
VeRV : A Temporal and Data-Concerned
Verification Framework for the Vehicle Bus Systems

Shuo Zhang, Fei He and Ming Gu
Tsinghua National Laboratory for Information Science and Technology (TNList)

School of Software, Tsinghua University
Key Laboratory for Information System Security, Ministry of Education, China

zhangshuo12@mails.tsinghua.edu.cn, {hefei, guming}@tsinghua.edu.cn

Abstract—As a part of the international standard IEC 61375,
the multifunction vehicle bus (MVB) has been used in most
of the modern train control systems. It is highly desirable to
check the temporal properties of the data transmitted on the
bus. However, we are not aware of any published work on
this problem. We proposed VeRV , the first temporal and data-
concerned verification framework for the vehicle bus systems. A
domain-specific language, called VeSpec, is proposed to specify
the packet formats and the desired properties. The language is
expressive, modular and easy to use. Given a VeSpec script, the
VeRV allows automatic generation of runtime analyzer. We have
applied our technique to a real tube train system and succeeded in
diagnosing a real failure in this system. The industry application
illustrates the effectiveness and efficiency of our technique.

Keywords—Vehicle bus systems, runtime verification, domain-
specific language, onling monitoring

I. INTRODUCTION

The train communication network (TCN) was adopted in
1999 as the international standard (IEC 61375) [1], [2]. As
a part of the TCN, the multifunction vehicle bus (MVB)
interconnects on-board equipment in a vehicle. The MVB is
used in most of the modern train control systems.

The transmitted data in an MVB may contain information
of the connected equipment. For example, Fig. 1 (a) shows a
packet conveying values of three variables: vspeed standing for
the speed of the vehicle, vtemp representing the temperature
inside the vehicle, and bac indicating if the air condition in the
vehicle is turned on. One may want the following property to
hold: the air condition is turned on if the temperature is above
27◦C, and turned off if the temperature is below 23◦C, which
can be specified in temporal logic as:

[] ((vtemp > 27 ∧ bac) ∨ (vtemp < 23 ∧ !bac)),

where [] is the “always” temporal operator.

Fig. 1 (b) shows that two types of packets are transmitted
on the MVB, i.e., the master packets and the slave packets. It
is required that a slave packet must be preceded by a master
packet. In temporal logic, this property is expressed as:

[] (IsSlave → (*) IsMaster),

where IsSlave and IsMaster are two predicates indicating that
the packet is a slave (resp. master) frame, and (*) is the “in the
previous” temporal operator. Note that this property involves
two sequential packets transmitted on the bus.

2 4 6 8 0

bac

vtemp

vspeed

Slave Start Delimiter

(a) Example of Packet Data

MVB

Slave Master

(b) Packet Sequence

Fig. 1: Packets Transmitted On the MVB

The third example lies in the failure prediction of the train
control system. Consider that many sensors are connected by
the MVB to a central controller in the vehicle, these sensors
are responsible to periodically report their detected data to the
controller. If certain data (for example the temperature data)
has not been reported for a long time, we can infer that the
corresponding sensor (i.e., the temperature sensor) may has
gotten wrong.

For all of the three above examples, a monitor or a runtime
analyzer is highly desired, with which we can record the values
of related variables and check the above data-concerned1 prop-
erties at runtime. Note that in many complicated situations,
these properties involve not only the data conveyed in the
current packet, but also those conveyed in previously received
packets, i.e. they are temporal properties.

We are unaware of any work that checks the temporal and
data-concerned properties for the MVB systems. There are a
wide variety of works in network analysis [3], [4]. However,
these techniques are mostly applicable to the Internet. And
these techniques mainly concern the communication protocol
but not the transmitted data. Thus, these techniques cannot be
directly applied to our problem. On the other side, there are
some commercial products [5]–[8] for analyzing the MVB.
However, all these products focus on testing or simulation of
the MVB. They cannot handle temporal properties at runtime.

1By data-concerned, we mean the data conveyed in the packets are of
concern.

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 1167

According to the standard [1], the MVB employs the real-
time protocols (RTP) for data communication. Two classes
of data are transmitted in the MVB: the time-critical and
short process data, and the less urgent but perhaps lengthy
message data. We focus on the process data which is more
critical for the train control system. From the standard we have
learned that the transmission of process data has following
characteristics:

1) the process data is broadcast to all devices on the
same bus;

2) the process data is transmitted cyclically at a fixed
period;

3) the format of packets (including the start position and
occupied length of each process data) is statically
configured before operation.

With these characteristics, extracting process data automati-
cally from the packets is possible.

We present VeRV , a temporal and data-concerned verifica-
tion framework for the MVB, in this paper. It combines formal
method and network analysis to verify temporal properties
at runtime. In general, VeRV involves extracting process
data from the packets, recognizing events from their value
changes and checking properties by a verification engine.
VeRV allows automatic generation of runtime analyzer. It
uses the VeSpec language to describe the packet formats and
specify the desired properties. VeSpec employs the past time
linear temporal logic (ptLTL) [9] [10] to specify the properties.
The language is expressive, modular and easy-to-use. One can
express properties in a modular way.

The main technical contributions of this paper are summa-
rized as follows:

• We present the first temporal and data-concerned
analyzer for the MVB.

• We present a domain-specific language for specifying
packet formats and temporal properties of the MVB.

• We have applied our technique to a real tube train
system and succeeded in diagnosing a real failure in
this system.

The rest of the paper is organized as follows. We first give
a brief introduction to multifunction vehicle bus in section
II. Then some preliminaries and definitions are presented
in section III. The main work flow of VeRV is elaborated
in section IV. And the VeSpec language is introduced in
section V. Section VI shows our experiments on a real tube
train system and illustrates the effectiveness of VeRV . Finally,
we introduce related works in section VII and conclude this
paper in section VIII.

II. MULTIFUNCTION VEHICLE BUS

In this section, we briefly introduce the multifunction
vehicle bus (MVB) which is a part of the train communication
network [1].

According to the standard [1], a TCN is composed of two
buses, a multifunction vehicle bus (MVB) and a wire train bus
(WTB), where the MVB works for interconnecting the on-
board equipment in one vehicle, and the WTB is responsable

AC alarm

light brake

WTB

MVB

Fig. 2: The multifunction vehicle bus

Packet Data

Master Start Delimiter Check Sequence Address Fcode

(a) Master Packet

Packet Data Slave Start Delimiter Check Sequence

(b) Slave Packet

Fig. 3: Packet Formats in the MVB

for interconnecting the many vehicles in a train. Fig. 2 shows
a typical TCN system, where two vehicles are connected by a
WTB and the devices in each vehicle is interconnected by an
MVB. The devices connected by an MVB include the brake
subsystem, the central controller, the air conditions, the lights,
alarms, etc.

Two kinds of devices are recognized by an MVB: the
master device and the slave devices. On an MVB, there is one
and only one master device, and there are number of slave
devices. The master device coordinates the communication on
the MVB by sending the master packet periodically. A master
packet contains requests for some data, and is broadcasted to
all devices on the bus. The (only) slave device which maintains
the requested data responses by a slave packet. This slave
packet contains the current value of the requested data. It is
also broadcasted to all devices on the bus, but only devices
that subscribes to this data will receive it.

Fig. 3 show the formats of these two kinds of MVB
packets. Both of them consist of three parts: the start delimiter,
the packet data and the check sequence. The start delimiter
indicates the start of a particular type of packet. The check
sequence is used to check if there is any error during the
transmission. The packet data in a master packet consists of
two parts: the Fcode field that specifies the functionality of
this packet and the Address field which tells the identifier of
the requested data. If the value of the Fcode is between 0 and
4, this packet is used for requesting a process data. The packet
data in a slave packet contains the requested data.

Before the train is started up, the MVB must be statically
configured on following items: (1) which data are requested
by the master device in each period; (2) which slave devices
receive the requested data. (3) usually a slave packet contains
a set of data, the format of these data in a slave packet is also
statically configured. Fig. 1 (a) shows an example of the slave
packet.

2015 IEEE Conference on Computer Communications (INFOCOM)

1168

III. DEFINITIONS

In this section, we present important definitions used in the
paper.

Let X be the set of typed variables in a MVB system. For
any x ∈ X , denote T (x) the type of x. Three basic data types
are supported in VeRV , i.e., Integer ,Boolean , and String .
For example, the type of vspeed in Fig. 1 is Integer .

Each variable in X represent a process data maintained
by certain device in the system. Each time there comes a
packet, the conveyed process data in the packet are extracted
and assigned to the corresponding variables in X . Note that a
packet may not convey all process data in the system. Given a
packet ξ, denote Xξ ⊆ X the subset of variables whose data
are conveyed in ξ. If a process data is not conveyed in the
current packet, the corresponding variable keeps its original
value.

Definition 1 An MVB packet ξ is a full assignment to X , such
that ξ(x) is the data conveyed in the packet if x ∈ Xξ, and
ξ(x) = x otherwise.

At any time there is at most one packet being transmitted
on the MVB. We call the packet currently being transmitted the
current packet, and the packets already transmitted the history
packets. In many cases, we need to know not only the data in
the current packet, but also the data in the history packets.

Let Xh be the set of history variables. For any history
variable xh ∈ Xh, there is a variable x ∈ X , such that either
(1) xh is a copy of x and refers to the value of x in a history
packet, or (2) xh is a statistical variable based on the values
of x in a number of history packets. Note that there may be
more than one history variables in Xh corresponding to the
same variable x in X .

Example 1 Consider the packet example in Fig. 1, assume
that we want to know the speed data in the latest packet, a
history variable named vhlatest speed is then used to record this
data. We cannot use the variable vspeed since it has already
been used to record the speed in the current packet. If we
want to know the number of all processed packets, we can use
another history variable vhcount.

Definition 2 An MVB event p is a Boolean expression on X∪
Xh. We call the MVB event p happens in the packet ξ if the
value of p is true with the assignment of ξ, i.e., p(ξ) = true.

Note that multiple Boolean expressions may be evaluated
true by the assignment of a packet. In other words, more than
one events may happen in a packet. Let AP be a finite set of
all events that we are concerned about in the system. The
concerned events AP may not involve all variables in X . Let
XAP be the set of all variables occurring in any event of AP ,
called the support of AP . Obviously XAP ⊆ X ∪Xh.

Definition 3 Let Σ = 2AP be the alphabet, a finite MVB trace
is a finite sequence a1a2 · · · an, where ai ∈ Σ for 1 ≤ i ≤ n.
An infinite MVB trace is a infinite sequence a1a2 · · · , where
ai ∈ Σ for i ≥ 1. Denote the set of all finite MVB traces by
Σ∗, and the set of all infinite MVB traces by Σω .

For any a ∈ Σ, a is a subset of AP, i.e. a subset of events.
In other words, an MVB trace is a sequence of set of events.

Let ∅ be the empty set of events, apparently ∅ ∈ Σ.

Example 2 Consider the packet in Fig. 1, assume we are
interested in the set of following events:

NoSpeed := (vspeed = 0)

HighSpeed := (vspeed ≥ 120)

NormalSpeed := (vspeed > 0 ∧ vspeed < 120)

HighTemp := (vtemp > 27)

LowTemp := (vtempe < 23)

NormalTemp := (vtemp ≤ 27 ∧ vtemp ≥ 23)

AcOn := (bac = 1)

AcOff := (bac = 0)

The support of above events is {vspeed, vtemp, bac}. Each time
a packet comes, we extract the values of these three variables
and evaluate above Boolean formulas. After processing the
packet, we get a set of happened events. Assume the values in
the current packet are:

vspeed = 100, vtemp = 28, bac = 1

Then the set of happened events is

{NormalSpeed ,HighTemp,AcOn}
As the packet comes ever and again, we may get a MVB
trace like: {NormalSpeed ,HighTemp,AcOn}, {HighSpeed ,
LowTemp, AcOff }, {HighSpeed , NormalTemp, AcOn}, . . .

Definition 4 An MVB property is a function ϕ : Σ∗ →
{validation, violation, unknown} mapping each MVB trace
to one of these three labels: validation , violation and
unknown [11].

A property can also be regarded as a classifier that parti-
tions a set of MVB traces into three groups: the validation
traces, the violation traces and the unknown traces.

Example 3 Consider a property: the train should never run
at a speed over 120 km/s. This property can be described as:
there is no HighSpeed event in any MVB trace. Given a finite
MVB trace ω∗ = a1a2 · · · an, the trace is classified as follows:
if there is an integer k (1 ≤ k ≤ n) such that HighSpeed ∈
ak, ω∗ is recognized as a violation trace; otherwise, it is
recognized as an unknown trace. Note that for this (safety)
property, ω∗ will never be recognized as a validation trace.
Because even the HighSpeed event has not happened in all
encountered packets in ω∗, it is still uncertain whether this
event will happen in a future packet.

To formally specify the MVB properties, we employ the
past time linear temporal logic (ptLTL) [9] [10]. We survey
the syntax and semantics of ptLTL in the following.

Definition 5 (Syntax of ptLTL) Let p ∈ AP , a ptLTL for-
mula ϕ is inductively defined as follows:

ϕ ::= true | p | ! ϕ | ϕ1 ∨ ϕ2 | ϕ1Uϕ2 | () ϕ | (∗)ϕ | ϕ1Sϕ2

where U, S, (), (∗) stands for the “until”, “since”, “next” and
“previous” temporal operators respectively.

For convenience, we also use the temporal operators of
<>, [], <∗>, [∗] to represent “eventually”, “always”, “even-
tually in the past”, “always in the past” respectively.

2015 IEEE Conference on Computer Communications (INFOCOM)

1169

Definition 6 (Semantics of ptLTL) Let ω = a0a1 · · ·
be an infinite MVB trace and i an integer, denote
ωi = aiai+1 · · · the suffix of ω from the position
i. The relation of ω, i |= ϕ, i.e., the ptLTL for-
mula ϕ holds for ωi, is inductively defined as follows:
ω, i |= true
ω, i |= ! ϕ iff ω, i � ϕ
ω, i |= p iff p ∈ ai
ω, i |= ϕ1 ∨ ϕ2 iff ω, i |= ϕ1 or ω, i |= ϕ2

ω, i |= ϕ1Uϕ2 iff ∃k � i with ω, i |= ϕ2, and
∀i � l < k with ω, l |= ϕ1

ω, i |= ()ϕ iff ω, i+ 1 |= ϕ
ω, i |= ϕ1Sϕ2 iff ∃0 � j � i with ω, j |= ϕ2, and

∀j < k � i with ω, k |= ϕ1

ω, i |= (∗)ϕ iff ω, i− 1 |= ϕ

Moreover, we say ω |= ϕ iff ω, 0 |= ϕ. And we say two
ptLTL formulas ϕ1 and ϕ2 are equivalent, written ϕ1 ≡ ϕ2,
if for any trace ω, ω |= ϕ1 holds if and only if ω |= ϕ2 holds.

Example 4 The property in Example 3 can be rewritten in
ptLTL as:

[](not HighSpeed).

In the following, we discuss how does a finite MVB trace
by classified by a ptLTL formula [12].

Definition 7 Given a finite MVB trace ω∗ = a1a2 · · · an and
an infinite MVB trace ω = b1b2 · · · , we say ω is an extension
of ω∗ if ai = bi holds for 1 ≤ i ≤ n. Denote E (ω∗) the set
of all extensions of ω∗.

Definition 8 Given a finite MVB trace ω∗ and a ptLTL for-
mula ϕ, ω∗ is classified by ϕ

1) as a validation trace, if ∀ω ∈ E (ω∗), ω |= ϕ;
2) as a violation trace, if ∀ω ∈ E (ω∗), ω �|= ϕ;
3) as an unknown trace, otherwise.

Given a ptLTL formula ϕ, we can generate an equivalent fi-
nite automaton, called the monitor automaton, such that a trace
ω |= ϕ if and only if ω is accepted by this automaton [11].
Then we use this automaton to monitor the data transmitted
on the MVB.

Definition 9 A monitor automaton is a five-tuple M =
(S, s0,ΣM , σ, γ), where

• S is the set of states,

• s0 ∈ S is the initial state,

• ΣM is the alphabet of M ,

• σ : S × ΣM → S is the transition function, and

• γ : S → {validation, violation, unknown} is the
output function.

A monitor automaton can be represented as a state graph
in a usual way. To distinguish the outputs of states, we
use triple-circle nodes, double-circle nodes and single-circle
nodes to depict the validation , violation and unknown states,
respectively.

Example 5 The monitor automaton for the property in Ex-
ample 4 is shown in Fig. 4, where S = {s0, s1}, ΣM =

s0 s1
{ HighSpeed }

, { HighSpeed }

Fig. 4: An monitor automaton example

{∅, {HighSpeed}}, σ is shown in the figure, and γ(s0) =
unknown, γ(s1) = violation . Note that the only involved event
in this property is HighSpeed . In other words, we have no need
to identify all other events. If the event HighSpeed happens,
we take the transition labelled with {HighSpeed}, otherwise
we take the transition labelled with ∅.

IV. WORK FLOW OF OUR APPROACH

Our VeRV aims at runtime verification of the MVB. To use
the VeRV , we first specify the packet format and the desired
properties in our VeSpec language, then a monitor will be
automatically generated by the engine of VeRV in a similar
way as in [11]. The VeSpec language will be introduced in
the next section. This section focuses on the work flow of the
generated monitor.

As shown in Fig. 5, the generated monitor works in
following three steps:

• Packet parsing. In this step, the values of all relevant
variables are extracted from the packet. The relevant
variables are specified in the VeSpec script and the
packet parser can be generated automatically by our
engine.

• Events recognizing. With the values of relevant vari-
ables, we check if there are any events happened in the
current packet by evaluating the Boolean formula for
each event. Here we do not need to check all events,
instead we check only the events that are relevant to
the desired property.

• Property checking. Let M be the monitor automaton
of the desired property. Assume the automaton is cur-
rently on the state s. Given the set of happened events,
we now decide which transition can the automaton
take from s. If there is any transition which leads the
automaton to a violation state or a validation state,
we say the property is violated or validated by the
trace. The monitor should report a warning massage
or a confirmation message to the user. Otherwise, the
trace is classified as unknown .

Above work flow repeats when here comes another packet.

Example 6 Consider the monitor automaton in Fig. 4, the
process of checking the corresponding property is shown in
Fig. 6. The coming packet is shown in the left upper corner
of the same figure. Here the only relevant variable for the
property is vspeed. In the packet parsing step, we extract only
the value of vspeed, which gives 110. Note also that the only
relevant event for the property is HighSpeed . Thus in the events
recognizing step, we need to evaluate the Boolean formula of
HighSpeed only, whose value gives false. Therefore the set of
happened events is empty. Assume the automaton (Fig. 4) is in
the state of s0 at present. With the empty set of happened events

2015 IEEE Conference on Computer Communications (INFOCOM)

1170

packet

bus

device 1 device N Monitor

vars events verdicts Parser Event
Recognizer

Property
Checker

Fig. 5: The work flow of a monitor

2 4 6 8 0

0

31

110
Slave Start Delimiter

(1)
Packet parsing

Vspeed = 110

HighSpeed = false

(2) Events recognizing

(3) Property checking

unknown

Fig. 6: The process of checking the example property

∅, the automaton can only take the self-transition. Note that
s0 is an unknown state, the current trace is thus recognized
as an unknown trace.

V. VeSpec LANGUAGE

To achieve a general solution to the runtime verification
of ptLTL properties, we design a language, named VeSpec,
for describing variables, events and temporal properties in the
MVB system. With a script written in VeSpec, we are able
to generate the corresponding monitor automatically using the
VeRV engine, in a similar way as in [11].

We design the language with the following characteristics:
compactness, expressiveness, reusability and maintainability.
Note that the testing engineers in train industry usually have
little programming experience, the specification language thus
should be easy to use. Moreover, the language should also
be expressive enough to describe various properties. And
the specifications should be reusable for different runtime
analyzers of the same MVB system.

Fig. 7 shows the syntax of VeSpec language. The syntax is
given in Backus-Naur Form (BNF), where each non-terminal
is a constructor enclosed between the pair “<” and “>”. A
non-terminal is composed of one or several sub-constructors.
Multiple choices in an expression are separated by the operator
“|”. A set of optical choices are surrounded by “[” and “]”.
And if an item appears zero or more times, it is enclosed by
“{” and “}”.

A. Specification

The top element of VeSpec is the specification entry. Each
VeSpec script contains exactly one specification constructor. A
specification constructor starts with its name – spec-identifier.
Following the name, two parameters are used to specify the

<specification> ::= <spec-identifier>
 (<packet-name> , <packet-length>) {
 <packet-types>
 <vars>
 <history-vars>
 <events>
 <properties>
 }
<packet-types> ::= PacketTypes = <packet-type-name>
 { | < packet-type-name>} ;
<vars> ::= Vars { { <vars-packet> } }
<vars-packet> ::= Shared { {<variable>} "}
 | <packet-type-name> { {<variable>} "}
<variable> ::= <var-identifier> { <var-type> <var-extract-rule> }
<var-extract-rule> ::= <var-start-pos> <var-length>

| <var-update>
<var-type> ::= Type: <basic-data-type> ;
<var-start-pos> ::= StartPos: <integer> ;
<var-length> ::= Length: <integer> ;
<var-update> ::= Update { <code-segment> }
<history-vars> ::= HistoryVars { {<history-variable>} }
<history-variable> ::= <var-identifier>
 { <var-type> <var-initiation> <var-update> }
<var-initiation> ::= Initiate: <basic-type-value> ;
<events> ::= Events { {event} }
<event> ::= <event-identifier> = <boolean-expression> ;
<properties> ::= {<ptltl-property> { <handler> } }
<handler> ::= @ <handler-type> "(<focused-events>)
 { <code-segment> }
<handler-type> ::= violation | validation" | unknown
<focused-events> ::= <event-identifier> { | <event-identifier>}

| *
<basic-date-type> ::= Integer | String | Boolean
 | Integer[] | String[] | Boolean[]
<basic-type-value> ::= <!-- Java Value of Basic data type -->
<spec-identifier> ::= <!-- Java Identifier -->
<packet-name> ::= <!-- Java Identifier -->
<packet-length> ::= <!-- Java Integer Value -->
<packet-type-name> ::= <!-- Java Identifier -->
<var-identifier> ::= <!-- Java Identifier -->
<integer> ::= <!-- Java Integer Value -->
<code-segment> ::= <!-- Java Statements -->
<event-identifier> ::= <!-- Java Identifier -->
<boolean-expression> ::= <!-- Java Boolean Expression -->
<ptltl-property> ::= <!-- ptLTL formula -->

Fig. 7: Syntax of VeSpec

current packet: the packet-name and the packet-length. Note
that the packet-length gives the number of bytes contained in
this packet. These two parameters can be used in code-segment
to define variables. For short, we use data and length to denote
these two parameters.

In VeSpec, a specification is composed of four parts: packet
types, variables, events and properties. We discuss each of
them in the following.

B. Packet Types

We use a packet-types constructor to express all types of
packets transmitted in the system. Each packet-types contains
one or several packet-type-names. A packet-type-name is a
string identifying a packet type.

2015 IEEE Conference on Computer Communications (INFOCOM)

1171

In different vehicle bus networks, the types of transmitted
packets may be different. In a MVB system, there are two
types of packets: the Master packet and the Slave packet. The
packet types for the MVB are thus defined like this:

PacketType = Master | Slave.

C. Variables

Variables are described in the constructor of vars. Given
two packets ξi and ξj which are of different types, Xξi = Xξj
may not hold. In other words, the sets of variables whose data
are conveyed in ξi and ξj may not be the same. We define
Xξ for each type of packets in the vars-packet constructor.
A vars-packet has an identifier packet-type-name and several
variables. If some variables are shared by packets of all types,
the keyword Shared is used as their packet-type-name.

A variable is described in a variable constructor, which is
constituted of a var-identifier, a var-type and a var-extract-rule.
Three basic data types, i.e., Integer ,String and Boolean , and
their array versions, i.e., Integer [], String [] and Boolean[], are
supported in VeRV . The constructor var-extract-rule is used
to specify how to extract the value of this variable from a
packet.

VeRV provides two approaches to extract variables from
the packets. One is called the direct method, which uses var-
start-pos and var-length to indicate the start position and the
occupied bits of the variable in the packet. Consider the packet
as a bit vector, this value can be directed accessed from the
packet. The other approach utilizes the var-update constructor
which is constituted of a segment of Jave codes, to express the
extraction rule. If both approaches are defined, VeRV chooses
the indirect approach by default.

Consider the example in Fig. 1, to specify the variables
configured in this packet, we may use the following script:

Vars{
 Slave{
 speed{ }
 temperature{ }
 flag{ }
 }
 Master{ }
}

The value of vspeed is configured in the second byte of the
packet. The following script illustrates the difference between
these two extraction approaches:

speed{
 Type: Integer;
 StartPos: 8;
 Length: 8;
}

speed{
 Type: Integer;
 Update{
 speed = data[1] & 0xff;
 }
}

The direct approach is described in the left, while the indirect
approach is shown in the right. In both cases, we are able
to extract the value of vspeed from the second byte of the
packet. Obviously the indirect method is more flexible and
can express more complicated extraction rules. However, the

direct approach is more compact when dealing with variables
that occupy some continuous bits in the packets.

The history-vars constructor is used to specify the history
variables. It consists of several history-variable constructors,
each of which describes a history variable. A history-variable
constructor is composed of an identifier var-identifier and three
attributes: var-type, var-initiation and var-update. The initial
value of a history variable is declared in var-initiation, which
must conform to the var-type. Var-update is used to express
the value extraction rule of a history variable.

For example, the history variable vhlatest speed in Fig. 6 can
be declared as follows:

HistoryVars{
 latestSpeed{
 Type: Integer; Initiate: 0;
 Update{ latestSpeed = speed; }
 }
}

where LatestSpeed is an integer whose initial value is set to
0. Each time a packet comes, the LatestSpeed is updated with
the value conveyed in the latest packet.

D. Events

The events are declared in the events constructor which is
composed of a number of event constructors. As we mentioned
before, an event is defined as a Boolean expression. The
declaration of an event consists of two parts: an event-identifier
and a Boolean-expression. The Boolean expression of an event
is defined over variables and history variables.

E. Properties

The properties to be verified are declared in the proper-
ties constructor. The declaration of a property consists of a
ptLTL-property and optional number of handlers. The ptLTL-
property describes a formula in the ptLTL logic. The handler
constructor is composed of a start delimiter “@”, a handler-
type constructor, a focused-events constructor and a code-
segment constructor. A handler-type takes a value in the
following: violation, validation and unknown. A focused-events
is a sequence of events separated by the operator “|”. The code
segment of the handler is executed, if the next state is with the
same type of the handler-type, and one event in the focused-
events happened.

For example, the first property discussed in Section I can
be described as follows:

Properties{
 []((HighTemp /\ AcOn) \/ (LowTemp /\ AcOff))
 @violation{

 _RESET();
 }
}

The script declares a violation handler without the focused-
event. Once the monitor automaton transits to a violation state,
the handler is executed which prints the current temperature
value and then reset the monitor to its initial state by the

RESET command.

2015 IEEE Conference on Computer Communications (INFOCOM)

1172

MVBSpec(data, length){
 PacketTypes = Master | Slave;
 Vars{
 Shared{
 PacketType{ Type: String;
 Update{
 PacketType = null;
 if(data[0] & 0x20 == 0x00){ PacketType = Master ;
 }else{ PacketType = Slave ; }
 }
 }
 }
 Master{
 Fcode{ Type: Integer; StartPos: 8; Length: 4; }
 LogicAddr{ Type: Integer; StartPos: 12; Length: 12; }
 }
 Slave{ Ax1Speed{ Type: Integer; Update{ } } }
 }
 HistoryVars{
 _fcode{ Type: Integer; Initiate: 0;
 Update{ if(PacketType.equals(Master)) _fcode = Fcode; }
 }
 }
 Events{
 IsMasterPacket = {PacketType.equals(Master)}
 IsSlavePacket = {PacketType.equals(Slave)}
 IsProcessData = { Fcode >= 0 && Fcode <= 4 }
 RequireAx1Speed = { LogicAddr == 0x518 }
 IsSlavePacketRight = { length == (4 << _fcode) }
 IsAx1SpeedValid = { Ax1Speed >= 0 && Ax1Speed <= 1378}
 }
 Properties{
 [](IsSlavePacket => (*)IsMasterPacket)
 @violation{ print(Master packet missing!); _RESET(); }
 [](IsMasterPacket /\ IsProcessData =>
 o (IsSlavePacket /\ IsSlavePacketRight))
 @violation{ print(Slave packet length error!); _RESET(); }
 [](IsMasterPacket /\ IsProcessData /\ RequireAx1Speed =>
 o IsAx1SpeedValid)
 @violation{ print(_CURRENTEVENT() + Ax1Speed: + Ax1Speed);}
 @unknown(IsAx1SpeedValid){
 print(_CURRENTEVENT() + Ax1Speed: + Ax1Speed);}
 }
}

Fig. 8: The VeSpec script for the case

VI. EVALUATION

To evaluate the VeRV , we applied it to a real tube train
system. The results show the effectiveness of VeRV and the
applicability of VeSpec to the MVB.

A. VeSpec script

A part of VeRV script for specifying the MVB in the
real system is shown in Fig. 8. The name of specification is
MVBSpec. We use data and length to denote the current packet
and its length.

Like other MVB systems, two types of packets are trans-
mitted in this system: the Master packets and the Slave packets.
The Master packets convey values of two variables: Fcode

and LogicAddr. If a master packet is used for requesting
some process data, the logic address of the requested data
is specified in the LogicAddr. Some slave packets convey the
Ax1Speed value, which represents an axle’s running speed. The
value of PacketType is conveyed by all types of packets. It
is thus declared as a Shared variable. The variables Fcode
and LogicAddr are extracted from the packet directly. The
values of PacketType and Ax1Speed are extracted in the indirect
approach. Only one history variable is declared in the script:

fcode. It is used to record the value of Fcode in the latest
master packet.

Five events are declared in the script. The IsMasterPacket
event and the IsSlavePacket event specify if the current packet
is a master packet or a slave packet, respectively. Accord-
ing to the protocol [1], if the value of Fcode in a master
packet is between 0 and 4, this packet is used for sending
a request for some process data, then the IsProcessData event
is evaluated true. The RequireAx1Speed event is evaluated true
if the master packets is used for requesting the process data
Ax1Speed. Note that 0x518 is the logic address of Ax1Speed.
The IsSlavePacketRight event indicates if the length of the
slave packet conforms to the Fcode value in the latest master
packet. The IsAx1SpeedValid event specifies if the Ax1Speed
value meets a predefined constraint.

Three properties are specified in the script:

1) Master Packet Required. In the MVB, a slave packet
is used to give response to a master packet. Thus, if
here comes a slave packet, the previous packet must
be a master packet. If this property is violated, the
monitor prints an error message and then resets the
monitor automaton to its initial state.

2) Slave Length Constraints. Following a master packet,
there is a slave packet. And the length of the slave
packet must conform to the Fcode value in the
previous master packet. If this property is violated,
the monitor prints an error message, and the monitor
automaton is reset.

3) No Overspeed. This property specifies a constraint
on the speed of an axle. If the current master
packet sends a request for the Ax1Speed value, the
next packet must be a slave packet containing the
Ax1Speed data and this data must be in the range
of [0..1378]. If the property is violated, the handler
prints the current events and the current Ax1Speed
value. Or, if the property is unknown to be violated
or validated, but the IsAx1SpeedValid event happened
in the current packet, the same handler is executed.

B. Experimental Results

We obtained a log file of a long run of a real tube train
system. We were told that a system failure occurs in this
run, and we were asked to diagnose this failure. The log file
contains 11,455,367 packets in total. We use the VeRV to
generate a monitor based on the script in Fig. 8, and then use
this monitor 2 to analyze this log file.

The experiments results are listed in Table I. We analyze
these results in the following:

2Although the monitor is used offline in this experiment, it is essentially an
online analyser.

2015 IEEE Conference on Computer Communications (INFOCOM)

1173

TABLE I: Experimental results

Property Counts of Violations
Master Packet Required 1
Slave Length Constraints 1,295,534

No Overspeed 0

1) Master Packet Required. From the result, one master
packet is missing. After carefully inspection, we
found that the log file starts with a record of a slave
packet. This property is just violated on the first slave
packet packet in the log file. Of course there is no
packet before it, we thus consider it as a reasonable
phenomenon.

2) Slave Length Constraints. As shown in Table I, there
are totally 1,295,534 violations for this property. Two
cases can lead to these violations: i) the slave packet
is missing; ii) the length of the slave packet does not
conform to the preceding master packet. We checked
the variable PacketType in packets where a violation
occurs, and found many cases that after a master
packet, the next packet is not a slave packet. In other
words, many slave packets are lost. We believe this
is the main reason for these violations.
Since the master packets were transmitted normally,
we deduced that the packet receiving devices may
go wrong. We thus analyzed the program run on this
device and finally succeeded in finding a deadlock in
the program. After fixing this bug, the same failure
has never occurred.

3) No Overspeed. There is no violation for this property,
which means the axle works normally.

Failure diagnosis in an industrial system is a complicated
task, requiring comprehensive analysis and integrated applica-
tion of various techniques. Many techniques, like signal pro-
cessing, program analysis and data mining have been applied
to failure diagnosis of this case. Our technique contributed in
finding the abnormal behaviors of the packet receiving devices,
which is the key for the final diagnosis. Thus the effectiveness
of VeRV is illustrated. The VeRV is also very efficient. In
checking all properties on the whole of the huge log file, it
took less than 6.8 minutes.

VII. RELATED WORKS

In this section, we review four categories of research works
related to our work.

Model Checking: Model checking [13] is a famous tech-
nique for correctness verification of systems and protocols.
Some studies have been performed on the vehicle bus systems.
In [14], the authors applied the Murϕ verification system [15]
to specify a controller area network protocol and succeeded in
verifying 12 properties using model checking. Model checking
is a kind of statical approaches, which cannot be applied at
runtime. And model checking always faces the state explosion
problem. Our work focuses on the property checking at run-
time. And our technique scales up very well. Note here only
the runtime trace (one trace) needs to be checked, the state
space explosion problem is alleviated.

Runtime Verification: Runtime verification (RV) [16]–[18]
is a light-weighted verification technique. The basic idea of
RV is to verify properties with runtime information of systems,
which is simple but effective. RV has been applied to various
fields, such as medical systems [19]–[21], Java programs [11],
[22], PCI bus [11] and Communications Based Train Control
(CBTC) systems [20]. Typically researchers specify properties
with finite state machine (FSM), linear temporal logic (LTL)
or other formalisms, and then generate the runtime monitors
automatically. We believe RV is a natural and satisfactory
solution for verifying properties of the MVB systems. Note
that the CBTC systems stuided in [20] are different from
the vehicle bus systems. The CBTC system is used for com-
munication at a higher level, among the track equivements,
trains and train stations. It is not bus-based, and thus its
techniques for extracting events, specifying properties, and
generating monitors are different from MVB’s. To the best
of our knowledge, this is the first work on applying runtime
verification to vehicle bus systems.

Protocol Analysis: Plenty of works have been done on
protocol analysis, such as CSN.1 [23], PacketType [24], Bin-
pac [25], Zube [4] and GAPA [3]. The former three tools
are mainly designed for the packet parser generation. The
user-defined handlers are supported in CSN.1 and GAPA, but
with which only simple analysis on extracted fields can be
defined. Zube [4] uses annotated ABNF to specify protocols.
With a protocol specification, Zube is able to generate the
protocol-handling layer for network applications. The last
work, GAPA [3], is more relative to our works. GAPA proposes
a language, called GAPAL, to describe the packet format, event
handlers and protocol state machine. However, the main focus
of GAPA is to specify and analyze the protocol state machine.
In contrast, our focus is on the analysis of the transmitted data.

Network Anomaly Detection: The runtime monitoring tech-
nique has been widely applied in the rule-based network
anomaly detection systems, which are used to detect intrusion
through network data [26]. Bro [27] provides a language to
specify security policies. When a network traffic stream comes,
Bro reduces it into an events sequence and perform analysis
like storing information, which is guided by the specified
policies. STATL [28], SHIELD [29] and VeTo [30] apply state
machine to specify attacks and vulnerable behavior. This state
transition analysis is similar to protocol state monitoring.

Our work is different from above works on protocol
analysis and network anomaly detection in following aspects:

1) Goals. Our goal is to analyze the temporal and data-
concerned properties at runtime, while above works
are mainly focused on the packet parsing, protocol
analysis and anomaly detection, respectively.

2) Language. With the ptLTL, our VeSpec language can
express temporal properties easily. Other languages in
above works are mainly designed for specifying rules
or policies. The expressiveness of VeSpec for speci-
fying temporal properties is much more powerful.

3) Target. All above works targets the Internet, while
our tool targets the vehicle bus networks.

2015 IEEE Conference on Computer Communications (INFOCOM)

1174

VIII. CONCLUSION

In this paper, we proposed a runtime verification framework
for the MVB. To the best of our knowledge, this is the
first temporal and data-concerned analyzer for the MVB. We
implemented VeRV , a prototype tool for our technique. A
domain-specific language, VeSpec, is designed for specifying
the packet formats and the temporal properties. With the
VeSpec script, the VeRV engine generates the runtime ana-
lyzer automatically. The VeSpec language is compact, expres-
sive, modular and reusable. We have applied VeRV to a real
MVB system and succeeded in diagnosing a real failure in this
system. The industry application illustrates the effectiveness
and efficiency of our technique.

In the future, we plan to improve VeRV in two directions:
(i) Only Java language is supported in the generated monitors,
we plan to modify the engine of VeRV to generate monitors
in more languages. (ii) Timing is an important property for the
MVB. We are going to investigate the runtime timing analysis
for the MVB systems.

ACKNOWLEDGMENT

This work was supported in part by the Chinese National
973 Plan (2010CB328003), the NSF of China (61272001,
60903030, 91218302), the Chinese National Key Technology
R&D Program (SQ2012BAJY4052), the Importation and De-
velopment of High-Caliber Talents Project of Beijing Mu-
nicipal Institutions (YETP0167), and the Tsinghua University
Initiative Scientific Research Program.

REFERENCES

[1] I. E. Commission et al., “IEC 61375–1, part 1: Train communication
network,” 1999.

[2] H. Kirrmann and P. A. Zuber, “The IEC/IEEE train communication
network,” IEEE Micro, vol. 21, no. 2, pp. 81–92, 2001.

[3] N. Borisov, D. Brumley, H. J. Wang, J. Dunagan, P. Joshi, C. Guo,
and I. Nanjing, “Generic application-level protocol analyzer and its
language,” in NDSS, 2007.

[4] L. Burgy, L. Réveillère, J. Lawall, and G. Muller, “Zebu: A language-
based approach for network protocol message processing,” IEEE Trans-
actions on Software Engineering, vol. 37, no. 4, pp. 575–591, 2011.

[5] F. Systems, “PTS 402: Portable test system,” http://www.farsystems.it.
[6] E.-E. Ltd., “Portable system tester,” www.eke.com.
[7] Siemens, “TCN bus tester,” http://www.siemens.com.
[8] Automation NetworkX GmbH, “TCNalyzer,” http://tcnalyzer.net.
[9] F. Laroussinie, N. Markey, and P. Schnoebelen, “Temporal logic with

forgettable past,” in Symposium on Logic in Computer Science. IEEE
Computer Society, 2002, pp. 383–383.

[10] O. Lichtenstein, A. Pnueli, and L. Zuck, The glory of the past. Springer,
1985.

[11] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu, “An overview
of the MOP runtime verification framework,” International Journal on
Software Tools for Technology Transfer, vol. 14, no. 3, pp. 249–289,
2012.

[12] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, p. 14, 2011.

[13] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT
press, 1999.

[14] M. Van Osch and S. A. Smolka, “Finite-state analysis of the CAN bus
protocol,” in Sixth IEEE International Symposium on High Assurance
Systems Engineering. IEEE, 2001, pp. 42–52.

[15] D. L. Dill, “The Murphi verification system,” in Proceedings of Com-
puter Aided Verification. Springer, 1996, pp. 390–393.

[16] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I. Lee, and
O. Sokolsky, “Formally specified monitoring of temporal properties,” in
Proceedings of the 11th Euromicro Conference on Real-Time Systems.
IEEE, 1999, pp. 114–122.

[17] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, “Runtime
assurance based on formal specifications,” Departmental Papers (CIS),
p. 294, 1999.

[18] K. Havelund, “Using runtime analysis to guide model checking of
java programs,” in Proceedings of SPIN Model Checking and Software
Verification. Springer, 2000, pp. 245–264.

[19] D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and
O. Sokolsky, “Toward patient safety in closed-loop medical device
systems,” in Proceedings of the 1st ACM/IEEE International Conference
on Cyber-Physical Systems. ACM, 2010, pp. 139–148.

[20] L. Bu, Q. Wang, X. Chen, L. Wang, T. Zhang, J. Zhao, and X. Li, “To-
ward online hybrid systems model checking of cyber-physical systems’
time-bounded short-run behavior,” ACM SIGBED Review, vol. 8, no. 2,
pp. 7–10, 2011.

[21] T. Li, F. Tan, Q. Wang, L. Bu, J.-N. Cao, and X. Liu, “From
offline toward real time: A hybrid systems model checking and CPS
codesign approach for medical device plug-and-play collaborations,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 3,
pp. 642–652, 2014.

[22] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan, “Java-
MaC: a run-time assurance tool for java programs,” Electronic Notes in
Theoretical Computer Science, vol. 55, no. 2, pp. 218–235, 2001.

[23] M. Mouly, CSN. 1 Specification, Version 2.0. Cell & Sys, 1998.
[24] P. J. McCann and S. Chandra, “Packet types: abstract specification of

network protocol messages,” ACM SIGCOMM Computer Communica-
tion Review, vol. 30, no. 4, pp. 321–333, 2000.

[25] R. Pang, V. Paxson, R. Sommer, and L. Peterson, “binpac: A yacc for
writing application protocol parsers,” in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement. ACM, 2006, pp.
289–300.

[26] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”
Technical report, Tech. Rep., 2000.

[27] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23, pp. 2435–2463, 1999.

[28] S. T. Eckmann, G. Vigna, and R. A. Kemmerer, “STATL: An attack
language for state-based intrusion detection,” Journal of computer
security, vol. 10, no. 1, pp. 71–103, 2002.

[29] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier, “Shield:
Vulnerability-driven network filters for preventing known vulnerability
exploits,” ACM SIGCOMM Computer Communication Review, vol. 34,
no. 4, pp. 193–204, 2004.

[30] A. Lahmadi, O. Festor et al., “Veto: An exploit prevention language
from known vulnerabilities in sip services,” in IEEE/IFIP Network
Operations and Management Symposium (NOMS), 2010, pp. 216–223.

2015 IEEE Conference on Computer Communications (INFOCOM)

1175

