
Enhancing Precision of Structured Merge by
Proper Tree Matching

Fengmin Zhu, Fei He and Qianshan Yu
School of Software, Tsinghua University

Key Laboratory for Information System Security, MoE

Beijing National Research Center for Information Science and Technology Beijing, China

Email: zfm17@mails.tsinghua.edu.cn, hefei@tsinghua.edu.cn, yqs17@mails.tsinghua.edu.cn

Abstract—Recently, structured merge has shown its advantage
in improving the merge precision over conventional line-based,
unstructured merge. A typical structured merge algorithm con-
sists of matching and amalgamation on abstract syntax trees.
Existing tree matching techniques aim to figure out optimal
matches by maximizing the number of matched nodes. From
real-world codebases, however, we find that many of the reported
conflicts are unnecessary. We propose a new objective function for
defining a proper tree matching, with which the overall conflicting
rate can be greatly reduced. We conducted experiments on 3,687
merge scenarios extracted from 18 open-source projects. Results
show significant merge precision enhancement of our approach.

Index Terms—Revision control systems, software merge, struc-
tured merge, tree matching

I. INTRODUCTION

Software merging is a central task in contemporary software

development. The conventional unstructured merge, due to

its efficient line-based comparing algorithm and the strength

of language-independence, has been cooperated in version

control systems like CVS, subversion, and git. However,

since these unstructured approaches regard programs as lines

of plain text merely and neglect the syntactic information, they

are unable to resolve merge conflicts precisely. By contrast,

structured approaches exploit the language-specific knowledge

and hence resolve more conflicts [1].

Structured merge relies on the context-free syntax of the

programs and represents them as abstract syntax trees. A

typical structured merge algorithm consists of matching and

amalgamation on trees. First, a tree matching algorithm out-

puts a set of matchings between two trees’ nodes. Then, a tree

amalgamation algorithm performs the actual merge on each

pair of the matched nodes and generates the merge result. In

the tree matching pass, the goal is to find the “best” matching

set between two trees’ nodes, which could be regarded as an

optimization problem. Existing techniques [2], [3] identify the

matching set that maximizes the overall number of matched

nodes, or equivalently, minimizes the presence of missed

matches. However, the quality of the matches are ignored, i.e.

the matched nodes may be logically unrelated to each other.

Consequently, the yielded matching set is very likely to cause

unnecessary conflicts, i.e. conflicts that can be avoided if we

use a “better” matching strategy.

This research is supported in part by the National Natural Science Foun-
dation of China under Grant No. 61672310 and Grant No. 61527812.

In this paper, we propose a new objective function for

tree matching. This function takes the entire tree structure

below two nodes into account when evaluating the match

between them. We then define a proper tree matching to be a

matching set that maximizes our objective function. In the

tree amalgamation pass, we guarantee the actual merge is

performed only between properly matched nodes. In this way,

the overall conflicting rate can be reduced.

II. PROPER TREE MATCHING

In structured merge, programs are represented by abstract

syntax trees. We assume each node of the tree is labeled with

a grammar type, e.g. if-statement, method call, etc. Two nodes

u and v are said similar, written u ∼ v, if their labels match.

Tree matching is performed between two trees Γ1 and Γ2, to

find a matching set χ between them. A matching set is a set

of pairs of nodes, one from each tree, such that:

1) matched nodes must be similar,

2) a node can match at most one node in the opposing tree,

and

3) the parent-child relationship as well as the order between

sibling nodes are respected.

The objective of the classical tree matching algorithm is to

maximize the number of matched nodes. The quality of the

matches is, however, not taken into consideration. We now

present our new objective function Qχ(u, v). Let χuv ⊆ χ
be a submatching of χ between the children nodes of u and

v. Assume u has m children nodes and v has n. Qχ(u, v) is

recursively defined as follows:

1) if u �∼ v, then Qχ(u, v) = 0;

2) if u ∼ v and both are leaf nodes, then Qχ(u, v) = 1;

3) otherwise, Qχ(u, v) = α+
∑

(a,b)∈χuv
Qχ(a,b)

max{m,n} · (1− α)

where α (0 ≤ α ≤ 1) is a normalization factor.

In the third case of the above definition, Qχ(u, v) is

composed of two parts: the part from the root nodes, and

another part from the children nodes. These two parts are

normalized using a factor α. We fix it as 0.5, giving both parts

equal weights. For any pair of nodes (a, b) ∈ χuv , Qχ(a, b)

is recursively calculated. The equation

∑
(a,b)∈χuv

Qχ(a,b)

max{m,n} esti-

mates the quality of the matching between the children nodes

of u and v. Especially, if one of the two nodes (u and v) is a

leaf, χuv is then empty, thus Qχ(u, v) = α.

286

2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion)

2574-1934/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-Companion.2019.00117

a

c b

e d

a

c b

𝑢ଵ

𝑢ଶ 𝑢ଷ

𝑢ସ 𝑢ହ

𝑣ଵ

𝑣ଶ 𝑣ଷ c

f e f

𝑣ସ

𝑣ହ 𝑣 𝑣

Fig. 1. Two trees

This function is level-aware. Let a, b be the children nodes

of u, v. As shown in the above equation, Qχ(a, b) contributes

to the calculation of Qχ(u, v), after being normalized with

1 − α. Let c, d be the grandchildren nodes of u, v, Qχ(c, d)
also contributes to the calculation of Qχ(u, v), after being

normalized twice. In fact, all offspring nodes of u, v have

impacts on Qχ(u, v), but the deeper level the offspring node

is at, the less impact it has on the calculation.

Definition 1. Let Γ1,Γ2 be two trees, the proper tree matching

problem is to find a matching set χ to maximize Qχ(Γ1,Γ2).

For example, consider the two trees depicted in Fig. 1.

Apparently, u1 is matched to v1, u2 is matched to v2, and

u3 can be matched to v3 and v4. If u3 is matched to v3
(such a matching set is named χ1), none of their children

are matched, thus Qχ1
(u3, v3) = α = 0.5. Otherwise, if u3

is matched to v4 (such a matching set is named χ2), among

their children, only u5 can be matched to v6 with the quality

Qχ2(u5, v6) = 1. Thus Qχ2(u3, v4) = α+ 1
2 · (1−α) = 0.75.

Finally, our tree matching algorithm returns the matching set

χ2 = {(u1, v1), (u2, v2), (u3, v4), (u5, v6)} with the quality

Qχ2
(u1, v1) = α+ 1+0.75

3 · (1− α) ≈ 0.79.

Let χ∗ be the matching set returned by our tree matching

algorithm. In company with each node pair in χ∗, its quality

is also recorded. One can set a quality threshold θ, and use θ
to filter the node pairs in χ∗. A node pair (u, v) ∈ χ∗ is said

“properly matched” if Qχ∗(u, v) ≥ θ. Only properly matched

nodes are proceeded during the tree amalgamation pass.

III. IMPLEMENTATION AND EVALUATION

We implemented the proposed proper tree matching algo-

rithm as a tool called AUTOMERGE, built on top of JDIME.

So far, we have conducted experiments on 18 open-source

Java projects across different application domains, collected

from Github. We analyzed the commit histories and identified

the merge commits performed by the developers. From each

of them, we extracted a three-way merge scenario. Overall,

we extracted 3,687 merge scenarios, with totally 131,811 files

on which the merge needs to be performed.

We applied JDIME and AUTOMERGE on each of the merge

scenarios. We set θ = 0.5. In total, JDIME reported 1,915

conflicts, whereas AUTOMERGE only reported 714, that is,

62.72% of the conflicts were reduced. On 15 of 18 projects,

at least one conflict was eliminated. In 2 projects, all of the

conflicts reported by JDIME were avoided.

Then, we compared the merge results with the ones provided

by the developers. We recognized that 98.86% of the results

yielded by AUTOMERGE exactly reproduced the developers’

merge, higher than that of JDIME (93.12%). AUTOMERGE

reproduced more merges than JDIME for all projects. In par-

ticular, it reproduced all on 4 projects. Generally speaking, as

the quality threshold θ augments, fewer conflicts are reported.

However, if θ becomes too high (0.9), the yielded merge is

very likely to be rejected by the developer.

Finally, although our new objective function makes the

optimization problem harder, the execution time was still

acceptable – 3043.66 ms per file, 16.6% slower than JDIME.

IV. RELATED WORK

Westfechtel [4] and Buffenbarger [5] pioneered in proposing

merge algorithms collaborating the context-free structures of

programs. Based on JDIME [2], Lessenich et al. [6] also

propose a looking ahead mechanism for tree matching, allow-

ing nodes at different levels to be matched. This mechanism

identifies more missed matches, however, improper matches

are still unnoticed. Our approach is applicable for filtering

them out. Furthermore, our approach could also enhance the

precision of semi-structured merge [7] and operational-based

merge [3], by employing our objective function as a quality

measure for the yielded matches.

V. CONCLUSION

We realize that the existing tree matching algorithm of

structured merge leads to many unnecessary conflicts. To

eliminate them, we propose a new objective function which

takes the quality of the matches into consideration. The goal

of our proper tree matching algorithm is to maximize the new

objective function. On an evaluation of 18 open-source soft-

ware projects, we discovered that conflicts were significantly

reduced and the overall merge precision was enhanced.

REFERENCES

[1] T. Mens, “A state-of-the-art survey on software merging,” IEEE Transac-
tions on Software Engineering, vol. 28, no. 5, pp. 449–462, May 2002.

[2] O. Leßenich, S. Apel, and C. Lengauer, “Balancing precision and perfor-
mance in structured merge,” Automated Software Engineering, vol. 22,
no. 3, pp. 367–397, Sep 2015.

[3] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’14. New York, NY, USA: ACM, 2014, pp.
313–324.

[4] B. Westfechtel, “Structure-oriented merging of revisions of software doc-
uments,” in Proceedings of the 3rd International Workshop on Software
Configuration Management, ser. SCM ’91. New York, NY, USA: ACM,
1991, pp. 68–79.

[5] J. Buffenbarger, “Syntactic software merging,” in Software Configuration
Management, J. Estublier, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1995, pp. 153–172.

[6] O. Leßenich, S. Apel, C. Kästner, G. Seibt, and J. Siegmund, “Renaming
and shifted code in structured merging: Looking ahead for precision
and performance,” in 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), Oct 2017, pp. 543–553.

[7] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistruc-
tured merge: Rethinking merge in revision control systems,” in Proceed-
ings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ser. ESEC/FSE ’11.
New York, NY, USA: ACM, 2011, pp. 190–200.

287

