clause λ of
Basek, the satisfiability of [Basek+n] ∪ {λ�m} is equivalent
with that of [Basek+n] where n ≥ 0.

Proof: To prove that the satisfiability of [Basek+n] ∪
{λ�m} is equivalent with that of [Basek+n], we try to find
a formula Δ such that Δ � λ�m and the satisfiability of
[Basek+n] ∪Δ is equivalent with that of [Basek+n].

Let Ψ be the set of clauses according to definition literals
of I0, Ri (i < k), φi (i < k) and ¬φk, and Γ = [Basek] \Ψ.
As λ is a learnt clause of Basek, and all the literals in Ψ are
made as assumption ones, Γ � λ. According to Lemma 1,
Γ�m � λ�m. The following proves that the satisfiability of
[Basek+n] ∪ Γ�m is equivalent with that of [Basek+n].

Γ�m = {[I0]z,
⋃

0≤i<k[Ri]
ri ,

⋃
0≤i<k[φi]

pi , [¬φk]
qk}�m.

As [I0]z�m means that z�m ⇔ (I0)�m, adding [I0]z�m to
[Basek+n] does not affect the satisfiability of [Basek+n].
Similarly, we can prove that adding Γ�m to [Basek+n] does
not affect the satisfiability of [Basek+n].

Thus we find a formula Δ = Γ�m such that Δ � λ�m

and the satisfiability of [Basek+n]∪Δ is equivalent with that
of [Basek+n]. Then the conclusion holds.

In Theorem 1, if m = 0 and n = 0, it means that
learnt clauses can be used to help solve the current problem,
which is the idea of conflict clause learning; if m = 0 and
n > 0, it means that learnt clauses can also be used to help
solve subsequent problems, just as discussed in traditional
incremental temporal induction [6]; if m �= 0 and n = 0, it
means that the shifted ones of learnt clauses can be added to
help solve the current problem, which is the idea of clause
replication [7]; and if m �= 0 and n > 0, it means that
the shifted ones of learnt clauses can also be used to help
solve subsequent problems. From Theorem 1, both the ideas
of clause replication and incremental temporal induction are
perfectly integrated together in our method.

Another thing we need to note here is that the time-frame
scope in Basek+n is [0, k + n]. For any clause λ�m, if its
subscripts exceed the time-frame scope, λ�m will never be a
conflict clause, and it is unwanted in the solving process of
Basek+n. So, when we add the replication λ�m to help solve

110

Basek+n, the value of m must satisfy that the subscribes of
λ�m cannot exceed the time-frame scope of Basek+n. We
call this the time-frame constraint.

From Algorithm 1, our approach is very easy to implement.
Though the SAT problem is not fully symmetrical due to I0
and ¬φk, we proved in Theorem 1 that all learnt clauses and
their shifted ones can be safely added to help solve the cur-
rent and subsequent problems without any other computation.
Compared with the works in [7] [8], our method has another
two advantages. First, more learnt clauses are considered in our
method. For example, in his works, any leant clause λ related
with ¬φk is not considered. Actually, for each subsequent
problem, there is one shifted clause of λ which is useful to
prune the search space. Second, in his work, a hypothesis is
that the transition relations of different time-frames should be
identical; while our method still works even if this is not the
truth due to improvement techniques like BCOI [11].

B. Clause Reuse for Induction Sequence

Similar to base sequence, when solving Inductk, we make
all the definition literals of Ri (i < k), φi (i ≤ k), and ¬φk+1

as assumption literals. The approach is shown in Algorithm 2.
The algorithm for solving InductBackk is similar. We make
all the definition literals of ¬φ0, R′i (i < k), and φi+1 (i < k)
as assumption literals. The approach is shown in Algorithm 3.

Algorithm 2 solveInduct(Inductk)

Require: model M(x, I,R), property φ, step k
1: Assump ← ∅
2: for i = 0 to k − 1 do
3: addClause([Ri]

ri , [φi]
pi)

4: Assump ← Assump ∪ {ri, pi}
5: end for
6: addClause([¬φk+1]

qk+1)
7: Assump ← Assump ∪ {qk+1}
8: addClause([Uniquek+1])
9: return solve(Assump)

Algorithm 3 solveInductBack(InductBackk)

Require: model M(x, I,R), property φ, step k
1: addClause([¬φ0]

q0)
2: Assump ← {q0}
3: for i = 0 to k − 1 do
4: addClause([R′i]r

′
i , [φi+1]

pi+1)
5: Assump ← Assump ∪ {r′i, pi+1}
6: end for
7: addClause([Uniquek+1])
8: return solve(Assump)

Similar as for Algorithm 1, we can prove the following
theorems for Algorithm 2 and Algorithm 3 respectively.

Theorem 2: In Algorithm 2, for any learnt clause λ of
Inductk, the satisfiability of [Inductk+n] ∪ {λ�m} is equiv-
alent with that of [Inductk+n] where n ≥ 0.

Theorem 3: In Algorithm 3, for any learnt clause λ of
InductBackk, the satisfiability of [InductBackk+n]∪{λ�m}
is equivalent with that of [InductBackk+n] where n ≥ 0.

Similar to base sequence, when a shifted clause λ�m is
added to subsequent problems, it must satisfy the time-frame
constraint.

C. Clause Sharing between Base and Induction Sequence

In previous subsections, we discussed the clause replication
and reuse in one sequence. Observed that the problems in Base
and Induct sequences are also similar, this section considers
the clause sharing between the two sequences. Denote Base,
Induct and InductBack the sets of SAT problems {Basek|0 ≤
k ≤ ∞}, {Inductk|0 ≤ k ≤ ∞}, and {InductBackk|0 ≤ k ≤
∞} respectively. This section discusses the clause reuse in two
situations: clause reuse between Base and Induct , and clause
reuse between Base and InductBack .

Theorem 4: In Algorithm 1, for any learnt clause λ of
Basek, the satisfiability of [Inductk+n]∪{λ�m} is equivalent
with that of [Inductk+n] where n ≥ 0. In Algorithm 2,
for any learnt clause λ of Inductk, the satisfiability of
[Basek+n] ∪ {λ�m} is equivalent with that of [Basek+n]
where n ≥ 0.

Proof: The proof is similar to that of Theorem 1. We
can construct a formula Δ = Γ�m such that Δ� λ�m and
the satisfiability of [Inductk+n]∪Δ is equivalent with that of
[Inductk+n]. The reverse is similar.

Theorem 5: In Algorithm 1, for any learnt clause λ of
Basek, the satisfiability of [InductBackk+n] ∪ {λ!m} is
equivalent with that of [InductBackk+n] where n ≥ 0. In
Algorithm 3, for any learnt clause λ of InductBackk, the
satisfiability of [Basek+n] ∪ {λ!m} is equivalent with that of
[Basek+n] where n ≥ 0.

Proof: The proof is similar to that of Theorem 1. We can
construct a formula Δ = Γ!m such that Δ � λ!m and the
satisfiability of [InductBackk+n] ∪ Δ is equivalent with that
of [InductBackk+n]. The reverse is similar.

V. INCREMENTAL TEMPORAL INDUCTION

Thanks to the theorems proved in Section IV, model check-
ing by temporal induction can be organized in an incremental
fashion. Two incremental temporal induction algorithms are
proposed: one proves the base case and the induction step with
one SAT solver, called Zigzag+; the other proves these two
parts with different SAT solvers, called Dual+.

Based on Theorem 1, 2 and 3, we revise the interface
function solve() of a SAT solver to solve+(). Whenever
a learnt clause λ is generated, both λ and its replications
satisfying the time-frame constraint are added to the learnt
clause database. Moreover, as the current problem widens the
time-frame scope, for each learnt clause of previous problems,
a new replication satisfying current time-frame constraint can
be generated. This process is finished in function expand(). At
the beginning of solve+(), expand() is used to generate the
new replications and adds them to the learnt clause database.

Dual+ consists of two parts: the algorithm for the base
case and that for the induction step. According to the directions
of these two parts, there can be up to 4 versions of Dual+.
Here we let the base case grow in forward direction (Algo-
rithm 4) and the induction step grow in backward direction

111

(Algorithm 5). Note that in these algorithms, after one run of
SAT solving (Line 7 in Algorithm 4, Line 6 in Algorithm 5), all
learnt clauses and their replications are safely kept and passed
to the next SAT solving.

Note that at Line 5 in Algorithm 4, Δk−1 represents the
set of learnt clauses of InductBackk−1, and (Δk−1)!k =
{δ!k|δ ∈ Δk−1} denotes the reversed versions of Δk−1. Λk in
Algorithm 5 is similar (Line 4). It represents the set of learnt
clauses of Basek, and (Λk)!k = {λ!k|λ ∈ Λk}.

Compared with Dual proposed in [6], Dual+ can learn
much more clauses. First, whenever a learnt clause is gener-
ated, all its replications satisfying the time-frame constraint
are also considered. Second, for all the learnt clauses of
previous problems, their replications satisfying current time-
frame constraint are also considered. Third, the learnt clauses
of the other sequence and their replication are also shared,
even if the two sequences grow in different directions.

Algorithm 4 Dual+: base case in forward direction

Require: model M(x, I,R), property φ
1: addClause([I0]z)
2: Assump ← {z}
3: for k = 0 to ∞ do
4: addClause([φk]

pk)
5: addClause((Δk−1)!k)
6: expand()
7: if solve+(Assump ∪ {¬pk}) = SAT then
8: return false
9: end if

10: addClause([Rk]
rk])

11: Assump ← Assump ∪ {rk, pk}
12: end for

Algorithm 5 Dual+: induction step in backward direction

Require: model M(x, I,R), property φ
1: addClause([φ0]

p0)
2: Assump ← {¬p0}
3: for k = 0 to ∞ do
4: addClause((Λk)!k)
5: expand()
6: if solve+(Assump) = UNSAT then
7: return true
8: end if
9: addClause([R′k]r

′
k , [φk+1]

pk+1)
10: Assump ← Assump ∪ {r′k, pk+1}
11: for i = 0 to k do
12: addClause([xi �= xk+1])
13: end for
14: end for

Zigzag+ is shown in Algorithm 6. Note that in both Zigzag
and Zigzag+, the search directions of the base case and the
induction step must be same. Here both the base case and the
induction step are in forward direction. As these two parts are
solved in the same solver instance, their clauses are naturally
shared. Similar to Dual+, Zigzag+ learns much more clauses
than Zigzag .

Algorithm 6 Zigzag+: both base case and induction step in
forward direction

Require: model M(x, I,R), property φ
1: addClause([I0]z)
2: for k = 0 to ∞ do
3: addClause([φk]

pk)
4: // induction step
5: expand()
6: if solve+(Assump ∪ {¬pk}) = UNSAT then
7: return true
8: end if
9:

10: // base case
11: if solve+(Assump ∪ {z,¬pk}) = SAT then
12: return false
13: end if
14: addClause([Rk]

rk)
15: Assump ← Assump ∪ {rk, pk}
16: for i = 0 to k do
17: addClause([xi �= xk+1])
18: end for
19: end for

VI. EMPIRICAL EVALUATION

We implement Dual+ and Zigzag+ in NuSMV (version
2.5.3)2, which already contains Dual and Zigzag . We com-
pare the performance of our algorithms with those of them.
The involved SAT solver is minisat2 (version 070721)3. All
experiments are conducted on a 2.67GHz Intel Core (TM) CPU
with 4GB memory.

All test cases are taken from the main single safety/bad-
state property track (called single track for short) of HWMCC
(Hardware Model Checking Competition) 20114. The single
track has 467 instances in total, where 400 instances are pub-
licly available (the other 67 instances from Intel have license
restrictions). Moreover, we ignore those instances that can be
solved in less than 5 seconds by all algorithms (including
134 instances) and those ones that cannot be solved within
300 seconds by any algorithm (including 232 instances). The
remaining 34 instances are taken into consideration.

The experimental results are listed in Table I, where No
column gives the instance No., Benchmark column shows
the name of the instance, Step column lists the steps for
the model checker to find a counterexample or to prove
the property, Result column presents the validation of the
property, Zigzag, Zigzag+, Dual, and Dual+ columns
list the run time (in seconds) of these four algorithms respec-
tively, Z-Ratio column gives the quotient of Zigzag to
Zigzag+, and D-Ratio column gives the quotient of Dual
to Dual+. The bold fonts indicate the best results among the
four algorithms. For each algorithm, “-” indicates the model
checking runs out of memory or exceeds the time limit.

From the table, our strategy significantly speeds up both
Zigzag and Dual . Among the 34 instances, Zigzag+ wins over
Zigzag for 33 instances, and it runs more than 1.5 times faster

2http://nusmv.fbk.eu/
3http://minisat.se/MiniSat.html
4http://fmv.jku.at/hwmcc11/benchmarks.html

112

TABLE I. EXPERIMENTAL RESULTS FOR BENCHMARKS IN SINGLE TRACK OF HWMCC 2011

No Benchmark Step Result Zigzag Zigzag+ Z-Ratio Dual Dual+ D-Ratio

1 mentorbm1p12.smv 12 false 13.39 8.41 1.6 8.66 12.66 0.7
2 mentorbm1and.smv 12 false 19.69 12.38 1.6 14.62 15.44 0.9
3 bobsynth13neg.smv 19 false 16.6 15.56 1.1 18.49 11.36 1.6
4 pdtswvqis8x8p0.smv 67 false 22.85 10.26 2.2 26.15 11.74 2.2
5 abp4ptimo.smv 22 false 5.32 4.85 1.1 2.26 3.38 0.7
6 pdtswvqis10x6p0.smv 83 false 35.83 12.98 2.8 47.37 19.8 2.4
7 bobsynth07neg.smv 25 false 31.51 33.82 0.9 33.74 29.33 1.2
8 mentorbm1p10.smv 17 false 43.8 33.54 1.3 41.49 29.26 1.4
9 pdtswvsam6x8p0.smv 49 false 18.91 9.2 2.1 28.31 17.29 1.6

10 bobsynth11neg.smv 18 false 12.06 10.79 1.1 12.48 13.96 0.9
11 bobsynth06neg.smv 30 false 99.19 46.98 2.1 64.16 41.34 1.6
12 bobsynthetic2.smv 13 false 136.51 72.75 1.9 156.84 33.21 4.7
13 bobsynth08neg.smv 29 false 101.11 53.93 1.9 88.52 51.7 1.7
14 mentorbm1p11.smv 15 false 42.17 24.85 1.7 26.67 31.07 0.9
15 bobtuttt.smv 29 false 45.8 28.1 1.6 66.7 57.36 1.2
16 pdtswvroz10x6p1.smv 68 true 14.37 11.25 1.3 18.31 11.09 1.7
17 pdtswvroz8x8p1.smv 56 true 7.03 6.39 1.1 10.27 6.61 1.6
18 pdtswvroz8x8p2.smv 74 true 21.13 19.06 1.1 127.74 31.67 4
19 pdtswvsam4x8p4.smv 47 true 16.13 10.88 1.5 24.7 10.74 2.3
20 pdtswvsam6x8p1.smv 45 true 13.01 7.39 1.8 15.35 9.18 1.7
21 pdtswvsam6x8p2.smv 45 true 12.99 8.11 1.6 13.81 10.27 1.3
22 pdtswvsam6x8p3.smv 56 true 28.16 14.3 2 42.09 16.65 2.5
23 pdtswvtma6x4p2.smv 38 true 12.2 6.97 1.8 9.72 7.53 1.3
24 pdtswvtma6x4p3.smv 45 true 14.02 7.64 1.8 18.77 8.41 2.2
25 pdtswvtma6x6p1.smv 38 true 4.21 1.73 2.4 5.27 1.88 2.8
26 pdtswvtma6x6p2.smv 38 true 24.72 23.32 1.1 39.35 26.01 1.5
27 pdtswvtma6x6p3.smv 45 true 23.81 22.97 1 43.5 19.33 2.3
28 visprodcellp22.smv 49 true 96.76 20.39 4.7 119.5 14.99 8
29 pdtswvqis10x6p1.smv 154 true - 210.6 > 1 - 246.71 > 1
30 pdtswvqis8x8p1.smv 108 true 175.71 70.84 2.5 - 88.97 > 1
31 pdtswvsam6x8p4.smv 67 true 57.55 34.26 1.7 125.84 38.34 3.3
32 pdtswvroz10x6p2.smv 90 true 58.28 48.61 1.2 - 73.09 > 1
33 pj2013.smv 10 true 8.61 6.13 1.4 5.84 5.51 1.1
34 pj2019.smv 10 true 24.6 14.86 1.7 28.92 25.94 1.1

than Zigzag for 21 instances. For Dual+ and Dual , Dual+

beats Dual for 29 instances, and it runs more than 1.5 times
faster than Dual for 20 instances. For the other 5 instances,
Dual+ runs just a bit slower than Dual . Also note that there
are 3 instances that Dual cannot verify within the time limit.

To further analyse the performance of our strategy, more
information about solving the 34 instances by Dual+ is pre-
sented. Let D be the total amount of learnt clauses. Denote CL
and CR the sets of learnt clauses generated by original conflict-
driven learning and clause replication respectively. Obviously,
D = CL ∪ CR. We plot in Fig. 1 the percentages of CL
and CR in D when the instance is solved, 1(a) for the base
case and 1(b) for the induction step. In these two figures,
x-axis represents the instance ID, and y-axis indicates the
percentages. The black bars stand for the parts of CL, and
the white bars stand for the parts of CR. From the figure, we
can see that Dual+ generates a mass of clauses with our clause
replication and reuse technique. For most instances in the base
case, more than 98% of the learnt clauses are originated from
the clause replication.

We say a learnt clause is “valid” if it is a reason of some
later conflict. Here the conflict may occur in the search process
of the current or subsequent problems. Fig. 2 demonstrates the
number of “valid” clauses in D, 2(a) for the base case and 2(b)
for the induction step. In the two figures, x-axis represents the
instance ID, and y-axis indicates the percentages of “valid”
clauses. The black bars stand for the “valid” clauses from CL,
and the white bars stand for the “valid” clauses from CR.
From the figure, we observe that: (1) most of “valid” clauses
come from CR; (2) the total amount of “valid” clauses hold
a small portion of D. According to these observations, the
good news is that the replications of learnt clauses really play

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.2

0.4

0.6

0.8

1

1.2

CR CL

(a) base case

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.2

0.4

0.6

0.8

1

1.2

CR CL

(b) induct step

Fig. 1. Size of CL vs. size of CR

113

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
CR CL

(a) base case

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
CR CL

(b) induct step

Fig. 2. The percentage of “valid” clauses

a positive role during the search process, and the bad news
is that many clauses are never used in current or subsequent
problems, which may instead slow down the process of finding
unit clauses. Actually, for many instances, up to 99% of the
clauses in D are never used.

Fig. 3 compares Dual+ with Dual in the number of BCPs
(Boolean Constraint Propagation). For each instance, 1 in y-
axis represents the total amount of BCPs of Dual+ and Dual .
The black and white bars represent the parts of BCPs for
Dual+ and Dual , respectively. From the figure, the number of
BCPs of Dual+ is much less than that of Dual in most cases.
This indicates that though most of the clauses in CR are never
used, benefit from the minority “valid” clauses shown in Fig. 2,
the propagations can still be greatly reduced.

From above analysis, our technique generates a lot of
clauses, and many of them have been selected as “valid”
ones. However, the amount of “valid” clauses account for only
a small portion. Though most SAT solvers have integrated
the “bad” clause identification and deletion technique. These
strategies are not good enough, and this is still an interesting
and challenging problem in our technique.

VII. CONCLUSIONS

This paper considers safety property verification by tem-
poral induction. We present a new clause replication and reuse
technique. It is much easier to implement and more powerful
than existing works. With this technique, we realized two
new incremental temporal induction algorithms. Experimental

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

dual+ dual

(a) base case

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

dual+ dual

(b) induct step

Fig. 3. Numbers of BCPs for Dual and Dual+

results on a large number of benchmarks show significant
performance improvement of our algorithms.

ACKNOWLEDGMENT

This work was supported by the Chinese National 973
Plan under grant No. 2010CB328003, the NSF of China
under grants No. 61272001, 60903030, 91218302, the Chi-
nese National Key Technology R&D Program under grant
No. SQ2012BAJY4052, and the Tsinghua University Initiative
Scientific Research Program.

REFERENCES

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. Tools and Algorithms for the Construction and Analysis
of Systems, pages 193–207, 1999.

[2] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and
M. Vardi. Benefits of bounded model checking at an industrial setting.
In Computer Aided Verification, pages 436–453. Springer, 2001.

[3] C.A.J. Van Eijk. Sequential equivalence checking without state space
traversal. In Design, Automation and Test in Europe, 1998., Proceed-
ings, pages 618–623. IEEE, 1998.

[4] P. Bjesse and K. Claessen. SAT-based verification without state space
traversal. In Formal Methods in Computer-Aided Design, pages 409–
426. Springer, 2000.

[5] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties
using induction and a SAT-solver. In Formal Methods in Computer-
Aided Design, pages 127–144. Springer, 2000.

[6] N. Eén and N. Sorensson. Temporal induction by incremental SAT
solving. Electronic Notes in Theoretical Computer Science, 89(4):543–
560, 2003.

114

[7] O. Shtrichman. Tuning SAT checkers for bounded model checking. In
Computer Aided Verification, pages 480–494. Springer, 2000.

[8] O. Shtrichman. Pruning techniques for the SAT-based bounded model
checking problem. Correct Hardware Design and Verification Methods,
pages 58–70, 2001.

[9] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental
satisfiability engine. In Design Automation Conference, 2001. Proceed-
ings, pages 542–545. IEEE, 2001.

[10] H.S. Jin and F. Somenzi. An incremental algorithm to check satisfi-
ability for bounded model checking. Electronic Notes in Theoretical
Computer Science (ENTCS), 119(2):51–65, 2005.

[11] A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties
of a powerpc- microprocessor using symbolic model checking without
BDDs. In Computer Aided Verification, pages 60–71. Springer, 1999.

[12] D.A. Plaisted and S. Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

[13] P. Jackson and D. Sheridan. Clause form conversions for boolean
circuits. In Theory and Applications of Satisfiability Testing, pages
899–899. Springer, 2005.

[14] P. Manolios and D. Vroon. Efficient circuit to CNF conversion. Theory
and Applications of Satisfiability Testing–SAT 2007, pages 4–9, 2007.

[15] M. Davis and H. Putnam. A computing procedure for quantification
theory. J. ACM, 7:201–215, 1960.

[16] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. Comms. ACM, 5:394–397, July 1962.

115

