
Data-Driven Loop Bound Learning for Termination Analysis
Rongchen Xu∗

School of Software, Tsinghua
University

Key Laboratory for Information
System Security, MoE

Beijing National Research Center for
Information Science and Technology

Beijing, China
xrc19@mails.tsinghua.edu.cn

Jianhui Chen∗
School of Software, Tsinghua

University
Key Laboratory for Information

System Security, MoE
Beijing National Research Center for
Information Science and Technology

Beijing, China
chenjian16@mails.tsinghua.edu.cn

Fei He†
School of Software, Tsinghua

University
Key Laboratory for Information

System Security, MoE
Beijing National Research Center for
Information Science and Technology

Beijing, China
hefei@tsinghua.edu.cn

ABSTRACT
Termination is a fundamental liveness property for program verifi-
cation. A loop bound is an upper bound of the number of loop itera-
tions for a given program. The existence of a loop bound evidences
the termination of the program. This paper employs a reinforced
black-box learning approach for termination proving, consisting of
a loop bound learner and a validation checker. We present efficient
data-driven algorithms for inferring various kinds of loop bounds,
including simple loop bounds, conjunctive loop bounds, and lexico-
graphic loop bounds. We also devise an efficient validation checker
by integrating a quick bound checking algorithm and a two-way
data sharing mechanism. We implemented a prototype tool called
ddlTerm. Experiments on publicly accessible benchmarks show that
ddlTerm outperforms state-of-the-art termination analysis tools by
solving 13-48% more benchmarks and saving 40-77% solving time.

CCS CONCEPTS
• Software and its engineering → Formal software verifica-
tion; • Theory of computation→ Logic and verification.

KEYWORDS
Termination analysis, loop bound, data-driven approach
ACM Reference Format:
Rongchen Xu, Jianhui Chen, and Fei He. 2022. Data-Driven Loop Bound
Learning for Termination Analysis. In 44th International Conference on
Software Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3510003.3510220

1 INTRODUCTION
Termination is a fundamental liveness property for program ver-
ification. It plays a central role in proving the total correctness
of programs. A loop bound is an upper bound of the number of
∗Both authors contributed equally to this research.
†Fei He is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510220

loop iterations for a given program. A validated loop bound thus
evidences the program’s termination. In this paper, we employ a
black-box learning approach for termination proving, which con-
sists of two components: (a) a learner that generates a loop bound
candidate; and (b) a checker that either confirms the correctness of
the candidate or produces a counterexample to refute the candidate.

There exist some prior works on data-driven termination prov-
ing [14, 31, 41]. The work [31] employs testing to generate data
examples and then applies quadratic programming to learn the loop
bound candidates. Unfortunately, this approach can only infer loop
bounds in the form of simple affine functions (called simple loop
bound in this paper). As a result, it is inapplicable to many realistic
programs. The work [41] enriches the forms of the loop bounds. It
learns a set of affine expressions by linear interpolation and then
arranges them into piecewise, lexicographic, or multiphase forms.
However, affine expressions obtained by simple combinations of
data examples are imprecise in complex situations. The work [14]
employs syntax-guided synthesis (SyGuS) [1] to generate a mass
of expressions and then combines these expressions into the loop
bound candidate. However, this approach takes into considera-
tion only syntactical information of programs. Due to the lack of
program semantics knowledge, their synthesizer can hardly infer
proper loop bounds for complicated programs.

In this paper, we propose techniques to enhance both learner and
checker of the data-driven loop bound learning approach. Firstly, we
reinforce the learner by proposing a series of data-driven algorithms
to learn various loop bounds, i.e., simple loop bounds, conjunctive
loop bounds, and lexicographic loop bounds. Our data-driven algo-
rithms consider program semantics. More specifically, the program
states, together with their transition relations, are recorded and
utilized during the algorithms. The expressibility and applicability
of the loop bound approach are thus significantly enhanced. With
a combination of these learning algorithms, our approach is able
to prove the termination of complicated programs with non-linear
loop bounds.

We propose a quick bound checking technique to enhance the
checker. We observe that only in the last round does the checker val-
idate the loop bound candidate, and in all other rounds, the checker
is only responsible for providing counterexamples to refute the can-
didates. Given that falsification is always cheaper than verification,
it is thus worthwhile to apply a quick falsification check before
the complete validation check. To this end, we propose a bounded

https://doi.org/10.1145/3510003.3510220
https://doi.org/10.1145/3510003.3510220

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Rongchen Xu, Jianhui Chen, and Fei He

1 j = 0;

2 while(x != 0) {

3 print(x, j);

4 j = j + 1;

5 if(x < 10)

6 x = x + 1;

7 else x = 0; }

Figure 1: An example

1 assume(i >= m(x));

2 while(x != 0) {

3 assert(i > 0);

4 i = i - 1;

5 if(x < 10)

6 x = x + 1;

7 else x = 0; }

Figure 2: Validation task

model checking-based technique for quickly refuting the incorrect
bound candidates.

The complete validation of a loop bound candidate can be re-
duced to a safety verification problem, which usually involves an-
other learning process – the loop invariant learning. Obviously,
loop bound learning and loop invariant learning are strongly re-
lated and should not be regarded as two independent processes. To
this end, we propose a two-way data sharing mechanism between
these two processes: on the one hand, the data examples in bound
learning are reused in invariant learning; on the other hand, in case
of safety verification failures, the generated counterexamples are
reused by the bound learner to refine its bound candidates.

We implement a prototype tool called ddlTerm. We take the
benchmarks from [14] to evaluate the efficiency of our approach.
Compared with the state-of-the-art termination analysis tools, in-
cluding AProVE [17, 18, 40], UAutomizer [9, 20], FreqTerm [14], and
MuVal [24], ddlTerm solves 13-48% more benchmarks and reduces
40-77% analysis time.

To summarize, this paper makes the following contributions:

• We present a series of data-driven algorithms for inferring
various loop bounds, including simple loop bounds, conjunc-
tive loop bounds, and lexicographic loop bounds.
• We propose a quick bound checking algorithm for efficiently
refuting incorrect loop bound candidates.
• We propose an efficient data sharing mechanism between
bound and invariant learning.
• We implement a prototype tool and conduct experiments
on publicly accessible benchmarks. Results show the out-
standing performance of our approach over state-of-the-art
tools.

The rest of the paper is organized as follows: Section 2 motivates
our approach using a simple example. Section 3 introduces some
background knowledge. Section 4 presents our data-driven loop
bound learning algorithms. Section 5 employs the loop bound in
termination proving. Section 6 reports evaluation results, Section 7
discusses related work and Section 8 concludes the paper.

2 OVERVIEW
We employ a simple program (in Figure 1) to show the basic idea of
our approach. The original version of this program (i.e., the black
codes) iteratively increases x until it equals 10 and then resets x to 0.
The green codes are used for data generation, where the variable j
records the current iteration number, and the print(...) method
outputs the current values of x and j at each iteration.

Table 1: Analysis procedure of example

Loop-Bound Checking Dataset

1 m1(x) = 0 cex1:x0 = −2 Ha : { }
2 m2(x) = −x cex2:x0 = 1 Hb : { , }

3 m3(x) = max(−x, −x + 11) cex3:x0 = 11 Hc : { , , }

4 m4(x) = max(−x + 11, 1) pass -

−5 0 5 10 15
0

5

10

15

x

i

Figure 3: Loop bound and dataset

Along with a terminating execution of this program, its output
is a sequence of value pairs

⟨x0, 0⟩) ⟨x1, 1⟩) · · ·) ⟨xk ,k⟩,

where xi is the value of x at the i-th iteration, and k is the iteration
at which the loop terminates. For each output value pair ⟨xi , i⟩, let
idci ≜ k − i + 1 be the number of remaining iterations until the
execution terminates, called iteration down counter. Each pair of
xi and idci is called a data example. We collect all data examples
along this execution, and add them to a dataset H , i.e.,

H = {⟨xi , idci ⟩ | 0 ≤ i ≤ k}

We attempt to infer fromH a symbolic loop-bound expressionm(x)
that represents an upper bound candidate on the number of loop
iterations (Section 4). Validation of the inferred loop-bound ex-
pression is reduced to the safety checking of the instrumented
program in Figure 2 (Section 5). If the checking succeeds, the in-
ferred loop bound is correct, and we prove the termination of the
program. Otherwise, the safety checker returns a counterexample,
with which we enlarge the datasetH and refine the inferred loop
bound expression.

The analysis procedure for our motivating example is shown
in Table 1. Let us start with a trivial loop boundm1(x) = 0. The
validation task form1 is to verify the program in Figure 2 with the
expression m(x) at line 1 being replaced by 0. This validation obvi-
ously fails, and a counterexample cex1 with x0 = −2 is returned,
where x0 is the initial value of x . We now have the information
that a trace with x0 = −2 can refute the loop boundm1. We thus
use the same initial value and other nearby values (by mutation
test) to run the program in Figure 1 and collect the following data
examples (marked as in Figure 3) from its outputs:

Ha = {⟨−4, 4⟩, ⟨−3, 3⟩, ⟨−2, 2⟩, ⟨−1, 1⟩, ⟨0, 0⟩}

In the remainder of this paper, we simply say that these data exam-
ples are obtained from the counterexample cex1.

We learn fromHa (by the approach in Section 4.1) a so-called
simple loop bound m2(x) = −x . Validation checking ofm2 gives a

Data-Driven Loop Bound Learning for Termination Analysis ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

new counterexample trace cex2 with x0 = 1. Similar to the first
round, more data examples (denoted as in Figure 3) are obtained
from cex2. The dataset becomes Hb : { , }. Apparently, it is
impossible to find a linear expression to cover all data examples
tightly inHb . However, we could use clustering to groupHb into
two subsets, e.g.,Hb1 : { } andHb2 : { }, and learn two simple
loop bounds, e.g., mb1 = −x and mb2 = −x + 11, from them re-
spectively. The maximal operation applied to these two expressions
(consider no simplification), i.e.,m3(x) = max(−x ,−x + 11), gives a
new loop bound, called a conjunctive loop bound (see Section 4.2).

The loop boundm3(x) is still not valid. Its validation checking
returns a counterexample trace cex3 with x0 = 11, from which we
obtain more data examples (denoted as in Figure 3). The dataset
is nowHc : { , , }. LetHc1,Hc2,Hc3 be the set of , ,
inHc , respectively. Note thatHc3 contains an exceptional case (i.e.,
its leftmost example), which may affect the precision of the learning
result. To address this problem, we propose a greed tactic to learn a
set of so-called close loop bounds, which characterize local features
of the subsets. For example, the close loop bounds learned from
Hc3 could bem(x) = 1 andm(x) = 2. By combining all learned loop
bounds together, we getm4(x) = max(−x ,−x + 11, 1, 2). Finally, we
use a set covering-based technique to sift redundant loop bounds
and getm4(x) = max(−x + 11, 1). The expressionm4(x) passes the
validation checking and is a correct loop bound. The termination
of the program is thus proved.

3 PRELIMINARIES
3.1 Notations
We use A,B, · · · to denote the general sets, and x, y, · · · to denote
vectors. We denote x[i] the i-th component of x, and x · y the scalar
product of x and y. Denote N the set of natural numbers.

Given a binary relation ≻ on a setW, we say a ∈ W is a least
element w.r.t. ≻, if a ⊁ b for any b ∈ W. We say ≻ is a well-founded
relation onW, if every non-empty subset ofW has a least element
w.r.t. ≻. The setW, together with the well-founded relation ≻, is
then called a well-ordered set. A chain is a sequence of elements
e1, e2, · · · , en ∈ W such that ei ≻ ei+1 for i = 1, 2, · · · ,n−1. Given
an element e ∈ W, we denote |e | the length of the longest chain in
W starting at e . A well-ordered set has no infinite chain. Let ≽ be
the reflexive closure of ≻, which is not well-founded. For example,
N is a well-ordered set w.r.t the greater-than relation >, its least
element is 0, and there is no infinite chain from any positive number
in N. The reflexive closure of > is ≥.

An affine function is composed of a linear function and a constant,
e.g., f (x ,y) = ax + by + c . A function f (x) : X → R is said convex
if f (t ·x1 + (1− t) ·x2) ≤ t · f (x1)+ (1− t) · f (x2) for any x1, x2 ∈ X
and t ∈ [0, 1].

3.2 Convex Optimization and Set Covering
Problem

Given an objective function f (x), the convex optimization problem [5]
is to find an optimum x∗ that minimizes f (x) and satisfies all con-
straints, i.e.,

arg min
x

f (x) s .t .
m∧
i=1

дi (x) ≥ 0

where f and дi (1 ≤ i ≤ m) are all convex functions.
Let U be a universe, and S = {S1, S2, . . . , Sk } be the set of its

subsets. Define a selector variable Xi (either 1 or 0) for each Si in
S, representing if this subset is selected or not. Assume each Si is
associated with a cost Ci , the set covering problem [8] is to

arg min
X

k∑
i=1

Ci · Xi s .t . U =
⋃
Xi=1

Si

3.3 Clustering
The clustering problem is to divide a set of objects into several
subsets, called clusters, such that similar objects are more likely to
be assigned to the same cluster. There are many different clustering
models, e.g., centroid-based [30, 39], density-based [2, 13], etc. This
paper is mainly focused on the centroid-based clustering, where each
cluster is represented as a central vector. The most widely-used
centroid-based clustering algorithm is k-means [30]. Given a set of
observations (x1, x2, . . . , xn), where each observation is a vector,
k-means clustering aims to partition the n observations into k (≤ n)
subsets S = {S1, S2, . . . , Sk } so as to minimize the within-cluster
sum of squares

arg min
S

k∑
i=1

∑
x∈Si

∥x − µi ∥2

where µi is the mean of points in Si .

4 DATA-DRIVEN LOOP BOUND LEARNING
This section discusses the learning of loop bounds from a given
dataset. To simplify the discussions, we assume the input program
contains a single loop 1.

A program state is a valuation of the program variables, usually
represented as a vector of values. Let X be the set of reachable
program states at the loop header, andW a well-ordered set w.r.t.
a well-founded relation ≻.

Definition 4.1. A loop bound is a functionm that mapsX intoW
such that from any state x ∈ X, the number of remaining iterations
until termination is no more than m(x).

The loop bound is originally unknown. However, we can extract
some data examples from the program in the form of ⟨x, idc⟩, where
x is a program state in X, and idc ∈ W represents the iteration
down counter at that state. After we collect a sufficient number of
data examples, we are capable of inferring the loop bound function
from these examples.

We use BoundLearn to represent any procedure of loop bound
learning. It should satisfy the following definition:

Definition 4.2. Given a dataset H , the BoundLearn procedure
outputs a loop bound candidate m(x) such that

∀⟨x, idc⟩ ∈ H . m(x) ≽ idc

1Programs containing multiple or nested loops can be handled by the techniques
introduced in [16].

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Rongchen Xu, Jianhui Chen, and Fei He

4.1 Simple Loop Bound Learning
Recall that a loop bound m(x) is a function over an n-dimensional
vector x. A simple loop bound uses N as its well-ordered set and
can be expressed in an affine function. In this case, the iteration
down counter idc also belongs to N, denoted as idc . We employ
affine templates, e.g.,m(x) = a · x+b, to instantiate the simple loop
bound candidates. More specifically, an affine functionm(x) with
undetermined coefficients can be expressed as a meta-function

m̄(â, x) =
n∑
i=1

â[i] · x[i] + â[n + 1],

where â is an n+1-dimensional vector representing the undeter-
mined coefficients. Once â is determined, the meta-function m̄(â, x)
becomes an affine functionm(x).

Given a datasetH , the simple loop bound learning task can be
formalized as the following convex optimization problem over the
vector space of the coefficients â:

min vCost(H , â) +mCost(â) (1)

s .t .
∧

⟨x,idc ⟩∈H

m̄(â, x) ≥ idc

Many existing techniques for the convex optimization with con-
straints (e.g., COBYLA method [36] and SLSQP method [21]) can
be used as SimpleBoundLearn.

Recall that convex optimization requires its objective function
to be a convex function. The cost functions vCost(H , â) [31] and
mCost(â) should be convex. We design these two cost functions
based on the following considerations. First, a good loop bound
candidate should be close to the data examples. So, we define

vCost(H , â) ≜ αv ·
∑

⟨x,idc ⟩∈H

(m̄(â, x) − idc)2 ,

where αv is a hyperparameter. This vCost definition tends to make
the loop bound as close as possible to the data examples. Differing
from [31], we think that a good loop bound candidate should also
have a natural form. For example, it is unwise to use a big constant
â[n + 1] to cover all data examples. To this end, we define

mCost(â) ≜ αm ·
n+1∑
i=1

â[i]2,

where αm is also a hyperparameter. This mCost definition tends to
make the coefficients as small as possible. A solution of the above
optimization problem assigns values to the coefficients â and thus
produces a simple loop bound candidatem(x).

4.2 Conjunctive Loop Bound Learning
There are programs (e.g., the motivating example in Section 2)
whose loop bound cannot be caught by a simple loop bound expres-
sion. For these programs, we cannot apply SimpleBoundLearn on
the whole dataset. Instead, the so-called conjunctive loop bound
should be applied, which can be viewed as a piecewise affine func-
tion over the program variables. Algorithm 1 depicts our algorithm
for learning conjunctive loop bounds.

Dataset Clustering. A natural idea for learning a conjunctive
loop bound is to divide the dataset H into several subsets and
learn a simple loop bound from each of these subsets. Then a com-
bination of these simple loop bounds forms a conjunctive loop
bound. For example, the datasetHb in our motivating example can
be partitioned into two subsets, i.e., Hb1 : { } and Hb2 : { }
(see Figure 3). We obtain two simple loop bound candidates, i.e.,
m1 = −x ,m2 = −x + 11, by applying SimpleBoundLearn on these
two subsets, respectively. A conjunctive loop bound candidate
is m = max(m1,m2), which is a valid bound on the domain of
x ∈ (−∞, 10].

As presented on lines 2 to 3 in Algorithm 1, we first estimate a
maximal number k of the clusters and then employ a centroid-based
clustering (k-means) to partition the datasetH into no more than
k subsets. After clustering, we are able to learn local features from
the subsets, which can hardly be learned from the whole dataset.

Algorithm 1: ConjunctiveBoundLearn(H)

input :A data setH
output :A conjunctive loop bound candidatem

1 M ← ∅

2 k ← GetMaxClusterNumber(H)

3 H1, · · · ,Hk ← Clustering(H ,k)

4 for i ← 1 to k do
5 ms

i ← SimpleBoundLearn(Hi)

6 mc1
i · · ·m

cn
i ← CloseBoundLearn(Hi)

7 M ←M ∪ {ms
i ,m

c1
i , · · · ,m

cn
i }

8 Mc ← BoundCombine(M,H)

9 return max(Mc)

10

11 function CloseBoundLearn(H)
12 if H , ∅ then
13 m ← SoftConvexOptimize (H)
14 C ← Covered(m,H)

15 S ← H − C

16 return {m} ∪ CloseBoundLearn(S)

17 return ∅

18

19 function BoundCombine(M,H)
20 foreachm ∈ M do
21 Cm ← GetCost(M,H)

22 foreach v ∈ H do
23 am,v ← GetCoverage(m, p)

24 Mc ← SetCoveringProblem({Cm }, {am,v })

25 returnMc

Close Loop Bound. Although the centroid-based clustering helps
to learn local features, there are still some exceptional cases. For
example, the data examples around the discontinuities ofm(x), e.g.,
x = 0 and x = 10 in Figure 3, might be grouped into the same
subset. Moreover, the counterexamples returned by the checker
are often near the discontinuities. In our motivation example, the

Data-Driven Loop Bound Learning for Termination Analysis ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

counterexamples in the second and the third rounds are very close
to the discontinuities (x = 0 and x = 10). As a result, data examples
obtained from these counterexamples are very likely to get clustered
together. Ifm(x) is continuous on the discontinuities, e.g., x = 10 in
Figure 3, we can hardly learn a suitable loop bound candidate from
these subsets. For example, in the third round of the motivation
example, if we directly apply SimpleBoundLearn to the cluster
Hc3 : { }, a loop bound candidate m3 = −x/4 + 17/4 could be
learned. This loop bound is obviously inaccurate and can be refuted
by any input x ≥ 17.

We propose close loop bounds to address the above problem.
Basically, a close loop bound does not require covering all data
examples inH . We introduce a slack set S ⊆ H and allow the data
examples in S to exceed the close loop bound.

A natural idea for learning a close loop bound is to drop the
constraints relevant to S from the convex optimization equation (1).
However, it is very difficult to precisely determine S. Alternatively,
we define a slack variable δx for each data example ⟨x, idc⟩ ∈ S,
representing the distance of this example exceeding the loop bound
candidate, i.e. δx = idc − m(x). Apparently, the slack variables’
values should be greater than or equal to 0. Then the close loop
bound learning problem can be formalized as the following convex
optimization with soft constraints (called SoftConvexOptimize):

min vCost(H − S, â) +mCost(â) + sCost(S) (2)

s .t .
∧

⟨x,idc ⟩∈H−S

m̄(â, x) − idc ≥ 0 ∧∧
⟨x,idc ⟩∈S

m̄(â, x) + δx − idc ≥ 0 ∧
∧

⟨x,idc ⟩∈S

δx ≥ 0

Usually, we do not want too many data examples to exceed the
loop bound. We thus devise the cost function

sCost(S) = αs ·
∑

⟨x,idc ⟩∈S

√
δx ,

where αs is a hyperparameter. This cost function encodes our pref-
erence over fewer data examples that significantly exceed the loop
bound, rather than a large number of data examples that slightly
exceed the loop bound.

For each subsetHi , we learn a simple loop bound (at line 5) and
a set of close loop bounds (at line 6). All of the learned simple and
close loop bounds are added toM. The CloseBoundLearn proce-
dure in Algorithm 1 depicts our learning algorithm for close loop
bounds. It takes a datasetH as the input and recursively learns close
loop bound over the uncovered part untilH is fully covered. For
example, if we call CloseBoundLearn onHc3, we first getm

(1)
c3 = 1,

which covers the right-most four data examples inHc3. Then, the
algorithm is recursively called on the uncovered data examples. A
new loop bound candidatem(2)c3 = 2 is produced, which covers the
remaining data example inH . It is clear thatm(1)c3 characterizes the
local features of the datasetHc3.

Loop Bounds Combination. After clustering and close loop bound
learning, we obtain a setM of loop bounds. Some of the learned
loop bounds may be redundant and can be safely removed. We pro-
pose an approach for generating a concise combination of learned
loop bounds.

1 while(x >= 0 && y > 0)

2 {

3 print(x, y);

4 if(*) {

5 println("B1");

6 y = y - 1;

7 } else {

8 println("B2");

9 y = * ;

10 x = x - 1;

11 }

12 }

Figure 4: Lexico. example

1 assume(i1 >= M1(x,y));

2 assume(i2 >= M2(x,y));

3 while(x >= 0 && y > 0) {

4 assert(i2 > 0);

5 if(i1 > 0) {

6 i1 = i1 - 1; }

7 else { i2 = i2 - 1;

8 i1 = *;

9 assume(i1 >= M1(x,y)); }

10 if(*) { y = y - 1; }

11 else { y = *; x = x - 1; }

12 }

Figure 5: Lexico. validation task

For each loop bound candidatem ∈ M, we introduce a variable
Cm to represent its cost and a Boolean variable Xm ∈ {0, 1} to
indicate ifm is kept. The kept loop bounds should cover all data
examples. We define an indicator variable av,m for each data ex-
ample v ∈ H . The variable av,m = 1 means that the data example
v : ⟨x, idc⟩ is covered bym, i.e.,m(x) ≥ idc . The loop bounds com-
bining task can then be formalized as the following set covering
problem with minimum cost:

min
∑

m∈M

Cm · Xm (3)

s .t .
∧
v ∈H

(∑
m∈M

av,m · Xm ≥ 1

)
∧

∧
m∈M

Xm ∈ {0, 1}

Note that both av,m and Cm can be calculated beforehand. After
solving this optimization problem, we get a set of selected loop
bound candidatesMc = {m | m ∈ M ∧ Xm = 1}.

The BoundCombine procedure is presented in lines 19 to 25 of
Algorithm 1. We first calculate the costs and the coverage indicators
and then solve the corresponding set covering problem to get the
reduced loop bound setMc . In lines 8 to 9, we call this procedure
and return the combination of the pruned bound candidates. Let us
continue the verification of our motivation example on the third
round, the set of loop bound candidates learned fromHc isM =
{−x ,−x + 11, 1, 2}. After BoundCombine, a more concise setMc =

{−x + 11, 1} is produced. Combining these candidates together, we
getm = max(−x + 11, 1), which is a correct loop bound, being able
to prove the termination of the example program.

4.3 Lexicographic Loop Bound Learning
The conjunctive loop bound is still powerless in handling programs
with rather complicated control-flows. This section proposes a
new method to learn lexicographic loop bound (LexLB), composed
of simple and conjunctive loop bounds but with more powerful
expressibility. In fact, the simple and conjunctive loop bounds can
be regarded as special cases (n = 1) of n-dimensional lexicographic
loop bound (n-LexLB).

Lexicographic Loop Bound. We employ a new example program
(in Figure 4) to illustrate the lexicographic loop bound learning. The
symbol * in the program denotes a non-deterministic value (bool
or int). Note that the branches of the if-then-else statement
may interleave arbitrarily across iterations, the maximal number of
iterations of this loop can reachO(x0 ·ymax), where x0 is the initial

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Rongchen Xu, Jianhui Chen, and Fei He

value of x andymax is the maximum value that ymay attain during
thewhole program execution. From this perspective, the loop bound
of this program should be expressed in a non-linear expression.
However, as we commonly know that learning a non-linear loop
bound requires general non-linear optimization, and validating a
non-linear loop bound requires non-linear constraint solving. In
general, optimizing and validating non-linear loop bounds are both
undecidable.

Instead, we adopt the lexicographic loop bound, which is an n-
dimensional function over the program variables, i.e.,

m(x) ≜ ⟨m1(x), · · · ,mn (x)⟩.

For example,m(x ,y) = ⟨y,x⟩ is a 2-LexLB of the program in Figure 4.
The lexicographic loop bound function maps the program states
into a well-ordered set formed by an n-dimensional vector space
under a lexicographic order.

To learn a lexicographic loop bound, we need to address the
following two problems: (1) how to decide the dimensionality of
the lexicographic function? (2) how to decide the lexicographic
order over these dimensions?

A lexicographic loop bound should cover all paths within the
loop body. Let k be the number of paths in the loop body, and n
be the assumed dimensionality of the lexicographic function. We
consider all solutions of binding the k paths to the n dimensions,
where each dimension is bound to at least one path. Each solution
gives a lexicographic order. A solution is said feasible if from which
we are able to learn a valid loop bound. If there are multiple feasible
solutions, we evaluate their learned bounds in each dimension
and choose the best one. The dimensionality of the lexicographic
function is initialized to 2 and then progressively increased until
either we find a feasible solution or a predefined dimensionality
bound k0 (k0 ≤ k) is reached.

Extract Data Examples. We employ the program in Figure 4 to
illustrate the extraction of data examples. The method can be natu-
rally extended to general cases.

Considering the instrumented codes (the green codes) in Fig-
ure 4, we use B1 and B2 to label the branch executed in each loop
iteration. The program’s output is a sequence of tuples; each tuple
corresponds to a loop iteration and is in the form of ⟨x ,y, lb⟩, where
x ,y are variables’ values, and lb is the label of the executed branch.
For example, given an input of x = 2 and y = 1, a (possible) output
of this program is:

ρ : ⟨2, 1, B2⟩) ⟨1, 1, B1⟩) ⟨1, 0, B2⟩) ⟨0, 2, B1⟩) ⟨0, 1, B1⟩

DenoteHρ the set of all outputted traces of this program.
The loop body of this program contains two paths (i.e., the two

branches). Suppose we want to learn a 2-dimensional LexLB, e.g.,
m(x ,y) = ⟨m1,m2⟩. We first introduce a 2-dimensional iteration
down counter idc = ⟨idc1, idc2⟩. Without loss of generality, sup-
pose branch B1 is bound to idc1 and branch B2 is bound to idc2.
For each trace in Hρ , we calculate the values of idc backward
along that trace. Let us consider the trace ρ for example, the value
of ⟨idc1, idc2⟩ is ⟨1, 0⟩ at its last tuple ⟨0, 1, B1⟩ (the branch B1 is
passed). We lexicographically increase ⟨idc1, idc2⟩ backward along
ρ: if the passed tuple contains the B1 label, we increase idc1 by 1;
otherwise, if it contains the B2 label, we increase idc2 by 1 and reset

Algorithm 2: LexicoBoundLearn(H ,n)
input :A datasetH , a number of dimension n
output :An n-dimensional lexicographic loop bound

candidate m
1 H1, · · · ,Hn ← ∅, · · · , ∅

2 foreach ⟨x, idc⟩ ∈ H do
3 foreach idci ∈ idc do
4 Hi = Hi ∪ {⟨x, idci ⟩}

5 for i = 1 to n do
6 mi ← Simple/ConjunctiveBoundLearn(Hi)

7 m← ⟨m1, · · · ,mn⟩

8 return m

idc1 to 0. Finally, we get a sequence σ of 2-dimensional iteration
down counters:

σ : ⟨0, 2⟩ B2
(⟨1, 1⟩ B1

(⟨0, 1⟩ B2
(⟨2, 0⟩ B1

(⟨1, 0⟩

Each counter of σ corresponds to a tuple of ρ. Pairing the pro-
gram state in each tuple of ρ and the corresponding iteration down
counter of σ gives a set of data examples:

H⟨⟨x,y ⟩, ⟨idc1,idc2 ⟩⟩ =

{
⟨⟨2, 1⟩, ⟨0, 2⟩⟩, ⟨⟨1, 1⟩,⟨1, 1⟩⟩, ⟨⟨1, 0⟩, ⟨0, 1⟩⟩

⟨⟨0, 2⟩, ⟨2, 0⟩⟩,⟨⟨0, 1⟩, ⟨1, 0⟩⟩

}
Learn Lexicographic Loop Bound. Algorithm 2 presents our learn-

ing algorithm for n-dimensional lexicographic loop bounds. For
each data example ⟨x, idc⟩ in H , we combine its program state
x with each dimension idci of idc. The result forms a set of data
examples ⟨x, idci ⟩ with 1-dimensional counters. We add the data
example ⟨x, idci ⟩ to its corresponding dataset Hi (lines 2 to 4 of
Algorithm 2). TakingH⟨⟨x,y ⟩, ⟨idc1,idc2 ⟩⟩ as an example, after the
above operations, we get two data sets:

H⟨x,y,idc1 ⟩ = {⟨2, 1, 0⟩, ⟨1, 1, 1⟩, ⟨1, 0, 0⟩, ⟨0, 2, 2⟩, ⟨0, 1, 1⟩}
H⟨x,y,idc2 ⟩ = {⟨2, 1, 2⟩, ⟨1, 1, 1⟩, ⟨1, 0, 1⟩, ⟨0, 2, 0⟩, ⟨0, 1, 0⟩}

Next, we apply SimpleBoundLearn (or ConjunctiveBoundLearn)
onH⟨x,y,idc1 ⟩ andH⟨x,y,idc2 ⟩ respectively, and learn two expres-
sionsm1 = y andm2 = x . Sequentially combining them together,
we get a lexicographic loop bound candidate m(x ,y) = ⟨y,x⟩.

4.4 Discussion
There exist other techniques for learning simple loop bounds, e.g.
[31]. Compared to [31], our simple bound learning approach adds
a new parameter mCost and requires the bound candidates to tend
in a natural form.

The paper [41] learns a set of affine functions through a series
of simple and random selections for data examples. After that, it
arranges these affine functions into a bound template with con-
junctive or lexicographic forms directly. Hence, it cannot support
compound form bound learning (e.g., lexicographic bound with
conjunctive bound in each dimension). In contrast, our conjunctive
bound learning considers more global and local features among
the dataset, including the distance information (cluster) and the
outlier examples (slack set). Moreover, our lexicographic bound
learning analyzes the executing trace information. With the help of

Data-Driven Loop Bound Learning for Termination Analysis ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Algorithm 3: Data-Driven Termination Analysis
input :A program P
output :TERMINATES or UNKNOWN

1 m,H ← 0, ∅
2 repeat
3 Φ← VerificationTask(P,m)

4 cex← Check(Φ)

5 if cex = ∅ then
6 return TERMINATES

7 else
8 H ← H ∪ GetDataFromCEX(P , cex)
9 m← BoundLearn(H)

10 until TIMEOUT
11 return UNKNOWN

the additional information, our approach becomes more effective
and efficient.

5 DATA-DRIVEN TERMINATION ANALYSIS
A validated loop bound proves the program’s termination. This sec-
tion presents our loop bound-based termination analysis approach.

5.1 Overall Algorithm
Algorithm 3 presents our data-driven termination analysis algo-
rithm. After initialization (line 1), the algorithm iteratively updates
the loop bound m and the datasetH (lines 2-9). Each iteration gen-
erates a validation task Φ from the input program P and the current
loop bound m and then sends the validation task to a checker. If
Φ passes the checking, the current loop bound is validated, the
algorithm returns TERMINATES (line 6). Otherwise, the checker re-
turns a counterexamples cex, the algorithm then proceeds to enrich
the dataset H with the data examples obtained from cex (line 8)
and learn a new loop bound m from this enriched dataset (line 9).
The above procedure repeats until either a validated loop bound
is found or TIMEOUT is reached; for the latter case, the algorithm
returns UNKNOWN.

5.2 Validation Task
With a program P and a loop bound candidate m, the validation
task is a transformation [14, 41] to insert some statements related
to the validation of m into the program P . Suppose the program P
is in the following form:

assume(Pre(x)); while(Guard(x)) {Trans(x, x′); } (4)

where Pre(x) is the precondition representing the codes before the
loop, Guard(x) is the loop guard, and Trans(x, x′) represents the
loop body that updates the program variable from x to x′.

Then, the validation task transforms the program (4) with loop
bound m into the following form:

assume(Pre(x)); assume(i ≽ m(x)); (5)
while(Guard(x)) {assert(i ≻ ⊥); Dec(i, i′); Trans(x, x′); }

where Dec(i, i′) is a decreasing function on the well-ordered setW
which updates the validation counter i into i′.

Validate Simple & Conjunctive Bound Candidates. In this case,
both the bound candidate m and the validation counter i are 1-
dimensional scalars and belong to N. Then, i ≽ m(x) becomes
i ≥ m(x), i ≻ ⊥ becomes i > 0, and the decreasing function
Dec(i,i′) becomes i ′ = i − 1. Figure 2 shows an example of the
validation task transformed from the program in Figure 1, where
m(x) can be instantiated using the learned loop bound function.

Validate Lexicographic Bound Candidates. For an n-dimensional
lexicographic loop bound m, the well-ordered setW is a set of
n-dimensional vectors, of whom each dimension belongs to N. The
bottom element ⊥ is the zero-valued vector 0. For two vectors
v, v′ ∈ W, the well-founded relation ≻n over them is defined as

v ≻n v′ ≜ ∃i > 0. v[i] > v′[i] ∧ ∀j ∈ (i,n]. v[j] = v′[j].

For example, we have ⟨1, 2⟩ ≻2 ⟨2, 1⟩ and ⟨2, 1⟩ ≻2 ⟨1, 1⟩ in the
2-dimensionalW.

In the transformation, we employ n variables from i1 to in
to represent the n-dimensional validation counter vector i. The
decreasing function Dec(i) can be described as follows. We check
the value i[j] for j = 1 to n until we find j∗ such that i[j∗] > 0.
Then, we decrease i[j∗] by 1. For all 1 ≤ j+ < j∗, we reset i[j+]
to a value greater than or equal to m[j+]. After executing these
steps, the value of i becomes i′. We can easily prove that i ≻ i′. For
example, the program in Figure 5 is the validation task transformed
from the program in Figure 4 with a 2-dimensional LexLB, where
lines 5 to 9 encode the 2-dimensional decreasing function Dec(i).

5.3 Safety Checker
Figure 6 demonstrates our loop bound learning and validation
framework. In line 4 of algorithm 3, after the bound candidate
is learned, a validation task will be created and delivered to the
safety checker for bound validation.

Finding an appropriate loop invariant is a basic way for the
safety checker to prove the problem with loops safe. In our work,
we use a data-driven loop invariant learning approach [16]. Similar
to bound learning, most of the data-driven approaches for loop
invariant synthesis [16, 22, 32, 42] also use program states at the
loop header as their data examples. There are two sets of data
examples for invariant learning S+ and S−. Consider the program
(5). S+ includes those program states which are reachable from
the loop precondition Pre(x) ∧ i ≽ m(x), and S− includes those
program states from which there exists a reachable trace leading to
a failed assertion ¬(i ≻ ⊥).

The safety property requires no state in both S+ and S−. Other-
wise, let s ∈ S+ ∩ S−. According to the definition, we can easily
construct an error trace from the loop precondition to the failed
safety property assertion through the state s and report a bound
validation error (the gray edge from bound validation to bound
learning in Figure 6). When S+ ∩ S− = ∅, we use [16] with S+
and S− to learn a loop invariant hypothesis. If the safety checking
passes with the hypothesis, the termination will be reported (the
right-most outedge from bound validation in Figure 6). In the other
case, S+ and S− will be extended to refine the invariant hypothesis
in the next round (the gray cycle between invariant examples and
the safety checker in bound validation in Figure 6).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Rongchen Xu, Jianhui Chen, and Fei He

Bound
Learner

Bound
Examples

ℋ

Bound Learning

Report
Terminating

Convey & Mutate Error Trace

Transform Bound Examples

Bound Validation
Task

Bound Validation

Safety
Checker

Invariant
Examples
𝒮!, 𝒮"

Examples

Loop Inv

Quick
Bound

Checker

Figure 6: Bound learning and validation framework

Algorithm 4: Check(Φ)
input :A validation task Φ
output :a counterexample cex or ∅

1 k∗ ← GetMaxUnroll(Φ) // Quick Checking

2 for k ← 0 to k∗ do
3 if FeasibilityCheck(Φ,k) = UNSAT then
4 return ∅

5 cex← QuickBoundCheck(Φ,k)

6 if cex , ∅ then
7 return cex

8 return SafetyCheck(Φ) // Check by Safety Verifier

5.4 Quick Bound Checking
The check(Φ) procedure in Algorithm 3 is to check the correctness
of the safety property in Φ. In case of incorrectness, it needs to
return a counterexample that refutes the current bound candidate.

Keep in mind that it usually requires a considerable number of
iterations for learning a correct loop bound. In all but the last itera-
tion, the input loop bound fails the validation, and the check(Φ)
procedure actually acts like a counterexample generator in these it-
erations. Since that falsification is always cheaper than verification,
it is thus worthwhile to apply a quick falsification check before the
check(Φ) procedure. To this end, we propose a bounded model
checking[4, 10] (BMC)-based quick bound checking to enhance the
check(Φ) procedure.

The enhanced check(Φ) procedure is presented in Algorithm 4.
For a given validation task Φ, it first performs a BMC-style loop
unrolling from 0 to k∗ and makes a series of incremental SMT
queries as follows:

Pre(x0)∧i0 ≽ m(x0) ∧
k−1∧
j=0
(Guard(xj) ∧ Trans(xj , xj+1)

∧ Dec(ij+1, ij) ∧ Guard(xk) (6)

Pre(x0)∧i0 ≽ m(x0) ∧
k−1∧
j=0
(Guard(xj) ∧ Trans(xj , xj+1)

∧ Dec(ij+1, ij) ∧ Guard(xk) ∧ ¬ik ≻ ⊥ (7)

The query (6) asks whether the loop body is still feasible after k
times of loop iterations. If this query is unsatisfiable, the program
terminates with k times of loop iterations. As a result, the algorithm
just returns an empty set. Otherwise, we make the query (7), which

asks whether the current loop bound m(x) is violated after k times
of loop iterations. If this query is satisfiable, there exists a k-steps
counterexample trace where the number of loop iterations exceeds
the initial value of m(x0). Then, we return this counterexample
cex. If no counterexample is found in the above quick checking
procedure, we invoke a safety verifier to exhaustively check Φ.

In our motivation example, the loop bound candidatesm1,m2
andm3 can be easily refuted by quick bound checking with k∗ ≤ 1.

5.5 Two-way Example Sharing
Section 5.3 shows that both bound learning examples and invariant
learning examples are the program states at the loop header. The
similarity inspires us to investigate their potential connections.

In our termination analysis framework, we design a two-way
data sharing between bound and invariant examples, i.e., the gray
edges in Figure 6. Firstly, the bound examples can be transformed
into invariant examples in the bound validation. Secondly, the er-
ror traces provided by the bound validation to refute the bound
candidate can be conveyed and mutated to generate more bound
learning examples.

Transform Bound Examples. Recall that the examples in dataset
H for the bound learning are in the form of a pair ⟨x, idc⟩ where x
is a program state at loop header, and idc is the remaining iteration
number for x in an executing trace.

The main differences between bound learning examples and
invariant learning examples mainly lie in two aspects:

(1) Comparing to the original program (4), the program states
in validation task (5) have a particular decreasing counter i;

(2) Learning invariant needs two sets, i.e., S+ and S−. However,
Bound learning only uses one set, i.e.,H .

In our approach, attached with a concrete value of i, each bound
learning example ⟨x, idc⟩ can be transformed into an invariant
learning example s+ ∈ S+ and an invariant learning example
s− ∈ S−.

Let us explain our idea with a 1-dimensional boundm for easy
understanding. Suppose the current bound candidate ism(x) and
bound learning example ⟨x, idc⟩ is from an actual executing trace:

⟨x0, idc0⟩) ⟨x1, idc1⟩) . . .) ⟨xk , idck ⟩

where the iteration down counter idct = k − t + 1 for all t ∈ [0,k].
We can construct a program state example s+0 for program (5)

with x0 and a validation counter i0 =m(x0). Obviously, because the
program state x0 is reachable from the precondition in program (4),
the program state s+0 is reachable from the precondition in program

Data-Driven Loop Bound Learning for Termination Analysis ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

(5), i.e., s+0 ∈ S
+. Furthermore, we can also prove that the program

state s+t constructed with xt and it =m(x0)+ t −k for all t ∈ [0,k]
are also reachable from the precondition, i.e., s+t ∈ S

+.
Similarly, we can construct a program state example s−k for pro-

gram (5) with xk and a validation counter ik = 0. Obviously, s−k
violates the safety property assertion in program (5), i.e., s−k ∈ S

−.
Furthermore, because there exists a trace from x0 to xk in program
(4), we can also prove that from the program state s−t constructed
with xt and it = idct − 1 for all t ∈ [0,k] there also exists an
executing trace to the falsified assertion s−k in program (5), i.e.,
s−t ∈ S

−.

Convey & Mutate Error Traces. An error trace will be reported
when the safety checker fails in the bound validation. We can use
the length from x to the falsified assertion in the reported error
trace to calculate idc and convey ⟨x, idc⟩ to the bound examples
set.

We believe that the program states near the error trace are very
likely to lead to the same safety property violations with similar
causes. So, in order to fully explore the error causes, besides con-
veying the reported error trace, we also make some mutation tests
near the error trace to generate more bound learning examples. In
mutation tests, we slightly perturb a small number of variables in
the program according to their assignments in the error trace and
observe the loop bound of its execution.

6 EVALUATION
We implement a prototype tool called ddlTerm2, which uses a data-
driven invariant learner ICE-DT [15, 16] as the backend safety
checker. To evaluate the effectiveness and efficiency of ddlTerm,
we compare it with the state-of-the-art termination analysis tools:

• FreqTerm [14] synthesizes loop bounds by a SyGuS method
and validates them by CHC solvers. Three CHC solvers, i.e.,
FreqHorn, µZ, and Spacer are supported in FreqTerm.
• UAutomizer [9, 20] proves termination by decomposing pro-
grams into modules, and synthesizing its termination argu-
ments for each module.
• AProVE [17, 18, 40] proves termination by transforming pro-
grams into term rewrite systems.
• MuVal [24] learns ranking functions by decision trees.

The benchmark programs are collected from [14]. There are a
total of 170 terminating programs in [14]. We take all of them in our
experiments. All experiments are conducted on a computer with
Intel(R) Core (TM) i7-9700 CPU (3.00 GHz) and 32 GB memory, run-
ning Ubuntu 18.04 platform. The timeout limit for each benchmark
is set to 120 seconds.

6.1 Efficiency Evaluation
This experiment compares our tool ddlTerm with FreqTerm, UAu-
tomizer,MuVal, and AProVE. Note that FreqTerm can be configured
with three different backend solvers, i.e., FreqHorn, µZ and Spacer.
All three configurations of FreqTerm will be experimented with.

2The tool is available at: https://doi.org/10.5281/zenodo.5442280.

Overall Result. The overall result is shown in Table 2. In total
170 benchmarks, ddlTerm solved 136 of them. ddlTerm solves 35-
48% more benchmarks than FreqTerm, 24% more benchmarks than
UAutomizer, 13% more benchmarks than MuVal, and 27% more
benchmarks thanAProVE. We also calculated the average time spent
on solving each benchmark. Our ddlTerm needs 5.43s, while Fre-
qTerm needs 9.20s on average (41% improved), UAutomizer needs
17.29s (69% improved), MuVal needs 9.05s (40% improved), and
AProVE needs 23.56s (77% improved).

We also present more detailed numbers of solved cases in Table 2
for the baselines. ddlTerm and baselines have their own advantages
on different benchmarks because of the different technical routes.
However, generally speaking, there aremany cases that ddlTerm can
solve while the baseline cannot, and a small number of cases that
the baseline can solve while ddlTerm cannot.

Overall Comparison. We present the curve graph of cumulative
running time for solved benchmarks of all tools in Figure 8. In this
figure, it is easy to find that our ddlTerm has both stronger solving
ability and relatively higher efficiency compared with FreqTerm,
UAutomizer, MuVal, and AProVE.

Separate Comparison. For each baseline, we present a scatter plot
in Figure 7. Each point represents the running time for one specific
benchmark of ddlTerm (x-axis) and the baseline (y-axis). If the point
reaches the top or right bound in the figure, it means the baseline or
ddlTerm fails in solving this benchmark. In these figures, the more
the points are close to the top-left corner, the better our tool is. Aswe
can see, ddlTerm significantly outperforms FreqTerm, UAutomizer,
MuVal, and AProVE on the number of solved benchmarks and the
distributions of running time.

6.2 Effectiveness Evaluation
We also conduct several other experiments to evidence the effec-
tiveness of our approaches.

Effectiveness of Bound Learning Algorithms. In this part, we evalu-
ate the solving ability gain, which benefits from our bound learning
methods. Figure 9 shows the number of additionally solved bench-
marks when a new bound learning algorithm is applied. In this
figure, the yellow part with the northwest pattern represents the
cumulative number of solved benchmarks only using the simple
loop bound learning (no lexicographic and no conjunctive). The
purple part with the northeast pattern, the red part with the vertical
pattern, and the green part with the horizontal pattern respectively
represent the cumulative numbers of solved benchmarks when the
conjunctive loop bound learning (no lexicographic but conjunctive),
the lexicographic simple loop bound learning (lexicographic but no
conjunctive) and the lexicographic conjunctive loop bound learn-
ing (lexicographic and conjunctive) are used. In total, the simple
bound learning method solved 92 benchmarks, and the conjunctive
bound learning method, the lexicographic simple bound learning
method, and the lexicographic conjunctive bound learning method
respectively solved 27%, 9%, and 6% more benchmarks than their
former.

Effectiveness of Quick Bound Checking. Recall that both the quick
bound checking and the safety verifier can provide a counterexample

https://doi.org/10.5281/zenodo.5442280

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Rongchen Xu, Jianhui Chen, and Fei He

Table 2: General result for efficiency evaluation

Tool ddlTerm
FreqTerm

UAutomizer MuVal AProVE
FreqHorn µZ Spacer

#Solved. 136 92 93 101 110 120 107
#Both Solved. - 88 86 89 91 104 93
#ddlTerm Only. - 48 50 47 45 32 43
#Baseline Only. - 4 7 12 19 16 14

Time(s) 4818 10818 9616 9058 9102 7086 10080
Time on Solved(s) 738 1459 376 778 1902 1086 2520

Avg. T. on Solved(s) 5.43 15.85 4.04 7.70 17.29 9.05 23.56Average: 9.20

1

10

100

1 10 100

(a) vs. FreqTerm +FreqHorn

1

10

100

1 10 100

(b) vs. FreqTerm +µZ

1

10

100

1 10 100

(c) vs. FreqTerm +Spacer

1

10

100

1 10 100

(d) vs. UAutomizer

1

10

100

1 10 100

(e) vs. MuVal

1

10

100

1 10 100

(f) vs. AProVE

Figure 7: Separate comparison on running time (x-axis represents ddlTerm and y-axis represents each baseline)

0

400

800

1200

1600

1 21 41 61 81 101 121

Cu
m

ul
at

iv
e t

im
e(

s)

#Solved.

ddlTerm FreqTerm:Spacer
FreqTerm:FreqHorn FreqTerm:μZ
UAutomizer MuVal
AProVE

Figure 8: Cumulative time for solved benchmarks

0

30

60

90

120

1 21 41 61 81 101 121 141 161

#
S

o
lv

ed
.

Benchmark

LexicographicConjunctive
LexicographicSimple
Conjunctive
Simple

Figure 9: Comparison on different bound learning strategies

to refine the incorrect loop bound candidate. We count the number
of these refinement rounds during the termination analysis. We also
track the counterexample provider of each refinement, i.e., either
the quick bound checker or the safety checker.

The stacked histogram in Figure 10 shows the experimental
results. To make the histogram clearer, we use two sub-figures with
different scales for the number of refinements (y-axis). The red part
in each bar represents the number of refinements advised by the
quick bound checking, and the blue part represents the number of

refinements advised by the safety verifier. The filled bars represent
the successfully proved benchmarks, and the hollow bars represent
benchmarks that are not proved. In this figure, it is obvious that
our quick bound checking is generally working during the analysis.
It also takes a significant proportion in the refinements for loop
bound candidates.

Next, we investigate the solving ability enhancement and the
time reduction benefiting from the quick bound checking. The quick
bound checking is disabled in the baseline. The results are shown
in Table 3. In this table, column “#Sol.” represents the numbers of
benchmarks solved by ddlTerm with or without quick bound check-
ing (Q.B.C.). With quick bound checking, ddlTerm solves 29 more
benchmarks. Notice that the other columns on the right represent
the result on 107 benchmarks both strategies solved. Column “T.”
represents the total running time. Columns “T.I” and “T.Q” rep-
resent the time used by the safety verifier and the quick bound
checking, respectively. Column “#R” represents the numbers of
total numbers of the loop bound refinements. Columns “#R.I” and
“#R.Q” represent the numbers of refinements advised by the safety
verifier and the quick bound checking, respectively. With quick
bound checking, ddlTerm not only solves 29 more benchmarks but
also reduces 186s spent by safety verifier (46%) and 64s in total (9%).
Although it takes more iterations on loop bound refinements with
quick bound checking, according to the improvement of the overall
running time, we can still conclude that quick bound checking is
necessary and makes our approach more efficient.

Effectiveness of Two-way Data Sharing. With our two-way data
sharing, the safety checker obtains the transformed data examples

Data-Driven Loop Bound Learning for Termination Analysis ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

0

2

4

6

8

1 21 41 61 81 101 121 141

#R
ou
nd

Benchmark

Solved. RoQ. Failed. RoQ.
Solved. RoI. Failed. RoI.

0

20

40

60

148 158 168

Figure 10: The distribution of different bound refinements

Table 3: Comparative results of quick bound checking

Strategy #Sol. On 107 benchmarks both solved.
T.(s) T.I(s) T.Q(s) #R. #R.I #R.Q

With Q.B.C. 136 631 219 79 355 112 243
Without Q.B.C. 107 695 405 - 210 210 -

from the bound learning, and the bound learner also benefits from
the counterexamples generated by the safety checker. In this exper-
iment, we disable the data sharing in each direction and evaluate
our approach.

Table 4: Comparative results of two-way data sharing

Strategy #Solved. Time(s) T. on Sol.(s) Avg. T. on Sol.(s)

Enable Both 136 4818 738 5.43
Disable T.B.E. 136 (0) 4882 802 5.90 (8.0%)
Disable M.E.T. 135 (-1) 5091 891 6.60 (17.7%)

Results are shown in Table 4. The first row, “Enable Both”, rep-
resents the strategy where both two directions of data sharing are
both enabled. The second row, “Disable T.B.E.”, means we disable
the transformation of bound examples to invariant examples. “Dis-
able T.B.E.” is 8% slower than “Enable Both” in average time. The
third row, “Disable M.E.T.”, means we disable the mutation test on
error trace. Actually, to make the interactions between bound learn-
ing and validation go on, we cannot fully prevent the data sharing
from the safety checker to the bound learner, i.e., the conveyance
of error traces still exists. “Disable M.E.T.” solves one benchmark
less and is 17.7% slower in average time than “Enable Both” . We
can conclude that our two-way data sharing mechanism between
bound learning and validation makes our approach more efficient.

7 RELATEDWORK
Proving Termination. Termination analysis has always been a

research hotspot in the field of program verification, and there
are amount of existing technologies. Most of them [3, 6, 19, 25,
28, 33, 35] rely on constraint solvers to synthesize the termina-
tion arguments, e.g., a ranking function together with its support
invariant.With these technologies, lots of tools emerged, e.g., Termi-
nator (together with its successor T2) [7, 11, 12], Armc[34], Tan[23],
HipTNT+ [27], Ultimate Automizer [20] and so on.

Differing from the technologies above, there are some “guess-and-
check”-style methods [14, 26, 31, 41]. They employ a lightweight
approach to obtain the likely termination arguments and employ

an off-the-shelf checker to validate them. DynamiTe [26] tries to
get a ranking function candidate from dynamic execution traces
and employs a program verifier to check it. Its method is different
from ours, and it focuses on non-linear programs. FreqTerm [14]
uses a syntax-guided approach to guess a loop bound and checks
the candidate by a CHC solver. [41] learns different forms of loop
bounds by combining several affine expressions inferred from the
examples provided by the constraint solver. TpT [31] employs qua-
dratic programming to infer a loop bound from testing data, which
is closest to our approaches. However, TpT only learns a simple
loop bound. Its applicability is thus limited.

Data-Driven Methods in Verification. Data-Driven methods have
received more and more attention in recent years. In the field of
verification, several applications have been appeared, particularly
in loop invariant synthesis [16, 29, 37, 38, 42, 43] and termination
proving [24, 26, 31, 41]. The ways these technologies deal with the
data are quite different. Among these technologies, [16, 24, 42] use
adapted decision trees to process the data. [29, 37] use SVM for
data classification. [38, 43] use natural networks to generate logical
expressions. [31] uses quadratic programming, [41] uses linear in-
terpolation, and [26] uses constraint solving. In our approaches, we
use the clustering algorithm to group the dataset and then employ
convex optimization to generate the candidate loop bounds. We
also employ the optimization algorithm to find a better combination
of the bound candidates.

8 CONCLUSION
We develop a data-driven loop bound learning approach for ter-
mination analysis. We propose a series of data-driven loop bound
learning algorithms, i.e., simple loop bound learning, conjunctive
loop bound learning, and lexicographic loop bound learning. With
a combination of these learning algorithms, our approach is able
to prove the termination of complicated programs with non-linear
loop bounds. We also propose a quick bound checking method to
efficiently refute the incorrect loop bound by a counterexample.
We also design two-way data sharing to bridge the bound learning
and validation. We conduct extensive experiments to evaluate the
efficiency and effectiveness of our approach. Our tool significantly
outperforms the state-of-the-art termination analysis tools.

ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science
Foundation of China (No. 62072267 and No. 62021002), and the
National Key Research and Development Program of China (No.
2018YFB1308601).

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Rongchen Xu, Jianhui Chen, and Fei He

REFERENCES
[1] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund

Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina
Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. IEEE.

[2] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999.
OPTICS: Ordering points to identify the clustering structure. ACM Sigmod record
28, 2 (1999), 49–60.

[3] Amir M Ben-Amram and Samir Genaim. 2013. On the linear ranking problem
for integer linear-constraint loops. ACM SIGPLAN Notices 48, 1 (2013), 51–62.

[4] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yun-
shan Zhu. 2003. Bounded model checking. (2003).

[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[6] Aaron R Bradley, ZoharManna, andHenny B Sipma. 2005. Termination analysis of
integer linear loops. In International Conference on Concurrency Theory. Springer,
488–502.

[7] Marc Brockschmidt, Byron Cook, and Carsten Fuhs. 2013. Better termination
proving through cooperation. In International Conference on Computer Aided
Verification. Springer, 413–429.

[8] Alberto Caprara, Paolo Toth, and Matteo Fischetti. 2000. Algorithms for the set
covering problem. Annals of Operations Research 98, 1 (2000), 353–371.

[9] Yu-Fang Chen, Matthias Heizmann, Ondřej Lengál, Yong Li, Ming-Hsien Tsai,
Andrea Turrini, and Lijun Zhang. 2018. Advanced automata-based algorithms
for program termination checking. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 135–150.

[10] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded
model checking using satisfiability solving. Formal methods in system design 19,
1 (2001), 7–34.

[11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Termination
proofs for systems code. ACM Sigplan Notices 41, 6 (2006), 415–426.

[12] Byron Cook, Abigail See, and Florian Zuleger. 2013. Ramsey vs. lexicographic
termination proving. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 47–61.

[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
kdd, Vol. 96. 226–231.

[14] Grigory Fedyukovich, Yueling Zhang, and Aarti Gupta. 2018. Syntax-guided
termination analysis. In International Conference on Computer Aided Verification.
Springer, 124–143.

[15] Pranav Garg, Christof Löding, P Madhusudan, and Daniel Neider. 2014. ICE: A
robust framework for learning invariants. In International Conference on Computer
Aided Verification. Springer, 69–87.

[16] Pranav Garg, Daniel Neider, Parthasarathy Madhusudan, and Dan Roth. 2016.
Learning invariants using decision trees and implication counterexamples. ACM
Sigplan Notices 51, 1 (2016), 499–512.

[17] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian
Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-
Kamp, et al. 2017. Analyzing program termination and complexity automatically
with AProVE. Journal of Automated Reasoning 58, 1 (2017), 3–31.

[18] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs,
Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie
Swiderski, et al. 2014. Proving termination of programs automatically with
AProVE. In International Joint Conference on Automated Reasoning. Springer,
184–191.

[19] William R Harris, Akash Lal, Aditya V Nori, and Sriram K Rajamani. 2010. Al-
ternation for termination. In International Static Analysis Symposium. Springer,
304–319.

[20] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2014. Termina-
tion analysis by learning terminating programs. In International Conference on
Computer Aided Verification. Springer, 797–813.

[21] Dieter Kraft et al. 1988. A software package for sequential quadratic programming.
(1988).

[22] Siddharth Krishna, Christian Puhrsch, and Thomas Wies. 2015. Learning invari-
ants using decision trees. arXiv preprint arXiv:1501.04725 (2015).

[23] Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and Christoph M Win-
tersteiger. 2010. Termination analysis with compositional transition invariants.
In International Conference on Computer Aided Verification. Springer, 89–103.

[24] Satoshi Kura, Hiroshi Unno, and Ichiro Hasuo. 2021. Decision Tree Learning in
CEGIS-Based Termination Analysis. In Computer Aided Verification - 33rd Inter-
national Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II
(Lecture Notes in Computer Science, Vol. 12760), Alexandra Silva and K. Rustan M.
Leino (Eds.). Springer, 75–98. https://doi.org/10.1007/978-3-030-81688-9_4

[25] Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio.
2013. Proving termination of imperative programs using Max-SMT. In 2013
Formal Methods in Computer-Aided Design. IEEE, 218–225.

[26] Ton Chanh Le, Timos Antonopoulos, Parisa Fathololumi, Eric Koskinen, and
ThanhVu Nguyen. 2020. DynamiTe: dynamic termination and non-termination

proofs. Proceedings of the ACM on Programming Languages 4, OOPSLA (2020),
1–30.

[27] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. 2015. Termination and
non-termination specification inference. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 489–498.

[28] Jan Leike and Matthias Heizmann. 2014. Ranking templates for linear loops. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 172–186.

[29] Jiaying Li, Jun Sun, Li Li, Quang Loc Le, and Shang-Wei Lin. 2017. Automatic loop-
invariant generation anc refinement through selective sampling. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 782–792.

[30] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.

[31] Aditya V Nori and Rahul Sharma. 2013. Termination proofs from tests. In Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
246–256.

[32] Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-driven precondition
inference with learned features. ACM SIGPLAN Notices 51, 6 (2016), 42–56.

[33] Andreas Podelski and Andrey Rybalchenko. 2004. A complete method for the
synthesis of linear ranking functions. In International Workshop on Verification,
Model Checking, and Abstract Interpretation. Springer, 239–251.

[34] Andreas Podelski and Andrey Rybalchenko. 2007. ARMC: the logical choice for
softwaremodel checkingwith abstraction refinement. In International Symposium
on Practical Aspects of Declarative Languages. Springer, 245–259.

[35] Andreas Podelski and Andrey Rybalchenko. 2011. Transition invariants and tran-
sition predicate abstraction for program termination. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
3–10.

[36] Michael JD Powell. 1994. A direct search optimization method that models
the objective and constraint functions by linear interpolation. In Advances in
optimization and numerical analysis. Springer, 51–67.

[37] Rahul Sharma, Aditya V Nori, and Alex Aiken. 2012. Interpolants as classifiers.
In International Conference on Computer Aided Verification. Springer, 71–87.

[38] Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018.
Learning loop invariants for program verification. In Neural Information Process-
ing Systems.

[39] Hugo Steinhaus et al. 1956. Sur la division des corps matériels en parties. Bull.
Acad. Polon. Sci 1, 804 (1956), 801.

[40] Thomas Ströder, Cornelius Aschermann, Florian Frohn, Jera Hensel, and Jürgen
Giesl. 2015. AProVE: termination and memory safety of C programs. In Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 417–419.

[41] Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai. 2016. Synthesizing
ranking functions from bits and pieces. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 54–70.

[42] Rongchen Xu, Fei He, and Bow-Yaw Wang. 2020. Interval counterexamples for
loop invariant learning. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 111–122.

[43] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020.
Learning nonlinear loop invariants with gated continuous logic networks. In
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation. 106–120.

https://doi.org/10.1007/978-3-030-81688-9_4

	Abstract
	1 Introduction
	2 Overview
	3 Preliminaries
	3.1 Notations
	3.2 Convex Optimization and Set Covering Problem
	3.3 Clustering

	4 Data-Driven Loop Bound Learning
	4.1 Simple Loop Bound Learning
	4.2 Conjunctive Loop Bound Learning
	4.3 Lexicographic Loop Bound Learning
	4.4 Discussion

	5 Data-Driven Termination Analysis
	5.1 Overall Algorithm
	5.2 Validation Task
	5.3 Safety Checker
	5.4 Quick Bound Checking
	5.5 Two-way Example Sharing

	6 Evaluation
	6.1 Efficiency Evaluation
	6.2 Effectiveness Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

