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ABSTRACT
Both symbolic model checking and assume-guarantee rea-
soning aim to circumvent the state explosion problem. Sym-
bolic model checking explores many states simultaneously
and reports numerous erroneous traces. Automated assume-
guarantee reasoning, on the other hand, infers contextual
assumptions by inspecting spurious erroneous traces. One
would expect that their integration could further improve
the capacity of model checking. Yet examining numerous er-
roneous traces to deduce contextual assumptions can be very
time-consuming. The integration of symbolic model checking
and assume-guarantee reasoning is thus far from clear. In
this paper, we present a progressive witness analysis algo-
rithm for automated assume-guarantee reasoning to exploit
a multitude of traces from BDD-based symbolic model check-
ers. Our technique successfully integrates symbolic model
checking with automated assume-guarantee reasoning by
directly inferring BDD’s as implicit assumptions. It outper-
forms monolithic symbolic model checking in four benchmark
problems and an industrial case study in experiments.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs

General Terms
Verification, Reliability

Keywords
Software model checking, symbolic model checking, assume-
guarantee reasoning, algorithmic learning, safety

1. INTRODUCTION
The advent of multi-core processors not only improves the

efficiency of computing but also increases the complexity
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of programming. Intricate interactions among concurrent
processes often incur unexpected faulty program behaviors
eluding programmers’ inspection. Program verification hence
plays an even more important role during software develop-
ment. Model checking is a program verification technique
that automatically analyzes the correctness of programs by
formal mathematical reasoning [18, 16].
In model checking, programmers specify a model for the

system under verification, and a formal property about in-
tended system behaviors. A model checker verifies the model
against the property by exploring all system behaviors. If any
behavior does not fulfill the intended property, the model
checker will report it. Otherwise, the model satisfies the
property conclusively since there is no violation. Exploring
all behaviors can be very expensive computationally since
the number of system states can grow exponentially in the
number of system components. The state explosion problem
greatly impedes the effectiveness of model checking.
Symbolic model checking 1 is a well-known technique for

ameliorating the state explosion problem [7, 18]. In symbolic
model checking, system states are implicitly represented
by predicates, as well as the initial states and transition
relation of the system. Using data structures such as Binary
Decision Diagrams (BDD’s), a large number of states are
explored simultaneously by standard predicate operations
(conjunction, disjunction, quantifier elimination, etc). Since
it is no longer necessary to enumerate states one at a time,
the state explosion problem can be alleviated.
By separating concerns of software functionality, component-

based designs improve reusability and quality of software
systems [5, 30]. In component-based software engineering, a
software system is composed of several components of differ-
ent functionality. When each software component has clearly
specified functions and interfaces, its reusability is improved.
Time of developing software systems is subsequently reduced.
Incidentally, the separation of concerns is not only found in
software development but also verification.
Assume-guarantee reasoning is a technique to improve the

capacity of model checking. In assume-guarantee reasoning,
one verifies whether every component behaves correctly un-
der certain carefully chosen contextual assumptions [21]. If
so, the system of components is correct by the soundness
of assume-guarantee reasoning. Since each component is
verified against contextual assumptions separately, the state
explosion problem can be avoided. Choosing contextual as-
sumptions however is not easy. Oftentimes, programmers

1By “symbolic”, we mean BDD-based techniques unless
stated otherwise.
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have to provide contextual assumptions manually. Such la-
borious tasks are very time consuming and can be extremely
difficult to carry out on large systems.
In order to address the assumption generation problem,

machine learning is applied to infer contextual assumptions.
In [20, 1, 8, 35, 24, 32, 25, 13, 34], the L∗ learning algorithm
for regular languages [2] is adopted to solve the assumption
generation problem. Instead of programmers, one employs
the L∗ learning algorithm to contrive contextual assumptions
under the supervision of a mechanical teacher. When the
L∗ learning algorithm purports a contextual assumption,
one performs assume-guarantee reasoning. If the contextual
assumption is strong enough to establish the correctness
of the system, we are done. Otherwise, the model checker
reports an erroneous behavior under the purported contextual
assumption. When the contextual assumption is overly weak,
the reported behavior may not be a valid system behavior.
The mechanical teacher has to check if the erroneous behavior
is valid. If not, the mechanical teacher analyzes the spurious
erroneous behavior and guides the learning algorithm to
revise the next contextual assumption.
Both symbolic model checking and automated assume-

guarantee reasoning aim to circumvent the state explosion
problem. One wonders if their integration can further im-
prove the capacity of model checking. On closer examina-
tion, it is not hard to see that an effective integration is
not straightforward. First, the L∗ learning algorithm repre-
sents contextual assumptions explicitly. Converting explicit
contextual assumptions to implicit representations induces
overheads.2 Second, when a purported contextual assump-
tion fails to verify the system, a symbolic model checker in
fact gives numerous erroneous behaviors. The mechanical
teacher has to analyze lots of behaviors to supervise learning
algorithms. Since it is infeasible to enumerate all implicitly
represented behaviors, it is unclear how to extract neces-
sary information to infer purported contextual assumptions
efficiently. Third, a learning algorithm purports a new con-
textual assumption after receiving a spurious behavior from
the mechanical teacher. The mechanical teacher actually pos-
sesses a number of spurious behaviors after symbolic model
checking. Efficiently passing numerous spurious behaviors to
the learning algorithm is not at all obvious. A more sophis-
ticated mechanism which takes full advantage of symbolic
model checking is certainly desirable.
In this paper, we present a progressive analysis algorithm

to take advantage of both symbolic model checking and au-
tomated assume-guarantee reasoning. When spurious behav-
iors are obtained, the mechanical teacher guides the learning
algorithm to remove a spurious behavior from contextual as-
sumptions. When the learning algorithm purports a revised
contextual assumption, our progressive algorithm checks if
previous spurious behaviors are eliminated in the new con-
textual assumption. If not, another spurious behavior is
returned to guide the learning algorithm to the next revision.
Only when all spurious behaviors are accounted for, can the
verification algorithm proceed to perform assume-guarantee
reasoning with the purported contextual assumption. Ob-
serve that assume-guarantee reasoning is applied only when
known spurious behaviors are eliminated. Our progressive
approach hence minimizes the invocation of model checkers

2Implicit learning attempts to address the problem [12, 11],
but other problems peculiar to symbolic model checking
remain.

and maximizes the utility of the information in implicitly
represented spurious behaviors.
Our technical contributions are summarized as follows.

• We adopt a BDD learning algorithm to generate im-
plicit contextual assumptions in our fully symbolic
technique. Different from [11], we implement the classi-
fication tree-based BDD learning algorithm [31] in our
symbolic assume-guarantee reasoning technique.

• We propose a progressive analysis algorithm for the me-
chanical teacher in automated assume-guarantee reason-
ing. The new algorithm takes advantage of implicitly
represented behaviors from symbolic model checkers. It
enables the integration of symbolic model checking and
automated assume-guarantee reasoning to ameliorate
the state explosion problem.

• We compare our new technique with the monolithic
symbolic model checker NuSMV 2.4.3 [15]. Experi-
mental results show that our technique outperforms
monolithic model checking in four benchmark problems
(mini-Rubik’s cube, Rubik’s cube, dining philosophers,
and dining cryptographers). Our compositional tech-
nique moreover improves both time and space in an
industrial gate control system.

The paper is organized as follows. We review related work
in Section 2. After preliminaries (Section 3), automated
assume-guarantee reasoning with implicit learning is briefly
reviewed in Section 4. Section 5 presents our technical con-
tribution. It is followed by experimental results (Section 6).
Finally, we conclude our presentation in Section 7.

2. RELATEDWORK
Automated assume-guarantee reasoning is proposed in [20].

The authors apply the L∗ algorithm to generate explicit
deterministic finite automata as contextual assumptions [2].
Several optimizations for the L∗ algorithm are available [32,
9, 35, 4]. A tree-based contextual assumption generation
algorithm is also developed in [26, 27]. Interface synthesis
by learning is reported in [28, 3]. Predicate abstraction has
been used to represent software state space symbolically [33,
22], but deriving symbolic representations of transitions is
different. Indeed, contextual assumptions inferred by these
techniques are still represented explicitly. Converting ex-
plicit contextual assumptions to BDD’s for symbolic model
checking can induce overheads. Inferring explicit contextual
assumptions is not optimal for symbolic model checking.
Learning implicit contextual assumptions based on the

CDNF algorithm [6] is proposed in [12]. The work [11] com-
pares the CDNF algorithm and the L∗-based BDD learning
algorithm [23] in the context of assume-guarantee reasoning
through implicit learning. Rather than BDD-based symbolic
model checking, both works [12, 11] employ a SAT-based
symbolic model checker. Since SAT-based symbolic model
checking reports only one erroneous behavior, the simple
witness analysis algorithm suffices. On the other hand, our
progressive algorithm is designed to analyze numerous er-
roneous behaviors. It enables programmers to deploy a
BDD-based symbolic model checker in automated assume-
guarantee reasoning. Additionally, we implement the classi-
fication tree-based BDD learning algorithm [31]. The new
algorithm is asymptotically more efficient than the L∗-based
learning algorithm implemented in [11] by a linear factor.
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The symbolic compositional verification technique in [1,
32] is only relevant in appearance. Based on the L∗ learn-
ing algorithm, the symbolic L∗ algorithm uses BDD’s to
encode input symbols on transitions of contextual assump-
tions. States of contextual assumptions however are still
represented explicitly. Converting semi-symbolic contex-
tual assumptions for symbolic model checking may induce
overheads. Moreover, the symbolic L∗ algorithm infers de-
terministic contextual assumptions in a partially implicit
representation. Our technique adopts a BDD learning algo-
rithm and infers nondeterministic contextual assumptions in
BDD’s, a fully implicit representation.
Finally, some drawbacks of automated assume-guarantee

reasoning with the basic L∗ algorithm are discussed in [19].
Many issues have been addressed in various optimizations
of the basic algorithm since then [32, 9, 35, 26, 27, 4]. We
adopt a BDD learning algorithm and infer contextual as-
sumptions implicitly. Observations in [19] no longer apply.
Moreover, the work [19] compares compositional reasoning
with monolithic verification within enumerative model check-
ing, a context very different from symbolic model checking.

3. PRELIMINARIES
Let B = {ff, tt} be the Boolean domain with the truth

values ff and tt. For a set x of Boolean variables, define
x� = {x� : x ∈ x} and �x = { �x : x ∈ x}. A valuation over
x is a mapping from x to B. We write Valx for the set of
valuations over x. A predicate φ(x) (or φ when the variables
x are clear from the context) is a Boolean function over
the Boolean variables x. For a predicate φ and a valuation
s ∈ Valx, s satisfies φ (written s |= φ) if φ evaluates to tt
by assigning s(x) to x ∈ x. Similarly, a pair of valuations
(s, t) ∈ Valx × Valx satisfies a predicate ψ(x,x�) (written
(s, t) |= ψ) if ψ evaluates to tt by assigning s(x) and t(x) to
x ∈ x and x� ∈ x� respectively. We write [[φ]] for the set of
satisfying valuations for the predicate φ, namely, [[φ]] = {s ∈
Valx : s |= φ}. A predicate φ is a tautology (written |= φ) if
s |= φ for every valuation s ∈ Valx.
Reduced and ordered binary decision diagrams (BDD’s) are

a representation for predicates. For any predicate φ, we write
BDD(φ) for the BDD representing φ. The representation
is canonical in the sense that BDD(φ) = BDD(ψ) if and
only if φ = ψ. For instance, consider φ = x0 ∨ ¬x0 and
ψ = x1 ∨ ¬x1. Then BDD(φ) = BDD(ψ) since both φ and
ψ are tautologies. Boolean operations and quantification are
allowed in BDD’s. One can compute BDD(¬φ), BDD(φ ∧ ψ),
BDD(φ ∨ ψ), BDD(∀x.φ), and BDD(∃x.φ) from BDD(φ)
and BDD(ψ) for any predicates φ, ψ, and variable x ∈ x.
A transition system M = �x, ι, τ� consists of a set x of

Boolean variables, an initial predicate ι(x), and a transition
predicate τ(x,x�). An x-state is a valuation over x. An
x-state s is M-initial if s |= ι. A pair (s, t) of x-states
is called an M-transition if (s, t) |= τ . If (s, t) is an M -
transition, t is anM -successor of s. AnM -trace is a sequence
σ = [s0, s1, · · · , sn] of x-states such that s0 is M -initial and
(si, si+1) is an M -transition for i = 0, . . . , n − 1. We write
Tr(M) for the set of M -traces. An x-state s is M-reachable
if there is an M -trace ending in s. For any predicate π, a
sequence σ = [s0, s1, . . . , sn] of x-states satisfies π (written
σ |= π) if si |= π for i = 0, . . . , n. We say M satisfies π
(written M |= π) if σ |= π for every σ ∈ Tr(M).
Let M = �x, ι, τ� be a transition system and π a predicate.

The invariant checking problem is to decide whether M

satisfies π. A model checker solves the invariant checking
problem by exploring M -reachable states and storing them
in predicates. When M does not satisfy π, a model checker
returns a sequence of predicates [S0(x), S1(x), . . . , Sk(x)]
that

1. |= S0 ⇒ ι (every x-state in [[S0]] is M -initial);

2. |= ∃x.Sk ∧ ¬π (an x-state in [[Sk]] does not satisfy π);
and

3. for every 0 < i ≤ k, |= Si ⇒ ∃�x.Si−1(
�x) ∧ τ(�x,x)

(every x-state in [[Si]] is an M -successor of an x-state
in [[Si−1]]).

The sequence [S0, S1, . . . , Sk] is called a witness to M �|=
π.3 For a transition system M = �x, ι, τ� and a witness
[S0, S1, . . . , Sk] to M �|= π, an M -trace σ = [s0, s1, . . . , sk] is
represented in [S0, S1, . . . , Sk] if si |= Si for every 0 ≤ i ≤ k.
For any witness [S0, S1, . . . , Sk] to M �|= π, there is an M -
trace σ represented in [S0, S1, . . . , Sk] such that σ �|= π. Note
that a witness represents a set of M -traces.
Let Mi = �xi, ιi, τi� be transition systems for i = 0, 1 (xi’s

are not necessarily disjoint). The composition M0�M1 =
�x, ι, τ� is a transition system where x = x0 ∪ x1, ι = ι0 ∧ ι1,
and τ = τ0 ∧ τ1. The projection s|y of an x-state s on
y ⊆ x is a y-state such that s|y(y) = s(y) for y ∈ y. The
projection σ|y of a sequence σ = [s0, s1, . . . , sn] of x-states
on y ⊆ x is the sequence [s0|y, s1|y, · · · , sn|y] of y-states.
Note that σ ∈ Tr(M0�M1) if and only if σ|x0 ∈ Tr(M0) and
σ|x1 ∈ Tr(M1).
Let M = �x, ι, τ� be a transition system. A transition

system N = �x, λ, θ� simulates M (written M � N) if
|= ι ⇒ λ and |= τ ⇒ θ. In other words, N simulates M if
every M -initial x-state is N -initial, and every M -transition
is also an N -transition.

A proof rule is of the form
Φ0 Φ1 · · · Φk

Ψ
where

Φ0, . . . ,Φk are the premises of the proof rule, and Ψ is its
conclusion. A proof rule is sound if its conclusion holds when
its premises are fulfilled; it is invertible if its premises can
be fulfilled when its conclusion holds.

Theorem 1 ([12]). Let Mi = �xi, ιi, τi� be transition
systems for i = 0, 1, x = x0 ∪ x1, and π(x) a predicate. The
following proof rule is sound and invertible:

M1 � A M0�A |= π

M0�M1 |= π

In the proof rule of Theorem 1, the transition system A is
called a contextual assumption of M0.

4. IMPLICIT LEARNING FRAMEWORK
In automated assume-guarantee reasoning through im-

plicit learning [12], a learning algorithm for predicates is
used to generate contextual assumptions automatically. In
this section, we review BDD learning and the framework of
assume-guarantee reasoning with implicit learning.

4.1 Learning BDD’s
Let f(x) be an unknown target predicate. A BDD learning

algorithm infers BDD(f) by making queries. It assumes a

3Most model checkers only report sequences of states for
debugging purposes, but such witnesses are in fact computed.
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IsEquivalent(λ(x1), θ(x1,x
�
1))

equivalence resolution

membership
resolution

IsMember ιA(s)

membership
resolution

IsMember τA(s, t)

Learner ιA

MEM ιA(s)

YES ,NO

EQ ιA
(BDD(λ))

YES , s

MEM τA(s, t)

YES ,NO

EQ τA
(BDD(θ))

YES , (s, t)

Learner τA

Figure 2: Implicit Learning Framework

YES if s |= f

MEM (s)

NO otherwise

EQ(BDD(h))

YES if BDD(f) = BDD(h)
ce with ce |= f ⊕ h otherwise

Learning
Algorithm Teacher

Figure 1: Angluin’s Learning Model

teacher who knows the target predicate f and answers the
following types of queries (Figure 1) [2, 6, 23, 31]:

• Membership queries MEM (s) with s ∈ Valx. If s |=
f , the teacher answers YES ; otherwise, the teacher
answers NO .

• Equivalence queries EQ(BDD(h)) with a conjecture
BDD(h(x)). If BDD(f) = BDD(h), the teacher an-
swers YES . Otherwise, the teacher sends a counterex-
ample ce ∈ Valx such that ce |= f ⊕ h where ⊕ is the
exclusive-or operator.

A membership query MEM (s) asks if the unknown target
predicate f evaluates to tt under the valuation s ∈ Valx. An
equivalence query EQ(BDD(h)), on the other hand, purports
a conjecture h and asks if BDD(f) = BDD(h). Recall that
BDD’s are canonical. When BDD(f) �= BDD(h), f �= h.
Hence there is a valuation ce ∈ Valx such that f and h
evaluate to different truth values. In other words, f ⊕ h
evaluates to tt under a certain ce. The teacher returns such
a valuation ce as a counterexample to the equivalence query.
Since the number of predicates over x is finite, any un-

known predicate can be inferred by enumeration. For in-
stance, one can obtain the truth table of the unknown target
predicate by asking 2|x| membership queries and generate the
BDD accordingly. The naive BDD learning algorithm how-
ever requires an exponential number of membership queries
in the number of Boolean variables. Remarkably, it is shown
that the BDD of an arbitrary target predicate can be learned
within a linear number of equivalence and a quadratic number
of membership queries in its size.

Theorem 2 ([31]). For any unknown target predicate
f(x), one can infer BDD(f) with at most n equivalence
queries and 2n(�lgm�+ 3n) membership queries where n is
the size of BDD(f) and m is the number of Boolean variables
in x.

4.2 Implicit Learning
The basic idea of implicit learning is to guide the learning

algorithm to infer the initial and transition predicates of a
contextual assumption [20, 12]. Since a contextual assump-
tion consists of two predicates, two instances of the BDD
learning algorithm are deployed. The instance Learner ιA

infers the initial predicate of a contextual assumption, and
the other instance LearnerτA infers its transition predicate.
Both instances make membership and equivalence queries to
a mechanical teacher. Figure 2 shows the implicit learning
framework. For clarity, subscripts are used to differenti-
ate queries from the two learners in the figure: Learner ιA

makes membership query MEM ιA(s) and equivalence query
EQ ιA

(BDD(λ)); and LearnerτA makes membership query
MEM τA(s, t) and equivalence query EQτA

(BDD(θ)).
For a membership queryMEM ιA(s), the mechanical teacher

checks if the valuation s satisfies the initial predicate of M1.
If so, the mechanical teacher answers YES . Otherwise, it
answers NO . Conceptually, the mechanical teacher uses
the initial predicate of M1 as the unknown target predicate
(Algorithm 1). If no other contextual assumption is found,
Learner ιA will eventually infer the initial predicate of M1.

// M1 = �x1, ι1, τ1�
Input: s ∈ Valx1 : a valuation
Output: YES or NO

if s |= ι1 then send YES else send NO ;

Algorithm 1: IsMember ιA(s)

Similarly, membership queries from LearnerτA are resolved
by using the transition predicate ofM1 as the unknown target
predicate (Algorithm 2). Again, LearnerτA will infer the
transition predicate of M1 eventually if no other contextual
assumption is found. Observe that membership queries from
the learners are resolved separately. Synchronization is not
needed between membership query resolution algorithms.
Equivalence queries, on the other hand, require synchro-

nization. Assume that LearnerιA makes an equivalence query
EQ ιA

(BDD(λ)). The mechanical teacher has to answer
whether BDD(λ) represents the initial predicate of a contex-
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j ← 0

no

no

j ← j + 1

remove spurious transitions between [[Sj]], [[Sj+1]] (Algorithm 5) and compute Sj+1

remove spurious states from [[S0]] (Algorithm 4) and compute S0

j = k?

[[Sj]] = ∅?

yes

spurious states are removed

apply assume-guarantee reasoning

(Algorithm 3)

yes

M0�M1 �|= π

[[Sk]] ∩ [[¬π]] = ∅
no

yes

Figure 3: Overview of Progressive Witness Analysis

// M1 = �x1, ι1, τ1�
Input: s, t ∈ Valx1 : valuations
Output: YES or NO

if (s, t) |= τ1 then send YES else send NO ;

Algorithm 2: IsMemberτA(s, t)

tual assumption A. To do so, it needs to check if the premises
M1 � A and M0�A |= π hold. The mechanical teacher needs
the transition predicate of the contextual assumption A
in order to check the premise. Hence the EQ ιA

(BDD(λ))
from Learner ιA cannot be resolved without the conjecture
BDD(θ(x1,x

�
1)) in EQτA

(BDD(θ)) from LearnerτA . Simi-
larly, the EQτA

(BDD(θ)) from LearnerτA cannot be resolved
without the conjecture BDD(λ(x1)) in EQ ιA

(BDD(λ)) from
Learner ιA . Resolving either of the equivalence queries must
be synchronized with the other. Subsequently, there is but
one equivalence query resolution algorithm in the mechanical
teacher.
When the equivalence query resolution algorithm receives

the queries EQ ιA
(BDD(λ)) and EQλA

(BDD(θ)) from the
learners, the mechanical teacher constructs a purported con-
textual assumption A−1 = �x1, λ, θ� and checks if A−1 can
serve as a contextual assumption (Algorithm 3). The algo-
rithm first verifies if A−1 simulates M1. If not, a counterex-
ample is sent to Learner ιA or LearnerτA . If A−1 simulates
M1, Algorithm 3 then invokes a model checker to verify the
premise M0�A−1 |= π. If the premise is also fulfilled, the
proof rule in Theorem 1 applies. By the soundness of the
proof rule, the mechanical teacher reports “M0�M1 |= π.”
Otherwise, a witness [S0, S1, . . . , Sk] to M0�A−1 �|= π is ob-
tained from the model checker. Recall that M1 � A−1.
[S0, S1, . . . , Sk] is not necessarily a witness to M0�M1 �|= π.
Particularly, the witness may represent an M0�A−1-trace
that does not satisfy π even though M0�M1 |= π. Further
analysis is required for the witness to M0�A−1 �|= π.

// Mi = �xi, ιi, τi� for i = 0, 1 and x = x0 ∪ x1

Input: λ(x1) : an initial predicate; θ(x1,x
�
1) : a

transition predicate
Output: “M0�M1 |= π”, a witness to M0�M1 �|= π, a

counterexample to EQιA
(BDD(λ)), or a

counterexample to EQτA
(BDD(θ))

A−1 ← �x1, λ, θ�;
if s |= ι1 ∧ ¬λ then

send s as the counterexample to EQιA
(BDD(λ));

receive an equivalence query EQιA
(BDD(λ�));

return IsEquivalent(λ�, θ);
if (s, t) |= τ1 ∧ ¬θ then

send (s, t) as the counterexample to EQτA
(BDD(θ));

receive an equivalence query EQτA
(BDD(θ�));

return IsEquivalent(λ, θ�);
if M0�A−1 |= π then report “M0�M1 |= π”;
let [S0, S1, . . . , Sk] be a witness to M0�A−1 �|= π;
return AnalyzeWitness(A−1, S0, S1, . . . , Sk);

Algorithm 3: IsEquivalent (λ, θ)

5. ANALYZING SYMBOLIC WITNESSES
In order to describe witness analysis, we identify invalid

behaviors. Let A be a purported contextual assumption.
An M0�A-initial state is spurious if it is not M0�M1-initial;
and an M0�A-transition is spurious if it is not an M0�M1-
transition. Similarly, anM0�A-trace is spurious if it is not an
M0�M1-trace; and an M0�A-reachable state is spurious if it
is not M0�M1-reachable. Consider a trace σ ∈ Tr(M0�A−1)
such that σ �|= π. Then σ|x0 ∈ Tr(M0) and σ|x1 ∈ Tr(A−1).
Let σ|x1 = [s0, s1, . . . , sn]. If s0 is M1-initial and (si, si+1) is
an M1-transition for every 0 ≤ i < n, then σ|x1 is in fact an
M1-trace. We conclude M0�M1 �|= π. If, for instance, (s3, s4)
is not an M1-transition, then (s3, s4) is a spurious A−1-
transition. We should return (s3, s4) as a counterexample so
that the learning algorithm removes the spurious transition
from future conjectures. Since only one trace is inspected,
we call this procedure the simple witness analysis algorithm.
In [12, 11], a SAT-based symbolic model checker is used
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to verify the premise M0�A−1 |= π. Since a SAT-based
symbolic model checker returns only one trace as a witness to
M0�A−1 �|= π, the simple witness analysis algorithm applies.
Similarly, the simple algorithm suffices when an explicit
model checker is used [20, 19].
The situation becomes slightly more complicated if the

mechanical teacher uses a symbolic model checker. In this
case, a witness toM0�A−1 �|= π represents a number of traces
in general. The mechanical teacher could pick an arbitrary
M0�A−1-trace in the witness and analyze the trace as before.
Lots of information in the witness however would be wasted.
Consider, for instance, spurious transitions of different traces
represented in a witness. Since only one trace is inspected by
the mechanical teacher, a spurious transition of the inspected
trace is returned as a counterexample. Spurious transitions
in other traces may still remain in the next conjecture from
the learning algorithm. They may again appear in another
witness when the mechanical teacher checks the premises
with the next purported contextual assumption. This is
clearly a waste of computation resources.
On the other hand, examining all traces in a witness is by

no means straightforward. A witness represents numerous
traces. It is infeasible to inspect all transitions in all traces
iteratively. Moreover, BDD learning algorithms take but
one counterexample for each equivalence query. Yet the
mechanical teacher already have numerous counterexamples
from spurious transitions after symbolic model checking. It
is unclear how one may convey all these counterexamples to
BDD learning algorithms effectively. These questions must
be addressed properly in order to integrate symbolic model
checking with automated assume-guarantee reasoning.
We propose to analyze spurious traces progressively. Given

a witness [S0, S1, . . . , Sk] to M0�A �|= π, our progressive wit-
ness analysis algorithm works as follows (Figure 3). First, the
algorithm obtains a predicate S0 by eliminating all spurious
M0�A-initial states from [[S0]]. The set [[S0]] thus contains
M0�M1-reachable states. Inductively, assume that the algo-
rithm has obtained the predicate Sj by eliminating all spu-
rious M0�A-reachable states from [[Sj ]]. The set [[Sj ]] hence
contains only M0�M1-reachable states. The witness analysis
algorithm checks if [[Sj ]] is empty. If so, all known spuri-
ous M0�A-traces are eliminated. The mechanical teacher
applies the assume-guarantee reasoning proof rule in The-
orem 1 with the purported assumption A. Otherwise, the
algorithm obtains a predicate Sj+1 by eliminating all spuri-
ous M0�A-transitions. The set [[Sj+1]] hence contains only
M0�M1-reachable states. When the sequence of predicates
[S0, S1, . . . , Sk] is finally obtained, the set [[Sk]] contains only
M0�M1-reachable states. If [[Sk]] contains a state not satis-
fying π, the sequence [S0, S1, . . . , Sk] is indeed a witness to
M0�M1 �|= π.
We now give details of the procedure that eliminates spu-

rious initial states. Algorithm 4 returns a revised initial
predicate λ(x1) for the purported contextual assumption
A = �x1, λ, θ�, which removes spurious M0�A-initial states
from [[S]]. Conceptually, Algorithm 4 considers the pur-
ported contextual assumption A = �x1, λ, θ� in the while
loop. The contextual assumption A is initialized to A. In
each iteration, we have an x-state u such that u |= ι0 ∧λ but
u �|= ι0 ∧ ι1. The state u ∈ [[S]] is a spurious M0�A-initial
state. Algorithm 4 then sends u|x1 as a counterexample
to EQ ιA

(BDD(λ)). Informally, the counterexample u|x1 in-

forms Learner ιA that the conjecture BDD(λ) is incorrect at

// Mi = �xi, ιi, τi� for i = 0, 1 and x = x0 ∪ x1

Input: �x1, λ, θ� : a purported contextual assumption;
S(x) : a predicate

Output: λ(x1) : an initial predicate

λ ← λ;
while u |= ¬ι1 ∧ ι0 ∧ λ ∧ S do

// A = �x1, λ, θ� is the purported contextual

assumption

send u|x1 as the counterexample to EQιA
(BDD(λ));

receive an equivalence query EQιA
(BDD(λ

�
));

λ ← λ
�
;

end

return λ;

Algorithm 4: UpdateInit(�x1, λ, θ�, S)

the valuation u|x1 . After receiving a new equivalence query

EQ ιA
(BDD(λ

�
)), Algorithm 4 considers the new purported

contextual assumption �x1, λ
�
, θ� in the next iteration.

When the algorithm returns an initial predicate λ, we have
|= [ι0 ∧λ∧S]⇒ ι1 and hence |= [ι0 ∧λ∧S]⇒ [ι0 ∧ ι1]. That
is, every M0�A-initial state is also M0�M1-initial. Note that
A does not necessarily simulate M1. Lemma 1 summarizes
UpdateInit(�x1, λ, θ�, S) (Algorithm 4).

Lemma 1. Let Mi = �xi, ιi, τi� be transition systems for
i = 0, 1 and x = x0 ∪ x1. If λ(x1) is returned by UpdateInit
(�x1, λ, θ�, S) (Algorithm 4), then |= [ι0 ∧ λ ∧ S]⇒ [ι0 ∧ ι1].

The mechanical teacher eliminates spurious transitions
from reachable states in a similar manner. Algorithm 5
returns a revised transition predicate θ(x1,x

�
1) for the pur-

ported contextual assumption A = �x1, λ, θ�, which removes
spurious M0�A-transitions between [[R]] and [[S]]. Conceptu-
ally, Algorithm 5 considers the purported contextual assump-
tion A = �x1, λ, θ� in the while loop. At first, the contextual
assumption A is A. In each iteration, we have a transition
(u, v) ∈ [[R]]× [[S]] such that (u, v) |= τ0∧θ but (u, v) �|= τ0∧τ1.
The M0�A-transition (u, v) between [[R]] and [[S]] is spurious.
Algorithm 5 then sends (u|x1 , v|x1) as a counterexample to
EQτA

(BDD(θ)). The counterexample (u|x1 , v|x1) effectively

informs the learning algorithm that the conjecture BDD(θ) is
incorrect at the valuation (u|x1 , v|x1). After receiving another

equivalence query EQτA
(BDD(θ

�
)), Algorithm 5 considers

the new purported contextual assumption �x1, λ, θ
�� in the

next iteration.
When the algorithm returns a transition predicate θ, we

have |= [τ0 ∧ θ ∧ R ∧ S(x�)] ⇒ τ1 and hence |= [τ0 ∧ θ ∧
R ∧ S(x�)] ⇒ [τ0 ∧ τ1]. That is, every M0�A-transition
between [[R]] and [[S]] is also an M0�M1-transition. Note that
A does not necessarily simulate M1. The following lemma
summarizes UpdateStep(�x1 , λ, θ�,R,S) (Algorithm 5).

Lemma 2. Let Mi = �xi, ιi, τi� be transition systems for
i = 0, 1 and x = x0 ∪ x1. If θ(x1,x

�
1) is returned by

UpdateStep(�x1, λ, θ�, R, S) (Algorithm 5), then |= [τ0 ∧
θ ∧R ∧ S(x�)]⇒ [τ0 ∧ τ1].

We are ready to give details of our progressive witness
analysis algorithm. The witness analysis algorithm proceeds
by stages (Algorithm 6). Let A−1 = �x1, λ, θ� be a purported
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// Mi = �xi, ιi, τi� for i = 0, 1 and x = x0 ∪ x1

Input: �x1, λ, θ� : a purported contextual assumption;
R(x), S(x) : predicates

Output: θ(x1,x
�
1) : a transition predicate

θ ← θ;
while (u, v) |= ¬τ1 ∧ τ0 ∧ θ ∧R ∧ S(x�) do

// A = �x1, λ, θ� is the purported contextual

assumption

send (u|x1 , v|x1) as the counterexample to
EQτA

(BDD(θ));

receive an equivalence query EQτA
(BDD(θ

�
));

θ ← θ
�
;

end

return θ;

Algorithm 5: UpdateStep(�x1, λ, θ�, R, S)

contextual assumption with M1 � A−1, and [S0, S1, . . . , Sk]
a witness to M0�A−1 �|= π. The witness analysis algorithm
first invokes UpdateInit(A−1, S0) (Algorithm 4) to find an
initial predicate λ(x1). Define θ0 = θ, A0 = �x1, λ, θ0�, and
S0 = ι0 ∧ λ ∧ S0. By Lemma 1, every M0�A0-initial state in
[[S0]] is M0�M1-initial. The following lemma summarizes the
first two lines of Algorithm 6.

Lemma 3. Let Mi = �xi, ιi, τi� be transition systems for
i = 0, 1 and x = x0 ∪ x1. Right after line 2 of Algorithm 6,
we have

1. |= S0(x)⇒ S0(x); and

2. every x-state in [[S0]] is M0�M1-reachable.

// Mi = �xi, ιi, τi� for i = 0, 1 and x = x0 ∪ x1

Input: A−1 = �x1, λ, θ� : a purported contextual
assumption; [S0(x), S1(x), . . . , Sk(x)] : a witness
to M0�A−1 �|= π

Output: “M0�M1 |= π”, a witness to M0�M1 �|= π, a
counterexample to EQιA

(BDD(λ)), or a
counterexample to EQτA

(BDD(θ))

λ ← UpdateInit(A−1, S0) (Algorithm 4);1

S0 ← ι0 ∧ λ ∧ S0;2

θ0 ← θ;3

for j ← 0 to k − 1 do4

Aj ← �x1, λ, θj�;5

if |= ¬Sj then6

return IsEquivalent(λ, θj) (Algorithm 3);7

else8

θj+1 ← UpdateStep(Aj , Sj , Sj+1) (Algorithm 5);9

Sj+1 ←10

∃ �x.τ0(
�x0,x0) ∧ θj+1(

�x1,x1) ∧ Sj(
�x) ∧ Sj+1;

end11

end12

if |= ∃x.Sk ∧ ¬π then report [S0, S1, . . . , Sk];13

else return IsEquivalent(λ, θk) (Algorithm 3);14

Algorithm 6: AnalyzeWitness(�x1, λ, θ�, S0, S1, . . . , Sk)

At stage j, we have obtained a set [[Sj ]] ofM0�M1-reachable
states and a purported contextual assumption Aj = �x1, λ, θj�.

The witness analysis algorithm eliminates spurious M0�Aj-
transitions from [[Sj ]] by invoking UpdateStep (Aj , Sj , Sj+1)
(Algorithm 5). It thus obtains a transition predicate θ(x1,x

�
1).

Define θj+1 = θ, Aj+1 = �x1, λ, θj+1�, and Sj+1 = ∃�x.
τ0(

�x0,x0) ∧ θj+1(
�x1,x1) ∧ Sj(

�x) ∧ Sj+1. By Lemma 2,
every M0�Aj+1-transition between [[Sj ]] and [[Sj+1]] is also
an M0�M1-transition. Hence [[Sj+1]] consists of M0�M1-
reachable states. The witness analysis algorithm then pro-
ceeds to the next stage. The following lemma summarizes
an iteration of the for loop at line 4 of Algorithm 6.

Lemma 4. Let Mi = �xi, ιi, τi� be transition systems for
i = 0, 1 and x = x0 ∪ x1. At line 12 of Algorithm 6, we have

1. |= Sj+1(x)⇒ Sj+1(x); and

2. every x-state in [[Sj+1]] is M0�M1-reachable.

By Lemma 3 and 4, [[[S0]], [[S1]], . . . , [[Sj ]]] is a sequence of
M0�M1-reachable x-states. There are two scenarios:

• [[Sj ]] is empty for some 0 ≤ j < k. [S0, S1, . . . , Sj ]
cannot be a witness to M0�M1 �|= π. Recall that the
purported contextual assumption Aj does not necessar-
ily simulateM1. The witness analysis algorithm invokes
Algorithm 3 to check if Aj can serve as a contextual
assumption (line 7, Algorithm 6).

• None of [[S0]], [[S1]], . . . , [[Sk−1]] is empty. Algorithm 6
checks whether there is an x-state in [[Sk]] violating
the predicate π. If so, [S0, S1, . . . , Sk] is a witness to
M0�M1 �|= π. Otherwise, the witness analysis algorithm
invokes Algorithm 3 to check if Ak = �x1, λ, θk� can be
a contextual assumption (line 13, Algorithm 6).

Note that the witness analysis algorithm does not per-
form model checking. It instead revises purported contextual
assumptions by inspecting the witness progressively. Only
when all known spurious initial states and transitions are
accounted for, can assume-guarantee reasoning be performed
with purported contextual assumptions. Also note that pur-
ported contextual assumptions are not increasingly stronger.
The learning algorithm has no information about unqueried
M1-transitions. It is free to include such transitions arbitrar-
ily. The relation between successive purported contextual
assumptions is thus very different from those of counterex-
ample guided abstraction refinement [17].

Theorem 3 (Soundness). Let Mi = �xi, ιi, τi� be tran-
sition systems for i = 0, 1, x = x0 ∪ x1, and π(x), λ(x1),
θ(x1,x

�
1) predicates.

1. If IsEquivalent(λ, θ) (Algorithm 3) reports “M0�M1 |=
π,” then the purported contextual assumption A = �x1,
λ, θ� fulfills both premises of the proof rule in Theo-
rem 1.

2. If IsEquivalent(λ, θ) (Algorithm 3) reports a sequence
of predicates [S0, S1, . . . , Sk] for some k ≥ 0, then
[S0, S1, . . . , Sk] is a witness to M0�M1 �|= π.

For completeness, recall that the predicates ι1 and τ1
are the target predicates of Learner ιA and LearnerτA re-
spectively. The transition system M1 will be inferred as
a purported contextual assumption if no other contextual
assumption is found. Algorithm 3 can then decide whether
M0�M1 satisfies π conclusively.
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Theorem 4 (Completeness). Let Mi = �xi, ιi, τi� be
transition systems for i = 0, 1, x = x0 ∪ x1, and π(x) a
predicate.

1. If M0�M1 |= π, Learner ιA and LearnerτA will in-
fer certain predicates λ(x1) and θ(x1,x

�
1) such that

IsEquivalent(λ, θ) (Algorithm 3) reports “M0�M1 |= π.”

2. If M0�M1 �|= π, Learner ιA and LearnerτA will in-
fer certain predicates λ(x1) and θ(x1,x

�
1) such that

IsEquivalent(λ, θ) (Algorithm 3) returns a sequence
[S0, S1, . . . , Sk] for some k ≥ 0.

Optimizations: The BDD learning algorithms in [23, 31]
are based on the learning algorithms for regular languages [2,
29]. As observed in [11], the first equivalence query made
by BDD learning algorithms is always EQ(BDD(ff)) when
there is more than one Boolean variable. BDD learning
algorithms hence revise the first purported contextual as-
sumption A−1 = �x1, ff, ff� by adding M1-initial x1-states or
M1-transitions. Consequently, BDD learning algorithms of-
ten infer the component M1 as a contextual assumption. By
complementing queries from BDD learning algorithms, one
can ensure the first equivalence query to be EQ(BDD(tt))
and hence obtain more effective contextual assumptions [11].

// M0 = �x0, ι0, τ0�, A−1 = �x1, λ, θ� and x = x0 ∪ x1

Input: a witness [S0(x), S1(x), . . . , Sk(x)] to
M0�A−1 �|= π

Output: a witness to M0�A−1 �|= π contains only
traces violating π

Sk ← Sk ∧ ¬π;
for j ← k − 1 to 0 do

Sj ← Sj ∧ ∃x�.τ0(x0,x
�
0) ∧ θ(x1,x

�
1) ∧ Sj+1(x

�);
end
return [S0, S1, . . . , Sk];

Algorithm 7: WitnessBackward([S0, S1, . . . , Sk])

We can further reduce the number of spurious traces from
symbolic model checking. Witnesses obtained by symbolic
model checkers may contain unnecessary information. Con-
sider a witness to M0�A−1 �|= π. If a spurious M0�A−1-trace
in the witness satisfies π, it is not useful in revising the
contextual assumption. Subsequently, it is more economic
to consider M0�A−1-traces violating π in the witness. When
the witness analysis algorithm (Algorithm 6) obtains a wit-
ness [S0, S1, . . . , Sk] to M0�A �|= π, the mechanical teacher
should perform backward image computation to obtain useful
spurious traces from the witness (Algorithm 7).

6. EXPERIMENTS
We compare three different verification techniques in the ex-

periments: the NuSMV monolithic symbolic model checking,
automated assume-guarantee reasoning with simple witness
analysis, and automated assume-guarantee reasoning with
progressive witness analysis. The two automated assume-
guarantee reasoning techniques are implemented in NuSMV
[15]. Both adopt the classification tree-based BDD learning
algorithm to infer contextual assumptions [31].
Five examples are reported in the experiments: mini-

Rubik’s cube [36], Rubik’s cube, dining philosophers, din-
ing cryptographers [10], and an industrial gate control sys-
tem [37]. We heuristically choose components to generate

Table 1: Mini-Rubik’s Cube

property
notsolved overlap2

peak time peak time

NuSMV 6.41× 106 16.69s 7.28× 107 1575.37s
AG1 - - - -

AG* 1.78× 106 3.08s 3.61× 107 571.36s

Table 2: Rubik’s Cube

property
corner centercorner

peak time peak time
NuSMV – – – –
AG1 – – – –

AG* 1.31× 107 300.24s 3.79× 106 540.39s

property
overlap3

peak time
NuSMV – –
AG1 – –
AG* 3.22× 107 363.41s

contextual assumptions from. Each experiment is allocated
with one CPU core and 4GB of memory. All experiments
are conducted on a 64-bit Linux 3.2.0 server with 4 2.40GHz
Intel Xeon E5620 quadcore CPU’s and 32GB RAM.
Mini-Rubik’s cube. A mini-Rubik’s cube is the 2 × 2 × 2
version of the Rubik’s cube. There are eight miniature cubes
(called cubies) in the mini-Rubik’s cube. Each cubie can be
located in eight different positions. It moreover has three
visible facets and hence three orientations in each position.
Subsequently, a state of the mini-Rubik’s cube consists of
the position and the orientation of its eight cubies (Table 1).
In the table, the row NuSMV shows the results of mono-

lithic symbolic model checking. The rows AG1 and AG∗

show the results of assume-guarantee reasoning with the
simple and our progressive witness analysis algorithms (Algo-
rithm 6) respectively. The column “peak” shows the number
of peak BDD nodes during verification. Finally, the verifi-
cation time is shown. In the table, the symbol “–” indicates
either memory-out (4GB) or time-out (7200 seconds).
The property notsolved specifies that the mini-Rubik’s

cube cannot be solved. It fails from a chosen initial state.
A witness gives a solution to the puzzle. Assume-guarantee
reasoning with the simple witness analysis algorithm does
not finish within the given time limit. Monolithic symbolic
model checking uses more than six millions peak BDD nodes.
On the other hand, assume-guarantee reasoning with our
progressive witness analysis algorithm requires less than two
millions of peak BDD nodes, and improves the verification
time by 81%. The property overlap2 specifies that the first
two cubies cannot be in the same position from every initial
state. Monolithic symbolic model checking requires more
than seventy millions of peak BDD nodes and takes more
than twenty-six minutes to conclude the verification. Assume-
guarantee reasoning with our new witness analysis algorithm
uses a half of peak BDD nodes and improves the verification
time by 64%.
Rubik’s Cube. A 3×3×3 Rubik’s cube has twenty six visible
cubies. We partition visible cubies into three types. The first
type consists of six cubies at the center of six faces of the
cube. Each cubie of the first type has only one visible facet
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Table 3: Dining Philosophers

nodes
4 5

peak time peak time

NuSMV 2.16× 106 2.63s 4.77× 106 55.51s

AG1 1.41× 106 1.62s 2.44× 106 23.32s

AG* 1.41× 106 1.46s 2.44× 106 23.28s

nodes
6 7

peak time peak time

NuSMV 5.23× 107 1215.90s – –

AG1 6.95× 106 231.67s 3.53× 107 1796.82s

AG* 6.95× 106 227.10s 3.53× 107 1815.30s

and thus one orientation. The second type contains eight
cubies at the corners of the cube. Each cubie of this type
has three visible facets and three orientations. The last type
of cubies are on the edges of the Rubik’s cube. Each edge
cubie has two visible facets and two orientations.
Table 2 shows the experimental results. The property

corner specifies that the eight corner cubies cannot be at their
solved positions from a chosen initial state. The property
centercorner states that the first two types of cubies cannot
be at their solved positions from a chosen initial state. The
property overlap3 specifies that the first two center cubies
cannot be at the same position from every initial state. For
each property, neither monolithic symbolic model checking
nor assume-guarantee reasoning with the simple witness
analysis algorithm can verify these properties within the
given resource bound. On the other hand, assume-guarantee
reasoning with our progressive witness analysis algorithm
performs rather well. The inferred contextual assumptions
are significantly smaller than their targets. Subsequently,
assume-guarantee reasoning with progressive witness analysis
is able to verify all properties in this example.
Dining Philosophers. In this example, n philosophers sit in
a round table. Two neighboring philosophers share a fork.
When a philosopher decides to eat, she has to pick up the
two forks shared with her two neighbors. In the experiment
with n nodes, there are n processes for philosophers and n
for forks. We verify that the first two philosophers cannot
eat at the same time (Table 3).
Monolithic symbolic model checking is again outperformed

by both automated assume-guarantee reasoning techniques.
It cannot verify the experiment with 7 philosophers whereas
assume-guarantee reasoning can finish the verification in
about 30 minutes. Also note that monolithic symbolic model
checking always has a larger number of peak BDD nodes.
In the experiment with 6 nodes, the number is an order of
magnitude more than those of assume-guarantee reasoning.
Dining Cryptographers. The dining cryptographers prob-
lem is an example of privacy protocols. In the problem, n
cryptographers dine around a table. After finishing their
meal, they are told that the meal has been paid for. The
cryptographers are curious to know whether they are treated
by an unknown generous funding agency or by a colleague
among themselves. Being cryptographers, they respect their
privacy very much. If a colleague paid, the cryptographers do
not wish to identify the person. The dining cryptographers
problem is to determine whether a funding agency or an
anonymous cryptographer paid the meal.

Table 4: Dining Cryptographers

n
9 10

peak time peak time

NuSMV 9.42 ×106 154.29s 21.27 ×106 576.64s
AG1 - - - -

AG∗ 9.45 ×106 215.43s 19.98 ×106 821.77s

n
11 12

peak time peak time

NuSMV 38.79 ×106 1823.84s - -
AG1 - - - -

AG∗ 40.40 ×106 1866.74s 72.28 ×106 5715.22s

The cryptographers can solve the problem as follows. Ini-
tially, each cryptographer selects a secret bit. She then
obtains a shared secret bit with her left neighbor (say, by
computing the parity of their two secret bits). Similarly, she
obtains another secret bit shared with her right neighbor.
Each cryptographer then announces a bit. If she did not pay
the meal, she announces the parity of her two shared bits.
If she paid, the complement of the parity of her two shared
bits is announced. It can be shown that the parity of all
announced bits is even if an unknown funding agency pays
the bill. We verify this fact in the example.
Automated assume-guarantee reasoning with progressive

witness analysis is able to verify 12 cryptographers within
1.6 hours. In fact, the verification of 13 cryptographers is
complete within 4.2 hours. In contrast, monolithic symbolic
model checking uses up 4GB of memory on 12 cryptographers.
If we increase the memory bound to 8GB, the monolithic
technique is able to verify the instance of 12 cryptographers in
15.8 hours but still cannot finish the instance of 13 cryptogra-
phers. Assume-guarantee reasoning with progressive witness
analysis outperforms monolithic model checking for this ex-
ample. On the other hand, assume-guarantee reasoning with
simple witness analysis performs very disappointingly. It
fails to verify any instance with more than nine cryptogra-
phers. Analyzing witnesses progressively is essential to take
full advantages of assume-guarantee reasoning in the dining
cryptographers problem.
Gate Control System. Designed for a Buddhist ceremony on
a stage, the gate control system is used in LingShan Buddhist
Palace in Jiangsu, China [37]. The system consists of five
parts: the controller, lifting platform, push-pull unit, latch,
and motors. The lifting platform, push-pull unit, and latch
lift gates to and from the warehouse under the stage. A motor
is attached to each gate and moves along a circular track.
All these devices are operated by the controller. Figure 4
shows the system architecture.
Consider the opening scene of the ceremony, where every

gate arises from the warehouse orderly and moves to the
circular track. In order to bring gates from the warehouse
underneath, the lifting platform elevates a gate from the
warehouse to the stage. A push-pull unit then pushes the
gate to the circular track. At the closing scene, a motor first
moves a gate adjacent to the lifting platform along the track.
A push-pull unit then pulls the gate from the circular track
to the platform. Finally, the lifting platform descends the
gate to the warehouse below. For safety reasons, a latch locks
the lifting platform when the platform gets to a designated
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Table 5: Gate Control System

property
gate1 gate2 lpf1 lpf2

peak time peak time peak time peak time

NuSMV 0.561× 106 0.49s 0.561× 106 0.49s 0.884× 106 1.13s 0.884× 106 1.15s

AG1 0.702× 106 1.03s 0.338× 106 0.28s 0.471× 106 4.36s 1.190× 106 2.87s

AG* 0.370× 106 0.45s 0.218× 106 0.45s 0.282× 106 0.62s 0.283× 106 0.61s

property
latch1 latch2 ppu

peak time peak time peak time
NuSMV 1.076× 106 1.11s 1.076× 106 1.12s 0.862× 106 0.83s
AG1 0.467× 106 0.82s 0.596× 106 1.14s 1.014× 106 1.91s
AG* 0.222× 106 0.24s 0.189× 106 0.49s 0.482× 106 1.34s

Push-pull 
Unit

Lifting
Platform

Latch

Bus

Controller

Motors

Figure 4: Structure of Gate Control System

position. Since all gates move on the same circular track,
collision between gates must be avoided.
Table 5 gives the results. The property gate1 states that

a gate must stop when the user presses the stop button. The
property gate2 specifies that a gate must stop when it reaches
the boundary. The properties lpf1, latch1, and ppu are
similar to gate1 except the devices are the lifting platform,
latch, and push-pull unit, respectively. The properties lpf2
and latch2 are similar to gate2 except the devices are the
lifting platform and latch, respectively.
For all properties but ppu, assume-guarantee reasoning

with progressive witness analysis is more efficient than the
NuSMV monolithic verification algorithm. On average, our
new technique attains 25.9% of speedup. Assume-guarantee
reasoning with progressive witness analysis moreover im-
proves memory efficiency. For the seven properties verified
on the gate control system, assume-guarantee reasoning uses
less peak BDD nodes. It saves 62.3% of memory than mono-
lithic symbolic model checking on average.
Assume-guarantee reasoning with simple witness analysis

on the other hand is unsatisfactory. It takes significantly
more time than monolithic symbolic model checking in four
properties (gate1, lpf1, lpf2, and ppu). The simple witness
analysis algorithm moreover is not very memory efficient. It
uses more peak BDD nodes than the monolithic verification
algorithm in three properties (gate1, lpf2, and ppu).

7. CONCLUSION
Symbolic model checking and automated assume-guarantee

reasoning are integrated by the progressive witness analysis
algorithm proposed in this paper. Experimental results show
that the our technique can improve not only the efficiency
but also the capacity of symbolic model checking. Particu-

larly, assume-guarantee reasoning with progressive witness
analysis is more scalable than monolithic symbolic model
checking in symmetric and parametric examples such as
dining philosophers and dining cryptographers. Our experi-
ments also demonstrate the importance of witness analysis in
automated assume-guarantee reasoning with symbolic model
checking. An ill-designed witness analysis algorithm can
significantly impede the performance. Analyzing witnesses
progressively is essential to integrate symbolic model checking
with automated assume-guarantee reasoning.
In our experiments, we partition systems by trials and

hence may not have the optimal partition. How to partition
systems into components remains an important and chal-
lenging problem. Our technique currently finds contextual
assumptions over all context variables. Since a property
often depends on a subset of context variables, it suffices to
find contextual assumptions over such variables. In [14], an
algorithm inferring Boolean functions over relevant variables
is proposed. A similar learning algorithm for BDD’s may fur-
ther improve the performance of symbolic assume-guarantee
reasoning.
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[36] L. Théry. Proof pearl: Revisiting the mini-Rubik in
Coq. In O. A. Mohamed, C. Muñoz, and S. Tahar,
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