
Data-driven Recurrent Set Learning For
Non-termination Analysis

Zhilei Han, Fei He†
School of Software, Tsinghua University

Key Laboratory for Information System Security, MoE
Beijing National Research Center for Information Science and Technology, Beijing, China

hzl21@mails.tsinghua.edu.cn, hefei@tsinghua.edu.cn

Abstract—Termination is a fundamental liveness property for
program verification. In this paper, we revisit the problem
of non-termination analysis and propose the first data-driven
learning algorithm for synthesizing recurrent sets, where the
non-terminating samples are effectively speculated by a novel
method. To ensure convergence of learning, we develop a learning
algorithm which is guaranteed to converge to a valid recurrent
set if one exists, and thus establish its relative completeness. The
methods are implemented in a prototype tool, and experimental
results on public benchmarks show its efficacy in proving non-
termination as it outperforms state-of-the-art tools, both in
terms of cases solved and performance. Evaluation on non-
linear programs also demonstrates its ability to handle complex
programs.

Index Terms—program termination, recurrent set, data-driven
approach, black-box learning

I. INTRODUCTION

Proving termination is essential for establishing total cor-
rectness of programs. During the last two decades, automated
termination analysis has received abundant research, as prac-
tical tools like APROVE [1], CPAchecker [2], ULTIMATE [3]
and 2LS [4] emerge, which are capable of analyzing complex
programs.

Since termination is generally undecidable, proving non-
termination, as the counterpart of proving termination, has
also been an active research topic, and a plethora of methods
for non-termination analysis exist. Typically, proving non-
termination is more challenging because the witness to non-
termination is an infinite execution trace. Similar to ranking
functions in termination analysis, the key is to find a sym-
bolic representation that encapsulates requirements for non-
termination, and thus serves as non-termination arguments.
Most of the existing work on non-termination analysis is based
on the notion of recurrent set [5], and methods have been
proposed to synthesize it, most of them utilizing white-box
template-based constraint solving (e.g., [6], [7], [8]).

A recent line of work on termination analysis is based on
black-box learning, which has been successfully applied in
invariant generation [9], [10], [11]. Some researches follow
the method of counter-example guided inductive synthesis
(CEGIS) for exact learning of machine learning models such
as linear regression [12], decision tree [13] and support vector

†
Fei He is the corresponding author.

Teacher
Is 𝑅 valid for 𝑃?

Learner
Find 𝑅 consistent with 𝑆

Program 𝑃

Yes

No, add new samples to 𝑆

a candidate 𝑅

Fig. 1: The typical black-box learning framework

machine [14], [15]. Deep learning can also be utilized to train
a neuron network as the termination argument [16], [17]. Since
the synthesis process is driven by data collected from the
program, such methods are also called data-driven approaches.

Generally, in black-box learning, the synthesizer contains
two main components. One of them is a learner, which tries
to produce a candidate using samples or data points obtained
from the program. Another is a teacher, which acts as a ver-
ifier that validates a conjectured model the learner generates.
In case the candidate is invalid, the teacher generates new
samples from the counter-example, or by using techniques like
bounded model checking and dynamic program execution. The
framework is depicted in Figure 1.

Compared with white-box approaches, the design of a black-
box synthesizer is more straightforward. Besides, black-box
learning enjoys the advantage that the learner is completely
agnostic of the concrete program and its semantics. Thus,
they are able to reason about programs with constructs that
are otherwise hard to deal with, such as non-linear assign-
ments. Many white-box approaches also proceed by analyzing
lasso-shaped traces (i.e. a finite stem and a periodic loop)
extracted from the program [5], [7]. This is problematic in
non-termination analysis since aperiodic non-termination can
not be detected. The black-box approach, however, does not
suffer this problem.

This inspires us to adopt black-box learning to non-
termination analysis, as recurrent sets can be seen as predicates
analogous to inductive invariants. However, generating non-
terminating samples for the learner is difficult since the
execution trace starting from a non-terminating state is infinite.
Such samples can not be obtained by dynamic execution or
validity check of candidate predicates. Besides, finding a single

non-terminating state is sufficient for proving non-termination,
which makes the traditional data-driven method conceptually
unnecessary. Therefore, to apply black-box learning to prove
non-termination, the problem of how to generate these samples
must be addressed.

In this paper, we propose the first algorithm for proving
non-termination by learning a recurrent set. As decision tree
has been a well-studied model and optimal algorithms ex-
ist, the algorithm utilizes a decision tree learner to learn a
candidate recurrent set, which is based on the ICE learning
framework [10]. The samples are generated by static methods,
and are labeled either positive, negative, or implicative. The
aforementioned problem is tackled by speculation of positive
samples from reachable states using a novel method based
on constraint solving. Furthermore, to reduce the penalty of
selecting a spurious sample, we propose to utilize the unsat
core to generalize the positive samples.

The convergence of learning is important for black-box
approaches. We demonstrate a variant of bounded learning
algorithm that is guaranteed to terminate, provided that a
recurrent set representable as a decision tree exists (in a
sense described in Section II-B). This thus ensures the relative
completeness of our method. As far as we know, no established
non-termination proving technique is based on black-box
learning and provides such a guarantee.

We have implemented our algorithm in a prototype tool
called RSLEARN. Experimental results on public benchmarks
show the efficacy of our method as it proves more non-
terminating cases than state-of-the-art termination and non-
termination analysis tools such as ULTIMATE [3], VERY-
MAX [18] and REVTERM [8] within less time. Besides, evalu-
ation on non-linear benchmarks and some large-scale programs
shows its ability to handle complex programs efficiently.

In summary, we present in this paper:

• A black-box algorithm based on decision tree learning for
synthesizing recurrent sets and proving non-termination
of programs, which generates non-terminating samples
with a novel speculation method.

• A bounded learning algorithm which guarantees conver-
gence of the learning process as long as an expressible
recurrent set exists.

• An implementation of the algorithm, and the experimental
results of the algorithm on public benchmarks which
show the effectiveness of the methods.

The rest of the paper is organized as follows: Section II
introduces basic definitions and decision tree learning, and
Section III demonstrates the algorithm by a motivating exam-
ple. Section IV discusses the learning algorithm and Section V
introduces the bounded convergent algorithm. Section VI
describes the implementation and experimental results and
Section VII briefly reviews related work. We conclude the
paper in Section VIII.

Initial Loop

Tstem
[Gloop]

Tloop

Fig. 2: A loop L represented as transition formulas

II. PRELIMINARIES

A. Basic Definitions

Let ~x be the set of variables that occur in a program and ~x′

be the set of primed version of variables. A state s is defined
as a valuation of ~x, and Σ is the set of all states. A transition
is a pair of states (s, s′). Let σs,s′ be the combined valuation
of s and s′ such that for each v ∈ ~x, σs,s′(v) = s(v) and
σs,s′(v

′) = s′(v). A transition formula f has free variables
ranging over ~x ∪ ~x′, and denotes a set of transitions. The
transition (s, s′) satisfies f , written (s, s′) |= f , if σs,s′ |= f .

For brevity, we do not introduce a specific high-level
programming language and its semantics, but instead adopt
the standard techniques [19] to represent a loop as transition
formulas as in Figure 2.

Definition 1 (Loop). A loop L is a triple L =
(Tstem,Gloop, Tloop), where
• Tstem is a transition formula representing all transitions

from the initial states to the loop entry,
• Gloop is a predicate representing the condition for enter-

ing the loop, and
• Tloop is a transition formula representing all transitions

from the beginning of the loop body back to the loop.

Programs can be transformed to transition formulas using
established methods (e.g. algebraic program analysis [20]) that
can handle multiple loops and nested loops. For example, the
loop in Figure 3 can be represented as

L0 = (true, k 6= 0, k′ = −2× (k − 1)× k × k ∧ j′ = 0).

A loop is said to be non-terminating, if there is an infinite
sequence of states s0, s1, s2, · · · such that (s0, s1) |= Tstem
and for every i ≥ 1, si |= Gloop, (si, si+1) |= Tloop. The
canonical method for proving non-termination is to synthesize
a so-called recurrent set. An open recurrent set [5] is a non-
empty set of states such that for every state in the set, at least
one of its successor states under Tloop is also in the set. As a
result, once the program reaches a state in the open recurrent
set, it has the possibility to stay in this set forever. In contrast,
a closed recurrent set [21] is a non-empty set of states such
that every successor of its states is contained in it. Thus, once
the program enters, it can never escape (for all executions).

It can be easily shown that a program is non-terminating
iff the program admits an open recurrent set. However, syn-
thesizing an open recurrent set requires to eliminate ∀∃-
quantifications, which is usually difficult and inefficient [21].
We thus consider the closed recurrent set in this paper.

Definition 2 (Closed Recurrent Set). A closed recurrent set of
a loop L = (Tstem,Gloop, Tloop) is a predicate R that satisfies:

1) ϕ1 : ∃~x, ~x′. Tstem(~x, ~x′) ∧R(~x′)
2) ϕ2 : ∀~x. R(~x)→ Gloop(~x)
3) ϕ3 : ∀~x, ~x′. R(~x) ∧ Tloop(~x, ~x′)→ R(~x′)

The predicate R can be regarded as a set of states. In
the definition, the first condition ϕ1 checks if the set R is
reachable from a certain initial state, the second condition
ϕ2 ensures no final state is contained in R, and the third
condition ϕ3 ensures all successor states of R are in R (i.e.
R is inductive). Each ϕi (1 ≤ i ≤ 3) is called a validation
formula. In the following, we write φ for ϕ1 ∧ ϕ2 ∧ ϕ3 for
simplicity.

Note that R in the above formulas is a placeholder. We
employ a “guess-and-check” approach to infer the predicate
R. Let H be a candidate predicate for R. ϕ1(H) denotes the
formula obtained by replacing R with H in ϕ1, and we can
likewise define the same for ϕ2, ϕ3, φ, etc. The validity of
φ(H) can be checked by an SMT solver. If φ(H) is valid,
we say the candidate predicate H represents a valid recurrent
set; otherwise, the SMT solver returns a model that falsifies
φ(H). Depending on the model falsifying ϕ1(H), ϕ2(H) or
ϕ3(H), we can extract one or two states from that model.

Closed recurrent set is a stronger notion of recurrent set, and
as a non-termination argument, it is only complete for a gen-
eral loop when combined with an under-approximation [21].
In later sections, we assume Tloop is deterministic, i.e. it
satisfies ∀~x, ~x′, ~x′′.Tloop(~x, ~x′) ∧ Tloop(~x, ~x′′) → ~x′ = ~x′′.
For a deterministic loop, open and closed recurrent sets
are equivalent, thus the closed recurrent set is complete. In
our implementation, an under-approximation is selected by
a simple heuristic (Section VI) to handle non-deterministic
loops.

B. Decision Tree Learning

Decision tree is a commonly adopted model in machine
learning, and is especially used in classification problem. The
model is simple but well-studied, with many classical decision
tree learning algorithm such as ID3 [22], C4.5 [23] and C5.0.
It has been recently used for invariant generation [9], [10], [24]
and termination analysis [13] and shows promising results. We
base our algorithm on decision tree learning as well.

Denote a numerical expression over ~x as an attribute. For
example, the octagonal domain includes attributes of the form
±x± y. Let A = {a1, a2, . . . , an} be a finite set of attributes.
An atomic predicate is of the form a ≤ c, where a ∈ A
and c is a constant. A decision tree learner iteratively tries to
pick an atomic predicate, and partitions a state subspace into
two that satisfy a ≤ c and ¬(a ≤ c) respectively. A decision
tree is then a combination of the subspaces. More formally, a
decision tree is defined as a boolean combination of atomic
predicates. A predicate is expressible, if it can be represented
as a decision tree. Note that if we fix the set of attributes,
the set of semantically different decision trees, represented as
boolean combinations of the atomic predicates, is infinite.

while (k 6= 0) {
j ← -2 × (k - 1) × k;
k ← j × k;
while (j 6= 0) {

if (j > 0)
j ← j - 1;

else
j ← j + 1;

}
}

Fig. 3: A non-terminating motivating example

Given a set of samples with binary label (positive and
negative), the classical algorithms learn a decision tree by
computing the information gain of an atomic predicate. These
algorithms, however, are tailored for inexact learning, and try
to avoid overfitting by pruning the tree. Besides, similar to an
inductive invariant, Definition 2 requires a recurrent set to be
inductive (ϕ3). It has been shown binary labeled samples are
insufficient for inductive invariant synthesis [9].

In this paper, we follow the ICE framework for learning
a decision tree [10], in which a sample set consists of three
kinds of samples labeled positive, negative and implicative,
respectively. A positive (resp. negative) sample is a state s,
and requires the candidate must (resp. must not) hold on s. An
implicative sample is a pair of states (s1, s2) that requires if a
candidate holds on s1, it must also hold on s2. We then denote
a sample set as a triple S = (S+, S−, S→), with S+, S−, S→

being the set of positive, negative and implicative samples,
respectively. A sample set S is called inconsistent, if there is
no predicate that satisfies all requirements of its samples.

The set S→ of implicative samples can be seen as a partial
function on Σ. Let f(S) = {s | ∃s′ ∈ S. (s′, s) ∈ S→} and
g(S) = {s | ∃s′ ∈ S. (s, s′) ∈ S→}. The closure of S+

and S− under S→, denoted as S+
→ and S−→, is the transitive

closure of S+ and S− under f and g, respectively.
The ICE decision tree learner takes a sample set as input

and returns a candidate decision tree which meet all the
requirements imposed by the samples, the details of which
can be found in [10]. The following lemma states the learner
is guaranteed to return a candidate as long as the sample set
is consistent.

Lemma 1 (Theorem 1 of [10]). Given a consistent sample set
S, the ICE decision tree learner, independent of how attributes
are chosen, always terminates and produces a decision tree
consistent with S.

III. MOTIVATING EXAMPLE

For an overview of our algorithm, consider the program in
Figure 3. This program does not terminate if the initial value
of k is neither 0 nor 1, because k would keep flipping sign and
get larger absolute value. The predicate R = (k < 0)∨(k > 1)
characterizes a valid recurrent set of this program that proves
its non-termination.

𝑗

𝑘

𝑗

𝑘

𝑗

𝑘

𝑗

𝑘

(b) add negative (0, 0)

⊤ ⊥ 𝑘 ≤ −1 𝑘 ≤ −1 ∨ 𝑘 ≥ 4

(c) add positive (−1, 0) (d) add implicative (−1, 0) → (4, 0)(a) initial

Fig. 4: The iterations for proving non-termination of the motivating example. Positive and negative samples are depicted as dots
(red=negative, blue=positive, green=unknown) and implicative samples are depicted as dashed lines. The learned candidate is
shown in the upper right corner and shaded in the diagram.

Though the program looks simple, it is difficult to prove its
non-termination, since (1) this program is non-linear, so typical
white-box synthesis methods, which are based on Farkas’
Lemma, do not apply, (2) all valid recurrent set, including
(k < 0)∨(k > 1), are disjunctive, and no conjunctive recurrent
set exists, (3) every non-terminating trace of this program is
aperiodic, meaning there’s no lasso-shaped witness to its non-
termination. Most of the state-of-the-art methods are incapable
of proving non-termination of this program.

The black-box learning-based algorithm we propose can
handle this program easily. This algorithm maintains a set of
samples generated from the program, and makes progress by
iteratively learning a candidate recurrent set (represented as a
decision tree) consistent with the samples. The whole iterations
of learning the recurrent set is depicted in Figure 4.

In the beginning, the sample set is empty, and the decision
tree learner (see Section II-B) returns true as the candidate.
Obviously, ϕ2(true), i.e, ∀k, j. true → k 6= 0 is invalid,
and suppose (k = 0, j = 0) is the state returned by the SMT
solver as counter-example. This state should be excluded from
the next candidate. It is thus labeled as a negative sample and
added to the sample set.

The learner is then invoked again with a sole negative
sample (k = 0, j = 0), and returns a new candidate false,
which is invalid since it represents an empty state set. In-
tuitively, any state s that is reachable (i.e., with an initial
state s′ such that (s′, s) |= Tstem) and belongs to a recurrent
set (i.e., s |= R) can be added as a positive sample at this
point. However, this is not possible since the predicate R is
still unknown, and we cannot determine a priori whether a
state is contained in some recurrent set. Note that solving the
constraint ϕ1(false) cannot provide such a state, since ϕ1 is
an existentially quantified formula.

We tackle this problem by speculating a positive sample
from the reachable state. Assume here we pick the state
(k = −1, j = 0). A selected state is called spurious if no
recurrent set containing this sample exists; this is possible
when all executions starting from this state terminates. Since it
is unknown if the state is spurious at this point, the algorithm
continues by regarding it as a genuine positive sample.

Now the learner is invoked again, with a negative sample
(k = 0, j = 0) and a positive sample (k = −1, j = 0), and

returns a predicate k ≤ −1 as the candidate. This time, the
validity check of ϕ3(k ≤ −1), i.e. ∀k, k′, j, j′. k ≤ −1∧k′ =
−2× (k − 1)× k × k ∧ j′ = 0→ k′ ≤ −1, would fail, since
the candidate holds on the state (k = −1, j = 0), but not
on its successor state (k = 4, j = 0). An implicative sample
((k = −1, j = 0), (k = 4, j = 0)) is then added.

When the learner is invoked in the next iteration, k ≤ −1∨
k ≥ 4 is inferred as the candidate. This is a valid recurrent
set for the program, thus the teacher reports non-termination.

Discussions

As Figure 4 indicates, each sample generated steers the
learner closer to a valid candidate. The learning process is
efficient and converges quickly. Besides, since it is agnostic
of the concrete program, the aforementioned difficulties con-
cerning complex program constructs are not present.

However, the above learning iteration does not encounter
spurious positive samples. What will happen if a wrong choice
is made? Note that for a state s that is terminating, all its
successors are also terminating. If s is chosen as a positive
sample, by ϕ3 of Definition 2, its successors are all contained
in the recurrent set, including the final state that violates Gloop,
which should be negative. This entails that as the learning goes
on, at some point the sample set must become inconsistent.

Suppose in the above discussion, instead of (k = −1, j = 0)
we choose (k = 1, j = 0) as the positive sample. The learner
would now return k > 0 as the candidate, and the validity
check of ϕ3(k > 0) would again fail, leading to the implicative
sample ((k = 1, j = 0), (k = 0, j = 0)) being added to the
sample set. The learner then fails to return any candidate, since
the sample set is inconsistent.

In this scenario, we know the positive sample (k = 1, j = 0)
must be spurious1 and lead to termination. To correct this,
the teacher then flips this positive sample into negative, and
speculates another state as the new positive sample, (k =
1, j = 1) for instance. The details of how positive samples are
speculated are documented in Section IV-B and Section IV-C,
but in general, several iterations are needed before a spurious

1Note this is different from black-box learning algorithm with an honest
teacher, which generates no spurious sample and proceeds without backtrack-
ing. In that case, an inconsistent sample set directly entails that the target
predicate does not exist.

sample is corrected. To reduce the overhead, we expect as few
spurious samples as possible.

At last, note that the decision tree learner requires a fixed set
of attributes. It is possible that even if the speculated positive
sample is not spurious, no recurrent set is expressible by the
given attributes. To solve this problem, a special algorithm
is needed to guarantee convergence of the learning, which is
described in Section V.

IV. BLACK-BOX LEARNING OF RECURRENT SETS

In this section, we introduce the black-box learning al-
gorithm for learning a recurrent set. As is shown in Sec-
tion III, the crux is to generate accurate positive samples
and avoid inconsistency as much as possible. The learning
algorithm is given in Algorithm 1. Given an input loop
L = (Tstem,Gloop, Tloop), the algorithm either learns a valid
recurrent set R and returns NT for non-termination, or returns
T if termination is witnessed.

Algorithm 1: Black-Box Learning of Recurrent Sets.
input : A loop L = (Tstem,Gloop, Tloop)
output: (NT, R) if L is non-terminating, and R is a

recurrent set of L; or T if termination is
proved.

1 S+, S−, S→ ← ∅ ; // E ← ∅, m← 0
2 while True do
3 R← Learner(S+, S−, S→) ;

// BoundedLearner ()
4 if ∃s. s |= ¬(R(~x)→ Gloop(~x)) then
5 S− ← S− ∪ {s} ;

6 else if
∃s, s′. (s, s′) |= ¬(R(~x) ∧ Tloop(~x, ~x′)→ R(~x′))
then

7 S→ ← S→ ∪ {(s, s′)} ;

8 else if S+ 6= ∅ then
9 return (NT, R) ;

10 while S+ = ∅ ∨ SampleConflict(S+, S−, S→) do
11 S− ← S− ∪ Generalize(S+) ;
12 spos ← SpeculatePositive(S−, S→) ;

// SpeculatePositiveBounded ()
13 if spos = Nil then return T ;
14 S+ ← {spos} ;

A. Overall Algorithm

The learning algorithm follows the black-box learning
framework (Figure 1) which alternates between teacher and
learner. The learner we use is the ICE decision tree learner
(Section II-B), while Algorithm 1 demonstrates the teacher. A
set of samples S = (S+, S−, S→) is maintained, and initially
all sets are empty (Line 1).

At each iteration, the learner is invoked to obtain a new
candidate R (Line 3). The candidate R’s validity is then

checked (Line 4 to 9). If ϕ2(R) of Definition 2 is violated
(Line 4), there must be a state s in the current candidate that
does not satisfy Gloop. The state s is then labeled as negative
and added to S−. Likewise, if ϕ3(R) is invalid (Line 6), the
current candidate is not inductive, and we can find a state s
that satisfies R, but one of its successors s′ does not. The pair
(s, s′) is then added to the implicative samples S→. Otherwise,
if the candidate passes all the checks, a valid recurrent set is
found and NT is returned (Line 9).

When the validity checking fails, before invoking the learner
again, the teacher checks if S+ is empty, or the sample set
becomes inconsistent after adding a new sample (Line 10).
The subroutine SampleConflict checks the consistency of
a sample set by computing the closure of S+ and S− under
S→, and checking if S+

→ ∩ S−→ = ∅. In either case, a fresh
positive sample is needed. The teacher then tries to speculate
a fresh one with the subroutine SpeculatePositive.

B. Speculated Positive Sample

A valid recurrent set R should satisfy ϕ1 of Definition 2
as well. Given a candidate, this can be checked by an SMT
solver, but since ϕ1 is existential, no counterexample can be
obtained if the check fails. We could only know that the current
candidate is unreachable from any initial state. Besides, as is
pointed out in Section I, dynamic execution can not produce
a positive sample as well.

Instead of checking the validity of ϕ1 and generating
samples from the check, we choose to speculate positive
sample directly so that if any candidate satisfies ϕ2 and ϕ3, it
also satisfies ϕ1. Intuitively, any state reachable via Tstem is
a possible positive example, and a naive method is to check
the formula ∃~x′.Tstem(~x′, ~x) and choose any model of ~x as a
positive sample. However, speculation inherently brings forth
spurious positive samples and leads to inconsistency of the
sample set. As a trade-off, backtracking of the positive samples
(Line 10 to 14) is needed for soundness of the algorithm. To
reduce the overhead, we strengthen the condition and try to
generate positive samples as accurate as possible.

The subroutine SpeculatePositive is used to infer a
fresh positive sample. It is invoked (Line 12) whenever the
teacher finds the current sample set inconsistent. The positive
sample speculated should be a state that:

• is reachable from an initial state,
• does not belong to the set of already known terminating

states, and
• does not terminate within a fixed number of steps.

The reachability requirement is essential for ϕ1, while the
other two requirements are to help pick fewer terminating
states. Formally, a state s is a speculated positive sample if it

satisfies the following formula:

ρ(~x) := (∃~x′. Tstem(~x′, ~x)) ∧ ¬S−→(~x) ∧
k∧

i=0

∀~x0, ~x1, . . . , ~xi.~x0 = ~x ∧
i−1∧
j=0

Tloop(~xj , ~xj+1)

 → Gloop(~xi) (1)

where S−→ is the predicate representing the set of all known
terminating states, i.e. the closure of S− under S→ (defined
in Section II-B). k is a predefined threshold, and basically in
Equation (1) the loop is unrolled k times. It is required that
any successor of ~x within k steps satisfies the guard condition
Gloop. The universal quantification may seem a problem for
constraint solving, but since we assume (in Section II) the loop
is deterministic, they can be simply eliminated by substitution.

If ρ is unsatisfiable, all reachable states have been proved
to be terminating and T is returned (Line 13). Otherwise, a
model s exists and it is chosen as the new positive example
(Line 14). Since all states in S−→ are blocked in ρ, the new
positive sample must be a fresh one. While ρ can not exclude
all spurious samples, it is effective for reducing the cost of
backtracking when most terminating state terminates within a
small number of steps.

C. Generalization of Spurious Positive Samples
Equation (1) enables efficient sampling of positive samples,

but spurious positive samples are still inevitable during the
learning. When this happens, we must prevent Equation (1)
from sampling the same positive sample. This can be ensured
by labeling the original positive sample as negative, i.e.,
updating S− to S− ∪ S+.

With the above trivial method, only a single state is blocked
at a time. To improve the efficiency, in Algorithm 1 we
generalize the single positive sample to a set of states that are
guaranteed to be spurious (Line 11) before adding them to S−

and speculating a new positive sample. Intuitively, we try to
find the reason for inconsistency of the sample set, represented
as a predicate, and block all states that satisfy it. In this way,
Equation (1) can be steered to obtain sample that’s less likely
to be spurious.

To generalize the positive sample, we adopt the inter-
val counterexample of inductive invariant learning proposed
in [24] to our setting. The idea is to generalize a sample to
an interval by examining the unsat core of an unsatisfiable
formula. Suppose s is the state represented by the spurious
positive sample. Then starting from s, the loop must terminate
after several, say m, iterations. Define

ψ := ~x0 = s ∧
m−1∧
i=0

Tloop(~xi, ~xi+1) ∧ Gloop(~xm) (2)

Obviously, ψ is unsatisfiable.
Let D = {d0, d1, d2, . . . , dn−1} be a set of possible interval

distances with 0 ∈ D, where each di is an integer. We use the
set D to strengthen the requirement on the initial state ~x0 and
obtain the following formula that’s also unsatisfiable [24]:

ψ′ :=
∧
{x0 ≥ s(x0)−d, x0 ≤ s(x0)+d | x ∈ ~x, d ∈ D}

∧
m−1∧
i=0

Tloop(~xi, ~xi+1) ∧ Gloop(~xm) (3)

By making all the constraints x0 ≥ s(x0) − d and x0 ≤
s(x0) + d in ψ′ soft constraints and invoking the SMT solver,
we can obtain a subset of these constraints as the unsat
core. Each of the unsat core constraints represents an interval
[s(x0)−d,∞) or (−∞, s(x0)+d], and are more general than
a single positive sample. By adding all states satisfying these
constraints to S−, we block a (possibly infinite) set of states
from been considered as the positive samples.

Example 1. Consider the motivating example in Figure 3. As
discussed in Section III, the state (k = 1, j = 0) is a spurious
positive sample that leads to termination in one iteration.

Suppose D = {0, 1}, then we generalize the sample by
invoking SMT solver on the formula k ≥ 1 ∧ k ≤ 1 ∧ k ≥
0 ∧ k ≤ 2 ∧ j ≥ 0 ∧ j ≤ 0 ∧ j ≥ −1 ∧ j ≤ 1 ∧ k′ =
−2× (k − 1)× k × k ∧ j′ = 0 ∧ k′ 6= 0.

The solver returns {k ≤ 1, k ≥ 0} as the unsat core, which
represent exactly all the terminating states. Then by blocking
0 ≤ k ≤ 1 and speculating any fresh positive sample, the
correct recurrent set can be learned following the rest of the
algorithm.

D. Correctness

We show that the Algorithm 1 is correct:

Theorem 1. Given any loop L = (Tstem,Gloop, Tloop) as
input, if Algorithm 1 returns (NT, R), the loop does not
terminate. Likewise, if the algorithm returns T, the loop
terminates.

Proof. When the algorithm returns (NT, R), the candidate
recurrent set R passes the checks at Line 4, 6, and 8. The
check at Line 8 ensures S+ is non-empty, and it contains a
speculated positive sample spos, which Equation (1) ensures
to be reachable from an initial state. Thus, R satisfies all
requirements of Definition 2 and is a valid recurrent set.

Algorithm 1 returns T only if no positive example can
be picked from SpeculatePositive. From Equation (1),
this ensures that every reachable state either has been proved
terminating (i.e. it’s in the set S−→), or terminates within k
steps. Thus, the loop terminates.

V. CONVERGENT LEARNING

Algorithm 1 suffers from a common problem of black-box
learning: the learning algorithm itself is not guaranteed to
terminate. Although Lemma 1 ensures the decision tree learner
always terminates given a fixed set of samples, the overall
iterative learning algorithm may not converge, since the set of
candidate recurrent set is infinite.

In [10], the authors proposed a bounded learner that ensures
convergence of learning. Basically, the learner requires that all

while (x 6= -1) {
if (x = 0) {

x ← 1; y ← 2;
} else if (2x = y) {

y ← 0;
} else if (y = 0) {

x ← 2x; y ← 2x;
} else if (x ≤ -2) {

x ← x - 1;
} else {

x ← -1;
}

}

Fig. 5: A non-terminating program where the non-terminating
state (x = 0, y = 0) is not contained in any recurrent set
expressible by octagonal attributes.

Algorithm 2: Methods Used in Convergent Learning

1 Subroutine BoundedLearner():
2 R, failed← BoundedICELearner(S+, S−, S→, m) ;
3 while failed do
4 E ← E ∪ S+;
5 spos ← SpeculatePositiveBounded() ;
6 S+ ← {spos} ;
7 R, failed←

BoundedICELearner(S+, S−, S→, m) ;

8 return R;

9 Subroutine SpeculatePositiveBounded():
10 while ρ′(~x) is unsatisfiable do
11 E ← ∅ ;
12 m← m+ 1 ;

13 Let s be a model of ρ′(~x);
14 return s;

constants c in the atomic predicates a ≤ c of a candidate
are bounded by a threshold m, which is initially 0. m
is only incremented when no valid candidate exists in the
given threshold. Since the number of candidates satisfying
the m-bounded requirement is finite, and each iteration of
learning gives a different candidate, this bounded learner will
eventually learn a valid candidate, if one exists.

However, this bounded learner cannot be directly adopted
to our method, since in our algorithm, divergence may result
from not only the infinite space of candidates, but also wrong
choice of positive samples. It is possible that a speculated
positive sample is a non-terminating state, but no recurrent set
expressible by the attributes A that contains this state exists.

The program in Figure 5 gives an example of this scenario.
It does not terminate if the initial state satisfies x ≤ −2 ∨
2x = y ∨ x = 0 ∨ y = 0. This predicate is also a valid
recurrent set, but it is not expressible by the attributes A =
{x, y,±x± y} (i.e. the octagonal domain). However, another

recurrent set that can be expressed by A, namely x ≤ −2,
does exist. Generally, valid recurrent sets for a program are not
unique, and a positive sample may belong to several of them.
Whether a valid recurrent set can be found by Algorithm 1
depends on the speculated positive sample: if it is not spurious,
Algorithm 1 never generates a new one. Thus, when the sample
does not belong to any expressible recurrent set, the algorithm
would fail.

For example, suppose Algorithm 1 chooses the non-
terminating state (x = 0, y = 0) as the positive sample for
Figure 5. It will then diverge since the execution starting
from this state is infinite, but not contained in any expressible
recurrent set.

To address this problem, we propose a convergent learning
algorithm that is guaranteed to terminate and learn a recurrent
set, provided that a recurrent set expressible as the boolean
combination of atomic predicates a ≤ c exists. Essentially, the
algorithm bounds not only the maximum value of constants in
the learner, but also the speculated positive sample (by some
appropriate metrics) in the teacher.

The convergent learning algorithm follows the same general
framework. The differences are marked as blue comments
in Algorithm 1, where an extra set of states E, and a
threshold m are maintained (Line 1), and the call to the
subroutines Learner (Line 3) and SpeculatePositive
(Line 12) are substituted by BoundedLearner and
SpeculatePositiveBounded, respectively.

The two new subroutines used are shown in Algorithm 2.
BoundedLearner is a wrapper around the ICE bounded
learner, which tries to generate a candidate with constants
bounded by m, i.e. |c| ≤ m. Though we ensure the sample
set is always consistent (Line 11 of Algorithm 1), the learner
might still fail because no such candidate exists. In this case,
the learner put the current positive sample into the set E, and
invoke SpeculatePositiveBounded to generate another
positive sample. This is done repeatedly until a candidate is
learned.

The subroutine SpeculatePositiveBounded now
only returns those state s with ‖s‖ ≤ m, where ‖·‖ is any norm
of a vector. It also blocks all states in the set E, which records
states that have been chosen but not proved to be terminating
yet. More specifically, the formula ρ′(~x) in Equation (4) is
used to generate a positive sample. In case all states with
‖s‖ ≤ m are already considered or blocked, E is emptied and
m is increased by 1 (Line 12).

ρ′(~x) := (∃~x′.Tstem(~x′, ~x)) ∧ ¬S−→(~x) ∧ ¬E(~x) ∧

‖~x‖ ≤ m ∧
k∧

i=0

∀~x0, ~x1, . . . , ~xi.~x0 = ~x ∧
i−1∧
j=0

Tloop(~xj , ~xj+1)

→ Gloop(~xi) (4)

We now prove that the bounded learning algorithm always
converges provided that an expressible recurrent set exists:

Theorem 2 (Convergence of Algorithm 2). Fixing a set
of attributes A = {a1, . . . , an}, for any loop L =
(Tstem,Gloop, Tloop), the bounded learnign algorithm is guar-
anteed to terminate and returns a valid recurrent set, if L
admits a recurrent set expressible as the boolean combination
of predicates of the form a ≤ c, where a ∈ A and c is any
integer.

Proof. Suppose R is the valid recurrent set for L that can
be represented as boolean combinations of a ≤ c. Let c0
be the maximum of all such constants c in R. From ϕ1 of
the definition of a recurrent set, there exist states s such that
∃s′.Tstem(s′, s) ∧ R(s). Let s0 be one such state with the
smallest metrics ‖s0‖. Note s0 exists because the norm is
always non-negative.

Now let m0 = max(c0, ‖s0‖). Since the learner only uses
constants bounded by m, and the speculated positive sample is
bounded by m as well, R is only learned when the threshold
m ≥ m0. Besides, Algorithm 2 only increases m when all
states s with ‖s‖ ≤ m has been tried and no recurrent set
with constants bounded by m exists. Then R must be learned
when m = m0.

Moreover, the number of semantically-distinct predicate
representable as boolean combination of a ≤ c, where c is
bounded by m, is finite. Whenever an invalid recurrent set
is learned, either a new sample is added by checking ϕ2

and ϕ3, or the current positive sample is labeled to negative.
Thus, the candidates returned by a learner are all semantically
distinct. Therefore, for each threshold m, only a finite number
of iteration is needed. This entails that R can be learned in
finite steps. Since Lemma 1 ensures the learner terminates,
The learning algorithm is guaranteed to terminate.

VI. EXPERIMENTS

We have implemented the Algorithm 1 in a prototype
tool called RSLEARN. It is based on the Boogie program
verifier [25] and its built-in Houdini invariant synthesis al-
gorithm [26]. The teacher is implemented by leveraging the
verification condition generator in Boogie and the learner
is based on the original ICE-DT learner [10], on top of
the classical C5.0 algorithm [23]. As a simple heuristic, we
follow [10] and use a fixed sequence 2, 4, 8,∞ as the bound in
counterexample generation, since the constants in a recurrent
set tend to be small. We also implement the generalization
method in Section IV-C with D = {0, 1, . . . 10, 20}.

As is pointed out in Section II, closed recurrent set is not
complete for programs with non-determinism in the loop. We
under-approximate these programs before learning, by taking
every non-deterministic assignment x := nondet() as skip,
i.e., keeping only x’s original value. This simple heuristic
helps handle trivial non-deterministic programs.

The attributes used for decision tree learning are config-
urable, and we use the octagonal domain (i.e. ±x±y for every
pair of variables x, y in the program), plus the simple attribute
x for each variable x. While using more complex attributes is
possible and necessary for proving non-termination of certain

programs, these attributes are sufficient for most cases in the
benchmark.

In the subsections below, we evaluate RSLEARN on public
benchmarks. Since RSLEARN takes a Boogie program as
input, we translate the C benchmarks to Boogie beforehand.
The parsing time difference is negligible. The experiments are
all carried out on an Intel® Core™ i5-10400 @ 2.90GHz CPU
with 16GB memory, and the timeout is set to 60 seconds. All
tools are run in single thread.

A. Evaluation on Linear Programs

To evaluate the efficacy of RSLEARN, we compare it with
ULTIMATE [3], [27], a state-of-art program analysis suite that
integrate several non-termination analysis methods like [28]
into its trace abstraction framework, VERYMAX [18], a con-
ditional termination prover that utilize Max-SMT for proving
termination and non-termination [6], and REVTERM, a recent
non-termination analysis tool that reduces non-termination
proving to invariant generation by program reversal [8] and
has strong guarantee for relative completeness.

We use the current benchmark from the category C-Integer
Programs of the Termination and Complexity Competition
(TermComp [29]). All programs in this benchmark are con-
sidered, including 111 non-terminating programs, 223 ter-
minating programs, and one program whose termination is
unknown (Collatz’s Conjecture). These programs have only
linear assignments, but several of them contain non-linear
guard expression and complex control flows. While it is
focused on proving non-termination, we run RSLEARN on
terminating cases to validate the soundness of Algorithm 1.

REVTERM is parameterized and requires specifying several
configurations like template size and polynomial degree. We
use the best configuration reported in the experiments of [8],
obtained by running all configurations exhaustively. It thus
varies for different cases. Since we are unable to retrieve the
commercial solver Barcelogic [30], we use MathSAT5 instead.
Other tools are run in their default settings.

The experimental results are shown in Table I. It demon-
strates the number of cases solved by each tool, and the num-
ber of unique cases solved. We report the average and standard
deviation of running time on all successfully solved cases by
each tool, and on non-terminating cases. For RSLEARN, we
also report how many times the learner is invoked, which
represents the number of iterations the learning takes.

Table I shows the efficacy of RSLEARN on non-termination
proving, as it solves more non-terminating cases than other
tools, and is able to solve three cases that no other tools can.
The three uniquely solved cases are all programs with non-
linear guard expression, which is easily handled by our black-
box learning algorithm.

The solved number by REVTERM is comparable to ours, but
this requires running REVTERM on each configuration, and
taking the best configuration for each case in the benchmark.
As is pointed out in [8], this is not a practical and optimal
strategy. VERYMAX is the closest to our tool in terms of non-
terminating cases solved, but the average time spent on non-

TABLE I: Evaluation of RSLEARN and other tools on the TermComp
benchmarks. The rows NO/YES/UNKNOWN contains the total num-
ber of cases each tool proves non-terminating, terminating, or fails to
give an answer. Unique NO contains the number of non-terminating
cases only solved by this tool.

ULTIMATE VERYMAX REVTERM RSLEARN

NO 98 103 101 108 (1092)
YES 201 213 0 9
UNKNOWN 36 19 234 217
Unique NO 0 0 0 3
Average Time 4.07s 3.62s 1.54s 0.87s
Standard Deviation 2.42s 7.22s 6.76s 1.24s
Average Time (NO) 3.68s 10.32s 1.54s 0.87s
Standard Deviation (NO) 2.65s 9.35s 6.76s 1.28s
Average Calls to Learner - - - 17.9

terminating programs (10.32s) are much higher than that spent
on all cases (3.62s).

In terms of performance, our tool is the most efficient,
taking only 0.8s on average, which is 5x, 4.4x and 1.9x
faster compared to ULTIMATE, VERYMAX and REVTERM
respectively. The average number of calls to the learner needed
is 18 times, and in most cases, a recurrent set can be learned
in a few steps. The scatter-plot in Figure 6 compares the time
taken in more details. It can be seen that RSLEARN runs faster
than ULTIMATE and VERYMAX on most of the cases. On
simple cases where both tools can solve very efficiently (<1s),
RSLEARN is slightly slower than REVTERM, but RSLEARN
performs better on more difficult cases.

While Algorithm 1 can return T to indicate termination,
RSLEARN is not a tool designed for proving termination.
It is able to prove 9 of the terminating cases, which are
all simple ones where the natural loops in the programs
are unreachable. Integrating a data-driven termination analysis
algorithm (e.g. [31]) into our tool would be considered a
future work. Nevertheless, no false positive is found in the
experiments, showing the soundness of the algorithm.

B. Evaluation on non-linear Programs

By following the black-box learning paradigm, our algo-
rithm should be able to prove non-termination of non-linear
programs efficiently. To show how RSLEARN performs on
non-linear programs, we further evaluate our tool on the
benchmark used to evaluate ANANT [7], which contains 29
non-linear non-terminating programs. This benchmark was
later converted to C format and used for evaluating DYNA-
MITE [32]. Without using over-approximation, these programs
are hard to deal with for typical white-box approaches.

We run RSLEARN along with VERYMAX, ULTIMATE and
REVTERM on this set of non-linear programs and compare
with their white-box approaches. The experimental results are
shown in Table II. Since ULTIMATE is a practical termination
analysis tool, it is able to solve 13 of the cases. On the other
hand, RSLEARN is able to solve 28 out of 29 programs,
and only fails a case (p10.c) due to non-determinism in
the program, while VERYMAX and REVTERM struggles and

solves only 2 and 0 cases, respectively. This shows the
advantage of adopting black-box methods.

In terms of runtime performance, RSLEARN solves these
cases very efficiently, and only take 12 iterations on average
to synthesize a recurrent set. The average running time of
RSLEARN is 0.46s, which is an order of magnitude faster than
ULTIMATE and VERYMAX, and all cases are solved within
one second.

We note that in [32], DYNAMITE is only able to solve
19 cases in 400 seconds. This shows the performance ad-
vantage of our static methods and learning-based approach,
compared to DYNAMITE’s approaches using dynamic execu-
tion. Besides, in [7] the tool ANANT, which the benchmarks
are designed for, only solves 25 cases in 600 seconds, and
RSLEARN runs much faster than ANANT on some cases with
speedup up to 663x (p18.c). We believe this is due to the fact
that ANANT must exhaustively extract lasso-shaped trace from
the program, and then apply Farkas’ Lemma for synthesizing
a recurrent set, which does not scale well to the program size.

C. Evaluation on Large-Scale Programs

To evaluate the scalability of our method, we further col-
lected three large programs from the Sequential Reachability
category of the competition Rigorous Examination of Reactive
Systems (RERS) 2018 [33]. These programs describe typi-
cal reactive systems such as web services, decision support
systems, or logical controllers, and contain Event-Condition-
Action (ECA) loops that do not terminate. We run all the tools
on them and summarize the results in Table III

RSLEARN is able to prove two of the programs while
ULTIMATE is able to prove one. VERYMAX and REVTERM
both fail on all cases. For the smallest case, Problem10.c,
RSLEARN is much faster than ULTIMATE. Note that the
largest program contains 664K LOC, and is beyond the
capabilities of all the tools. For RSLEARN, we observe that
as the program size grows, much more time is spent on

2The program Overflow.c is specially crafted so that it does not
terminate due to overflow. RSLEARN is based on Boogie which considers
fixed-width integer, and other tools does not. Thus, their results on this case
are different.

10−1 100 101
10−1

100

101

VERYMAX

R
S

L
E

A
R

N

10−1 100 101
10−1

100

101

ULTIMATE

R
S

L
E

A
R

N

10−1 100 101
10−1

100

101

REVTERM

R
S

L
E

A
R

N

Fig. 6: Running time (s) of RSLEARN on non-terminating cases, compared with other tools. Cases that timeout count as 60s.

TABLE II: The results of running RSLEARN, VERYMAX,
ULTIMATE and REVTERM on the benchmark of non-linear
programs in [7]. The timeout is set to 60 seconds for all tools.

Benchmark RSLEARN VERYMAX ULTIMATE REVTERM

p1 0.36s × 5.79s ×
p10 × × × ×
p11 0.45s × × ×
p12 0.71s × 3.38s ×
p13 0.41s × × ×
p14 0.38s × × ×
p15 0.47s × × ×
p16 0.38s × 3.22s ×
p17 0.36s × 3.20s ×
p18 0.36s × 2.76s ×
p19 0.38s × × ×
p2 0.46s × 2.96s ×
p20 0.49s × × ×
p2a 0.49s × 2.85s ×
p3 0.39s × × ×
p4 0.48s × × ×
p5 0.49s × × ×
p6 0.94s × 2.80s ×
p7 1.05s × 2.75s ×
p8 0.38s 4.15s 2.73s ×
p9 0.39s 2.36s 2.34s ×
pfactorial 0.40s × × ×
pinteger_log 0.36s × × ×
pinteger
_log_mul 0.36s × × ×
plasso_
example1 0.36s × 2.79s ×
plasso_
example2 0.46s × 3.22s ×
plasso_
example3 0.44s × × ×
pnCr_
combination 0.36s × × ×
ppower 0.39s × × ×

Total Solved 28 2 13 0

Average 0.46s 3.26s 3.14s -
Std. Deviation 0.16s 1.26s 0.85s -

generating verification condition and SMT solving. Since we
use octagonal domain, the number of atomic predicates is
quadratic to the number of variables. When running RSLEARN
on Problem16.c, the decision tree learner has to choose from
hundreds of thousands of predicates and takes up most of the
running time. Overall, this shows non-termination analysis is
still challenging since termination is generally undecidable,

TABLE III: The results of running RSLEARN, ULTIMATE,
VERYMAX and REVTERM on three large-scale programs from
RERS 2018. Timeout is set to 6 hours and max heap size is
256GiB.

Program10.c Program13.c Program16.c

Number of Variables 30 301 986
Number of Functions 159 595 986
LOC (in C) 1253 118009 664167
RSLEARN 0.623s 500.214s Timeout
ULTIMATE 461.719.s OutOfMemory OutOfMemory
VERYMAX Error Error Error
REVTERM Error Error Error

but our method can scale to large and complicated cases.

VII. RELATED WORK

Termination Analysis

A long line of work is focused on proving termination of
programs, and we refer the reader to [34] for a summary
of earlier termination proving techniques. In the last two
decades, termination analysis remains an active research topic,
and many practical tools emerge, including APROVE [1],
ULTIMATE [3], HIPTNT+ [35] and 2LS [4].

The typical method for proving termination is to synthe-
size a ranking function by constraint solving [36]. This has
been widely studied as complete methods for synthesizing
different classes of ranking function, including linear [37],
lexicographic [38], [39], and polynomial [40] ones exist.

A recent trend of termination analysis is to make use of
learning-based technique for synthesizing ranking functions.
Most of these works follow the “guess-and-check” paradigm
by first obtaining a likely termination argument, and then
employing an off-the-shelf checker to validate it. Among
these work, some are based on white-box methods, including
template-based synthesis [41], [18]. Others utilize black-box
methods. For example, [42] uses syntax-guided synthesis to
generate candidate ranking function from a grammar. Other
works adopt machine learning models such as linear regres-
sion [12], [31], decision tree [13], support vector machine [14],
[15] and neuron network [16], [17].

Non-termination Analysis

Proving non-termination is studied as the counterpart of
termination analysis. Since originally proposed in [5], the stan-
dard method of non-termination analysis is to find a recurrent
set. In [21], the variant of closed recurrent set is proposed.
Similar to loop invariant, recurrent set can be regarded as a
predicate satisfying certain requirements. White-box synthesis
techniques are thus widely used for proving non-termination,
including [7], [6], [8], [43], [44]. Notably, a recent work [8]
uses program reversal to reduce the problem to invariant
generation. Geometric non-termination arguments [28] is a
different model that can be synthesized by white-box method.

Only a few works have studied proving non-termination us-
ing “guess-and-check” paradigm. In [42] conjunctive recurrent
sets are inferred and refined exhaustively using syntax-guided
synthesis. [32] uses dynamic execution traces as samples, and
generates a candidate by using dynamic invariant inference
tools. Neither of these methods guarantees progress and con-
vergence of the algorithm. As far as we know, there is no non-
termination analysis method that is based on machine learning
techniques.

Black-Box Methods in Verification

Apart from the aforementioned applications in termination
analysis, black-box technique has been utilized mostly in
safety verification, where it is particularly adopted for invariant
synthesis. Daikon [45] pioneers this field by inferring conjunc-
tive invariants from dynamic tests. Houdini [26] improves the
algorithm and ensures the inductiveness of invariant. Learning
was introduced to verification explicitly in [46]. Later on,
Angluin’s L∗ algorithm for exact learning [47] is applied to
areas such as synthesizing assume-guarantee contracts [48],
[49], [50], error traces [51], or even models for neuron
networks [52].

There are abundant methods that can be adopted as a
learner, including decision tree [10], [53], [24], support vector
machine [54], [55], PAC learning [56], quadratic program-
ming [12], and neuron networks [57], [58], etc. Implicative
samples are introduced to learning in the ICE framework for
invariant generation [9], which are further extended to Horn
implicative samples [59].

VIII. CONCLUSION

In this paper, we propose a decision tree-based black-box al-
gorithm for learning recurrent set and proving non-termination.
The learning process is guided by speculated positive samples
and samples generated from counterexamples. The algorithm
is agnostic of the concrete program which allows synthesizing
complex recurrent set and proving non-termination of wide
classes of programs. We guarantee convergence of learning
by a bounded learning algorithm where a threshold is used
to bound both the teacher and learner. The method is imple-
mented in the tool RSLEARN, and we observe its efficiency
compared to state-of-the-art tools, as it solves more cases in
less time, and is able to handle non-linear programs with ease.

These results are promising as a first attempt to adopt black-
box learning into non-termination analysis.

ACKNOWLEDGEMENT

This work was supported in part by the National Nat-
ural Science Foundation of China (No. 62072267 and No.
62021002), and the National Key Research and Development
Program of China (No. 2018YFB1308601).

REFERENCES

[1] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thie-
mann, “Proving Termination of Programs Automatically with AProVE,”
in Automated Reasoning, ser. Lecture Notes in Computer Science,
S. Demri, D. Kapur, and C. Weidenbach, Eds. Cham: Springer
International Publishing, 2014, pp. 184–191.

[2] D. Beyer and M. E. Keremoglu, “CPAchecker: A Tool for Configurable
Software Verification,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, G. Gopalakrishnan and S. Qadeer, Eds.
Berlin, Heidelberg: Springer, 2011, pp. 184–190.

[3] M. Heizmann, J. Hoenicke, and A. Podelski, “Termination Analysis
by Learning Terminating Programs,” in Computer Aided Verification,
ser. Lecture Notes in Computer Science, A. Biere and R. Bloem, Eds.
Cham: Springer International Publishing, 2014, pp. 797–813.

[4] P. Schrammel and D. Kroening, “2LS for Program Analysis,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
Berlin, Heidelberg, Apr. 2016, pp. 905–907.

[5] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu, “Proving non-termination,” ACM SIGPLAN Notices, vol. 43, no. 1,
pp. 147–158, Jan. 2008.

[6] D. Larraz, K. Nimkar, A. Oliveras, E. Rodríguez-Carbonell, and A. Ru-
bio, “Proving Non-termination Using Max-SMT,” in Computer Aided
Verification, ser. Lecture Notes in Computer Science, A. Biere and
R. Bloem, Eds. Cham: Springer International Publishing, 2014, pp.
779–796.

[7] B. Cook, C. Fuhs, K. Nimkar, and P. O’Hearn, “Disproving termination
with overapproximation,” in 2014 Formal Methods in Computer-Aided
Design (FMCAD). Lausanne, Switzerland: IEEE, Oct. 2014, pp. 67–74.

[8] K. Chatterjee, E. K. Goharshady, P. Novotný, and Ð. Žikelić, “Proving
non-termination by program reversal,” in Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation, ser. PLDI 2021. New York, NY, USA: Association
for Computing Machinery, Jun. 2021, pp. 1033–1048.

[9] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A Ro-
bust Framework for Learning Invariants,” in Computer Aided Verifica-
tion, ser. Lecture Notes in Computer Science, A. Biere and R. Bloem,
Eds. Cham: Springer International Publishing, 2014, pp. 69–87.

[10] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants
using decision trees and implication counterexamples,” ACM SIGPLAN
Notices, vol. 51, no. 1, pp. 499–512, Jan. 2016.

[11] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “DistAI: Data-
Driven Automated Invariant Learning for Distributed Protocols,” in 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21), 2021, pp. 405–421.

[12] A. V. Nori and R. Sharma, “Termination proofs from tests,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2013. New York, NY, USA: Association
for Computing Machinery, Aug. 2013, pp. 246–256.

[13] S. Kura, H. Unno, and I. Hasuo, “Decision Tree Learning in CEGIS-
Based Termination Analysis,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, A. Silva and K. R. M. Leino, Eds.
Cham: Springer International Publishing, 2021, pp. 75–98.

[14] Y. Li, X. Sun, Y. Li, A. Turrini, and L. Zhang, “Synthesizing Nested
Ranking Functions for Loop Programs via SVM,” in Formal Methods
and Software Engineering, ser. Lecture Notes in Computer Science,
Y. Ait-Ameur and S. Qin, Eds. Cham: Springer International Publishing,
2019, pp. 438–454.

[15] Y. Yuan and Y. Li, “Ranking Function Detection via SVM: A More
General Method,” IEEE Access, vol. 7, pp. 9971–9979, 2019.

[16] M. Giacobbe, D. Kroening, and J. Parsert, “Neural termination analysis,”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2022. New York, NY, USA: Association for Computing
Machinery, Nov. 2022, pp. 633–645.

[17] W. Tan and Y. Li, “Synthesis of ranking functions via DNN,” Neural
Computing and Applications, vol. 33, no. 16, pp. 9939–9959, Aug. 2021.

[18] C. Borralleras, M. Brockschmidt, D. Larraz, A. Oliveras, E. Rodríguez-
Carbonell, and A. Rubio, “Proving Termination Through Conditional
Termination,” in Tools and Algorithms for the Construction and Analysis
of Systems, ser. Lecture Notes in Computer Science, A. Legay and
T. Margaria, Eds. Berlin, Heidelberg: Springer, 2017, pp. 99–117.

[19] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for
systems code,” ACM SIGPLAN Notices, vol. 41, no. 6, pp. 415–426,
Jun. 2006.

[20] Z. Kincaid, T. Reps, and J. Cyphert, “Algebraic Program Analysis,” in
Computer Aided Verification, ser. Lecture Notes in Computer Science,
A. Silva and K. R. M. Leino, Eds. Cham: Springer International
Publishing, 2021, pp. 46–83.

[21] H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. O’Hearn, “Proving
Nontermination via Safety,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, ser. Lecture Notes in Computer Science,
E. Ábrahám and K. Havelund, Eds. Berlin, Heidelberg: Springer, 2014,
pp. 156–171.

[22] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, Mar. 1986.

[23] ——, C4.5: Programs for Machine Learning, ser. The Morgan Kauf-
mann Series in Machine Learning. San Mateo, Calif: Morgan Kaufmann
Publishers, 1993.

[24] R. Xu, F. He, and B.-Y. Wang, “Interval counterexamples for loop
invariant learning,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, Nov. 2020, pp. 111–
122.

[25] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: A Modular Reusable Verifier for Object-Oriented Programs,”
in Formal Methods for Components and Objects, ser. Lecture Notes in
Computer Science, F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P.
de Roever, Eds. Berlin, Heidelberg: Springer, 2006, pp. 364–387.

[26] C. Flanagan and K. R. M. Leino, “Houdini, an Annotation Assistant
for ESC/Java,” in FME 2001: Formal Methods for Increasing Software
Productivity, J. N. Oliveira and P. Zave, Eds. Berlin, Heidelberg:
Springer, 2001, pp. 500–517.

[27] Y.-F. Chen, M. Heizmann, O. Lengál, Y. Li, M.-H. Tsai, A. Turrini, and
L. Zhang, “Advanced automata-based algorithms for program termina-
tion checking,” in Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2018.
New York, NY, USA: Association for Computing Machinery, Jun. 2018,
pp. 135–150.

[28] J. Leike and M. Heizmann, “Geometric Nontermination Arguments,” in
Tools and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, D. Beyer and M. Huisman, Eds.
Cham: Springer International Publishing, 2018, pp. 266–283.

[29] J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada, “The
Termination and Complexity Competition,” in Tools and Algorithms
for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, D. Beyer, M. Huisman, F. Kordon, and B. Steffen,
Eds. Cham: Springer International Publishing, 2019, pp. 156–166.

[30] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell, and
A. Rubio, “The Barcelogic SMT Solver,” in Computer Aided Verifica-
tion, ser. Lecture Notes in Computer Science, A. Gupta and S. Malik,
Eds. Berlin, Heidelberg: Springer, 2008, pp. 294–298.

[31] R. Xu, J. Chen, and F. He, “Data-Driven Loop Bound Learning for Ter-
mination Analysis,” in 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE), 2022, pp. 499–510.

[32] T. C. Le, T. Antonopoulos, P. Fathololumi, E. Koskinen, and T. Nguyen,
“DynamiTe: Dynamic termination and non-termination proofs,” Pro-
ceedings of the ACM on Programming Languages, vol. 4, no. OOPSLA,
pp. 189:1–189:30, Nov. 2020.

[33] “The RERS Challenge 2018,” http://www.rers-challenge.org/2018/.
[34] B. Cook, A. Podelski, and A. Rybalchenko, “Proving program termi-

nation,” Communications of the ACM, vol. 54, no. 5, pp. 88–98, May
2011.

[35] T. C. Le, S. Qin, and W.-N. Chin, “Termination and non-termination
specification inference,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’15. New York, NY, USA: Association for Computing Machinery,
Jun. 2015, pp. 489–498.

[36] J. Leike, “Ranking Templates for Linear Loops,” in Tools and Algorithms
for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, E. Ábrahám and K. Havelund, Eds. Berlin,
Heidelberg: Springer, 2014, pp. 172–186.

[37] A. Podelski and A. Rybalchenko, “A Complete Method for the Syn-
thesis of Linear Ranking Functions,” in Verification, Model Checking,
and Abstract Interpretation, ser. Lecture Notes in Computer Science,
B. Steffen and G. Levi, Eds. Berlin, Heidelberg: Springer, 2004, pp.
239–251.

[38] A. R. Bradley, Z. Manna, and H. B. Sipma, “Linear Ranking with
Reachability,” in Computer Aided Verification, ser. Lecture Notes in
Computer Science, K. Etessami and S. K. Rajamani, Eds. Berlin,
Heidelberg: Springer, 2005, pp. 491–504.

[39] L. Gonnord, D. Monniaux, and G. Radanne, “Synthesis of ranking
functions using extremal counterexamples,” ACM SIGPLAN Notices,
vol. 50, no. 6, pp. 608–618, Jun. 2015.

[40] E. Neumann, J. Ouaknine, and J. Worrell, “On Ranking Function
Synthesis and Termination for Polynomial Programs,” p. 15, 2020.

[41] C. Urban, A. Gurfinkel, and T. Kahsai, “Synthesizing Ranking Functions
from Bits and Pieces,” in Tools and Algorithms for the Construction
and Analysis of Systems, ser. Lecture Notes in Computer Science,
M. Chechik and J.-F. Raskin, Eds. Berlin, Heidelberg: Springer, 2016,
pp. 54–70.

[42] G. Fedyukovich, Y. Zhang, and A. Gupta, “Syntax-Guided Termination
Analysis,” in Computer Aided Verification, ser. Lecture Notes in Com-
puter Science, H. Chockler and G. Weissenbacher, Eds. Cham: Springer
International Publishing, 2018, pp. 124–143.

[43] M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl, “Automated Detec-
tion of Non-termination and NullPointerExceptions for Java Bytecode,”
in Formal Verification of Object-Oriented Software, ser. Lecture Notes in
Computer Science, B. Beckert, F. Damiani, and D. Gurov, Eds. Berlin,
Heidelberg: Springer, 2012, pp. 123–141.

[44] C. David, D. Kroening, and M. Lewis, “Unrestricted Termination and
Non-termination Arguments for Bit-Vector Programs,” in Programming
Languages and Systems, J. Vitek, Ed. Berlin, Heidelberg: Springer,
2015, pp. 183–204.

[45] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin, “Quickly
detecting relevant program invariants,” in Proceedings of the 22nd
International Conference on Software Engineering, ser. ICSE ’00. New
York, NY, USA: Association for Computing Machinery, Jun. 2000, pp.
449–458.

[46] J. M. Cobleigh, D. Giannakopoulou, and C. S. PĂsĂreanu, “Learning
Assumptions for Compositional Verification,” in Tools and Algorithms
for the Construction and Analysis of Systems, H. Garavel and J. Hatcliff,
Eds. Berlin, Heidelberg: Springer, 2003, pp. 331–346.

[47] D. Angluin, “Learning regular sets from queries and counterexamples,”
Information and Computation, vol. 75, no. 2, pp. 87–106, Nov. 1987.

[48] R. Alur, P. Madhusudan, and W. Nam, “Symbolic Compositional Ver-
ification by Learning Assumptions,” in Computer Aided Verification,
K. Etessami and S. K. Rajamani, Eds. Berlin, Heidelberg: Springer,
2005, pp. 548–562.

[49] F. He, B.-Y. Wang, L. Yin, and L. Zhu, “Symbolic assume-guarantee
reasoning through BDD learning,” in Proceedings of the 36th Inter-
national Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: Association for Computing Machinery, May 2014, pp.
1071–1082.

[50] F. He, S. Mao, and B.-Y. Wang, “Learning-Based Assume-Guarantee
Regression Verification,” in Computer Aided Verification, ser. Lecture
Notes in Computer Science, S. Chaudhuri and A. Farzan, Eds. Cham:
Springer International Publishing, 2016, pp. 310–328.

[51] M. Chapman, H. Chockler, P. Kesseli, D. Kroening, O. Strichman,
and M. Tautschnig, “Learning the Language of Error,” in Automated
Technology for Verification and Analysis, ser. Lecture Notes in Computer
Science, B. Finkbeiner, G. Pu, and L. Zhang, Eds. Cham: Springer
International Publishing, 2015, pp. 114–130.

[52] Z. Xu, C. Wen, S. Qin, and M. He, “Extracting automata from neural
networks using active learning,” PeerJ Computer Science, vol. 7, p. e436,
Apr. 2021.

[53] S. Krishna, C. Puhrsch, and T. Wies, “Learning Invariants using Decision
Trees,” arXiv:1501.04725 [cs], Jan. 2015.

[54] J. Li, J. Sun, L. Li, Q. L. Le, and S.-W. Lin, “Automatic loop-
invariant generation anc refinement through selective sampling,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017, pp. 782–792.

[55] R. Sharma, A. V. Nori, and A. Aiken, “Interpolants as Classifiers,” in
Computer Aided Verification, P. Madhusudan and S. A. Seshia, Eds.
Berlin, Heidelberg: Springer, 2012, pp. 71–87.

[56] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori, “Verifi-
cation as Learning Geometric Concepts,” in Static Analysis, F. Logozzo
and M. Fähndrich, Eds. Berlin, Heidelberg: Springer, 2013, pp. 388–
411.

[57] X. Si, H. Dai, M. Raghothaman, M. Naik, and L. Song, “Learning Loop
Invariants for Program Verification,” in Advances in Neural Information
Processing Systems, vol. 31. Curran Associates, Inc., 2018.

[58] J. Yao, G. Ryan, J. Wong, S. Jana, and R. Gu, “Learning nonlinear loop
invariants with gated continuous logic networks,” in Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2020. New York, NY, USA: Association
for Computing Machinery, Jun. 2020, pp. 106–120.

[59] P. Ezudheen, D. Neider, D. D’Souza, P. Garg, and P. Madhusudan,
“Horn-ICE learning for synthesizing invariants and contracts,” Proceed-
ings of the ACM on Programming Languages, vol. 2, no. OOPSLA, pp.
131:1–131:25, Oct. 2018.

