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Abstract—P4 is widely adopted for programming data planes
in software-defined networking. Formal verification of P4 pro-
grams is essential to ensure network reliability and security.
However, existing P4 verifiers overlook the stateful nature of
packet processing, rendering them inadequate for verifying
complex stateful P4 programs.

In this paper, we introduce a novel concept called packet
invariants to address the stateful aspects of P4 programs. We
present an automated verification tool specifically designed for
stateful P4 programs. This algorithm efficiently discovers and
validates packet invariants in a data-driven manner, offering a
novel and effective verification approach for stateful P4 pro-
grams. To the best of our knowledge, this approach represents the
first attempt to generate and leverage domain-specific invariants
for P4 program verification. We implement our approach in a
prototype tool called P4Inv. Experimental results demonstrate its
effectiveness in verifying stateful P4 programs.

I. INTRODUCTION

Software-Defined Networking (SDN) [1] is an innovative
networking approach that explicitly separates the control
plane from the data plane, offering centralized control and
remarkable flexibility. Its adoption spans various industrial
applications, encompassing data centers [2], cloud computing
[3], Internet of Things (IoT) [4], telecommunications [5], etc.

P4 [6] is a promising language for programming hardware
data plane. It provides network administrators with the ability
to specify protocol-independent packet processing, enabling
the implementation of complex packet handling pipelines.
However, the programmability and flexibility of P4 also in-
troduce the possibility of errors and flaws in program design.
To ensure the reliability and security of SDN deployments,
formal verification becomes indispensable in guaranteeing the
correctness of P4 programs.

In recent years, significant progress has been made in the
formal verification of P4 programs [7]–[11]. The current state-
of-the-art P4 verifiers, such as bf4 [8], p4v [10], Vera [11],
and Aquila [9], have made notable contributions. However,
these verifiers overlook the practical utilization of registers in
network devices, treating packet processing as isolated events.
Registers play a crucial role in network devices by providing
consistent storage of information during packet processing,
enabling stateful processing where information is carried over
to subsequent stages. Unfortunately, these existing verifiers
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fail to consider the stateful nature of packet processing, as
they treat register states as fully non-deterministic at the
start of each packet processing event. Consequently, they are
fundamentally inadequate for verifying complex P4 programs
involving registers.

The capability to specify stateful packet processing in P4
has attracted increasing attention from the research commu-
nity, as evidenced by in-network functions such as load balanc-
ing [12], consensus [13], link failure recovery [14], [15] and
source protection [16]. However, due to the additional register
states, these in-network functions are far more complicated
than stateless ones that merely forward packets. Moreover, the
existence of registers poses challenges for effective verification
using existing P4 verifiers.

To address the stateful aspects of P4 programs, we introduce
a novel concept called packet invariants. Since the switch
constantly processes packets, we can view the packet pro-
cessing as an infinite loop, where the execution of its body
represents the execution of the P4 program. In this context,
a packet invariant resembles a loop invariant. It represents a
logical formula about the register states that remains true after
arbitrary rounds of packet processing. Moreover, we consider
a logical formula as a packet invariant if it can conclusively
verify the correctness of the P4 program. Consequently, veri-
fying stateful P4 programs can be reduced to inferring proper
packet invariants.

Nevertheless, inferring appropriate packet invariants poses
a technical challenge. To address this issue, we present an
automatic packet invariant generation algorithm specifically
tailored for stateful P4 programs. This algorithm efficiently
discovers and validates packet invariants in a data-driven
manner, offering a novel and effective verification approach
for stateful P4 programs.

We have implemented our approach in a prototype tool
called P4Inv. In our evaluation, we focused on stateful data
plane functionalities such as load balancing [12], consensus
[13] and link failure recovery [14], [15]. We compared P4Inv
with state-of-the-art P4 analyzers [8], [10], [11]. The experi-
ment results show that P4Inv successfully verifies the correct-
ness of these stateful P4 programs, while other P4 verifiers
failed to do so. The performance analysis also demonstrates
the efficiency of our packet invariant inferring algorithm.

Contributions. The main technical contributions of this



paper are as follows:
• We introduce a novel concept called packet invariants to

address the stateful aspects of P4 programs.
• We propose an automatic packet invariant generation

algorithm tailored for stateful P4 programs. To the best
of our knowledge, this represents the first attempt to
generate and leverage domain-specific invariants for P4
program verification.

• We provide P4Inv, the implementation of our approach.
Experimental results demonstrate its effectiveness in ver-
ifying stateful P4 programs.

II. RELATED WORK

Network verification. The verification for network can be
categorized into control plane and data plane verification.

Studies analyzing the control plane tend to analyze topolog-
ical properties such as reachability, isolation, and waypoints
among nodes. Arc [17] enables fast control plane verification
without generating the data plane. Batfish [18] proposes a
general approach to detect errors in network configuration
files by effectively deriving the data plane. CrystalNet [19]
provides means to validate network operations proactively with
the emulation technique. Minesweeper [20] translates network
configuration into logical formulas and checks satisfiability to
detect whether a network state violating the query exists. These
studies analyze network configurations and aim to answer
queries for network-wide properties.

Data plane verification tools answer similar queries requir-
ing a network snapshot of the data plane. Many techniques
have been proposed to verify the data plane from different
angles. Anteater [21] uses graph theory algorithms to verify
network-wide properties by modeling the network as a graph.
HSA [22] develops an optimized formalism for network trans-
fer function to identify network failures. Veriflow [23] aims
to enable real-time checking of network-wide invariants while
Symnet [24] checks the queries by injecting symbolic packets
and tracking them through the network. Our tool, P4Inv,
belongs to a data plane verification tool, and is specifically
designed for verifying the correctness of P4 programs.

P4 program verification. Existing P4 program verifiers
include ASSERT-P4 [7], Aquila [9], bf4 [8], p4v [10], P4-
NOD [25] and Vera [11]. These verifiers typically follow the
common approach of translating P4 into intermediate domain-
specific languages, such as GCL [26], SEFL [24], NOD [27]
and C, which can then be processed with existing verification
methods. For instance, ASSERT-P4 [7] and Vera [11] translate
P4 to C and SEFL, respectively, and employ symbolic execu-
tion technique. Aquila [9], bf4 [8] and p4v [10] translate P4
to GCL and utilize the classic program verification technique.
[26], [28]. P4-NOD [25] translates P4 to NOD and mainly
focuses on network-wide properties like reachability. While
ensuring the correctness of P4 programs, these P4 verifiers
approximate the states of P4 programs by assuming them
fully nondeterministic for each packet processing, disregarding
their continuous preservation and ongoing effects. Although
this technique facilitates verification regardless of state, these
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Fig. 1. Overview of P4Inv.

verifiers are fundamentally hindered from reasoning the proper
behaviors of stateful P4 programs [29]. On the other hand,
P4Inv distinguishes itself from existing P4 verifiers in its
automatic generation of packet invariant, which leads to more
accurate modeling and verification of stateful P4 programs.

Invariant synthesis techniques. To the best of our knowl-
edge, P4Inv is the first verification tool to leverage invariant
synthesis techniques for the verification of P4 programs. Many
traditional invariant synthesis techniques can be recognized
as white-box approaches, such as abstract interpretation [30],
interpolation [31], and counterexample abstraction refinement
[32]. In contrast, our verification framework for stateful P4
programs follows the black-box learning setting [33]–[36],
which is composed of a learner and a teacher for invariant
generation and validation. Typical mechanisms for black-box
invariant generation include Houdini [33], decision trees [34],
reinforcement learning [37], and support vector machines [38].
P4Inv incorporates a variant of Houdini referred to as Sorcar
[35] into the packet invariant learner component. In the future,
we expect to discover more efficient and effective generation
methods for packet invariants.

III. OVERVIEW OF P4INV

P4Inv is an automated verification framework designed for
verification of stateful P4 programs. An overview of our
verification approach is provided in Fig. 1. Given a P4 program
P with assertions as its specifications and a configuration C
that initializes the registers, P4Inv verifies whether the program
P satisfies the assertions under the provided configuration C.
If a violation is identified, P4Inv reports a counterexample c
to the developers; otherwise, it reports “Yes,” demonstrating
that program P is correct with respect to its assertions.

In contrast to prior efforts, P4Inv automatically generates
and leverages domain-specific invariants for P4 program ver-
ification. The verification framework of P4Inv comprises two
components: the invariant generator and the validator, and it
operates iteratively. In each iteration, the generator produces a
candidate invariant and sends it to the validator. Subsequently,
the validator checks whether the candidate invariant is suffi-
cient for verifying the assertions. If the candidate invariant is
deemed as inadequate for verification, the validator generates
a counterexample and returns it to the generator, prompting
the generator to refine the invariant towards a correct form.
The generator and validator cooperate iteratively to revise the
invariant until all assertions are successfully verified.

We demonstrate our approach using the Blink failover
mechanism [14] as an example, which utilizes retransmissions
to detect link failures and trigger rerouting.



1 control fs(..., sw, sw_sum, fs_last_index, sw_index) {
2 // declare variables, including fs_index,
3 // index_pre, index_tmp, val_tmp, sum_tmp, etc.
4 ...
5 apply {
6 #include "sliding_window.p4"
7 ...
8 fs_index = E0; // compute the index by hash
9 ...

10 if (B0) { // if this is a retransmission
11 ...
12 if (B1) { // if the time requirement is met
13 // get index of the previous retransmission
14 fs_last_index.read(index_pre, fs_index);
15 // decrease values in the previous window
16 sw.read(val_tmp, meta.id*4 + index_pre);
17 sw_sum.read(sum_tmp, meta.id);
18 sw.write(meta.id*4 + index_pre, val_tmp - 1);
19 sw_sum.write(meta.id, sum_tmp - 1);
20 }
21 // increase values in the current window
22 sw_index.read(index_tmp, meta.id);
23 sw.read(val_tmp, meta.id*4 + index_tmp);
24 sw_sum.read(sum_tmp, meta.id);
25 sw.write(meta.id*4 + index_tmp, val_tmp + 1);
26 sw_sum.write(meta.id, sum_tmp + 1);
27 ...
28 // update index of the previous retransmission
29 fs_last_index.write(fs_index, index_tmp);
30 }
31 ...
32 // assert: sw[0]+sw[1]+sw[2]+sw[3] == sw_sum[0]
33 sw.read(sw0, 0); sw.read(sw1, 1);
34 sw.read(sw2, 2); sw.read(sw3, 3);
35 sw_sum.read(sw_sum0, 0);
36 @assert(sw0 + sw1 + sw2 + sw3 == sw_sum0);
37 }
38 }

Fig. 2. Code snippet 1 for the flow selector component of Blink [14].

P4 Program. We consider one of the main components in
Blink, i.e., the flow selector component that is responsible for
monitoring the link status. The source code of it is displayed
in Fig. 2. For clarity, we have omitted certain code segments
(indicated by “...”), a complex arithmetic expression (repre-
sented by “E0”), and several intricate Boolean expressions
(represented by “B0, B1, ...”) from the program.

To monitor the number of retransmission packets for multi-
ple flows with varying time intervals, the flow selector utilizes
the sw register. Each element in sw corresponds to the number
of retransmission packets in a specific time window, referred to
as a “sliding window.” Additionally, the flow selector utilizes
the sw_sum register to store the sum of all sliding window
values. The registers fs_last_index and sw_index are
also employed to track the last accessed window and current
window indexes during retransmission.

In the apply block, the flow selector imports the sliding
window component (at Line 6), which calculates the current
window index and ensures it does not exceed the total number
of windows. Upon detecting a retransmission packet (at Line
10), the flow selector checks if the time interval exceeds a
specific threshold (at Line 12). If the threshold is not exceeded,
the flow selector proceeds to decrement the count value of the
previous retransmission window. Subsequently, it increments
the count value in the current window. These update operations
are synchronized with the global sum (at Lines 19 and

1 fs_last_index ALL 0
2 sw_index ALL 0
3 sw_sum 0 0
4 sw 0 0
5 sw 1 0
6 sw 2 0
7 sw 3 0

Fig. 3. Configuration for Blink [14].

26). Afterward, the flow selector updates the retransmission
information stored in registers such as fs_last_index for
future processing (at Line 29). It is important to note that for
the sake of conciseness, we have omitted many other code
segments in the program that implement similar updates.

In the P4 language, registers are accessed through indexes.
When referring to the entry of a register r at index i, we
will represent it as r[i]. There are two types of statements for
accessing register entries in P4, namely the read statement r.
read(v,i) and write statement r.write(i,e). Here, v is a
variable and e is an expression. These two statements can be
equivalently interpreted to assignment statements v := reg[i]
and reg[i] := e, respectively.

In Blink, sw_sum[i] is designed to store the sum of sw[i
*SIZE+0], sw[i*SIZE+1], ..., sw[i*SIZE+SIZE-1],
where SIZE represents the window’s size and is assumed to
be 4 in this example. The sum register plays a crucial role
in the rerouting mechanism. If the sum is greater than the
threshold, the fast rerouting is triggered. To this end, we
have added an assertion at the end of the program (from
Line 32 to Line 36) to confirm the correct implementation of
sw_sum[i] when i == 0.

Configuration. Rather than considering states as entirely
non-deterministic, we observed that the register values are
initialized by the configuration and consistently maintained by
the P4 program. As a result, we incorporate the configuration
into the verification process.

Fig. 3 displays the common zeroing configuration for Blink,
where each line represents the initialization of a register, with
the first argument denoting the register, the second denoting
the index, and the third denoting the value. Specifically, we
have introduced a special construct ALL which signifies “for
all indexes.” It is worth noting that the configuration does not
require to cover all registers. Any register that does not appear
in the configuration is considered to be initialized randomly.

A configuration can be seen as a collection of assignments to
registers. For instance, the first line in Fig. 3 can be interpreted
as forall i.fs_last_index[i] := 0, and the third line
can be interpreted as sw_sum[0] := 0.

Verification by Existing Verifiers. To ensure that the
assertion holds at every packet processing, the verifier needs
to analyze the register fs_last_index, whose element is
used as the updating index for windows (at Line 14). If
the element of fs_last_index exceeds the window’s size,
inconsistencies between the sum register and the actual sum

1Originated from: https://github.com/nsg-ethz/Blink/tree/master/p4 code.



can occur. For example, consider a scenario where meta.id

equals 0 and fs_last_index[fs_index] equals 4. The
value 4 is transferred to index_pre at Line 14. Consequently,
at Lines 16 to 19, the registers sw_sum[0] and sw[4] are
decreased, leading to an invalidation of the assertion, as
sw_sum[0] is supposed to only be synchronized with window
sw[0], sw[1], sw[2], and sw[3]. Therefore, the verifier
needs to ensure that for every flow, the value read from
fs_last_index with the hashed index fs_index does not
exceed the window’s size, i.e., ∀i.fs last index[i] < 4. A
similar conclusion can be drawn by examining Lines 22 to 26
for the register sw_index, i.e., ∀i.sw index[i] < 4.

Existing P4 verifiers, such as p4v, Vera, and Aquila, make
the assumption that all register values are non-deterministic
for each incoming packet. These verifiers treat each packet
processing as an independent event and lack the capability to
verify properties that require considering the preservation of
states. In the given example, the existing verifiers assume that
fs_last_index[i] and sw_index[i] can have arbitrary
values, disregarding the conditions mentioned above, which
ultimately results in reporting the violation of the assertion.

Packet Invariant. P4Inv uses packet invariants to track the
values of registers across consecutive packet processing. We
provide the definition of packet invariant as follows.

A register state refers to an assignment of values to register
variables. A register predicate is a predicate defined over the
register variables, which defines a set of register states. The
strongest postcondition of a register predicate φ with respect
to a P4 program P , denoted as sp(φ,P), represents the set
of register states that are reachable from any register state
satisfying φ after the execution of P .

Definition 1: Given a P4 program P and a configuration
C, a packet invariant is a register predicate I satisfying the
following two conditions:

1) I holds after the configuration C, i.e.,

sp(>, C)→ I (1)

2) I is preserved by the execution of P4 program P , i.e.,

sp(I,P)→ I (2)

Note that the assertions are included within the program
P . Condition (2) holds only when the packet invariant I
is sufficiently strong to verify all the assertions in P . If
any assertion is violated, the program will be abnormally
terminated, and a special “error” state will be present in
sp(I,P), which falsifies sp(I,P)→ I since it does not belong
to I . Consequently, when we discover a packet invariant
that satisfies the conditions outlined in Definition 1, we can
effectively validate all the assertions in the P4 program. In
other words, the verification of stateful P4 programs can be
reduced to inferring proper packet invariants.

Verification by P4Inv. With the technique that will be
introduced in Section IV, P4Inv can effectively infer the

Algorithm 1 Association Graph Construction
Input: a P4 program P and a Configuration C
Output: an association graph (V,E,E=)

1: Let PC be the concatenation of C and P
2: V ← Σ(PC), E ← ∅, E= ← ∅
3: for each relational expression in PC do
4: Let e1, e2 be its left and right operands, respectively
5: E ← E ∪ {(t1, t2) | ∀t1 ∈ Σ(e1),∀t2 ∈ Σ(e2)}
6: for each assignment statement in PC do
7: if it is register-related: r[e′] := e or e := r[e′] then
8: if e′ evaluates to c then
9: Etmp ← {(r[c], t) | ∀t ∈ Σ(e)}

10: else
11: Etmp ← {(r[c′], t) | ∀r[c′] ∈ V,∀t ∈ Σ(e)}
12: else
13: Let the assignment statement be v := e
14: Etmp ← {(v, t) | ∀t ∈ Σ(e)}
15: E ← E ∪ Etmp

16: if singleton(e) then
17: E= ← E= ∪ Etmp

18: return (V,E,E=)

following packet invariant:

∀i.sw index[i] < 4 ∧ ∀i.fs last index[i] < 4

∧ sw[0] + sw[1] + sw[2] + sw[3] == sw sum[0].

Utilizing this packet invariant, P4Inv can successfully verify
the validity of the assertion. As far as we know, P4Inv is
the first of its kind, to identify domain-specific invariants and
utilize them in the verification of P4 programs.

IV. VERIFICATION FRAMEWORK

P4Inv distinguishes itself from existing P4 verifiers [7]–
[11] by automatically generating and utilizing packet invariant
during the verification of P4 programs. However, a technical
challenge of inferring the packet invariant is the intrinsic
huge search space. To address the issue, we present a novel
verification framework based on the general black-box learn-
ing setting [33]–[35] and an effective, domain-specific atomic
predicate algorithm for stateful P4 programs. We elaborate on
our verification framework in this section.

A. Atomic Predicate Generator

Our approach considers a packet invariant as the conjunction
of atomic predicates. A natural challenge is to generate suit-
able atomic predicates for packet invariant generation based
on the given P4 program and configuration. To address this
issue, we propose a syntactic-guided heuristic for generating
atomic predicates.

Recall that the purpose of packet invariants is to keep track
of register values across consecutive packet processing. A
packet invariant is defined over a set of register states. Con-
sequently, we require each atomic predicate to be a predicate
defined over register variables and constants.



1) Association Graph Construction: In order to generate
appropriate atoms, we construct a graph called the association
graph. This graph captures the associations between registers
and constants in the given program and configuration.

Definition 2: An association graph is defined as a triple
(V,E,E=). In this graph, the node set V consists of nodes
that represent either variables or constants. The edge set E
represents associations between nodes, while the edge set E=

represents the equality relation between nodes.
The algorithm for constructing the association graph is

illustrated in Algorithm 1. This algorithm takes a P4 program
P and a configuration C as inputs, and outputs the association
graph. Note that the configuration can be interpreted as a
collection of assignments to registers. Initially, we concatenate
the interpreted assignments of C to the beginning of the
program P , resulting in a merged program called PC .

In PC , both register and non-register variables are present.
We represent a non-register variable as v and a register variable
as r[e], where e is an indexing expression. In situations
where the value of v or e can be determined statically during
parsing, we replace the corresponding variable or index with
the determined constant.

In order to construct the association graph, we collect all
the constants, non-register variables, and register variables
with constant indexes that appear in PC . These elements are
gathered into a set named Σ(PC). Note that register variables
with non-constant indexes are not included in this set, as they
can refer to any element within the registers. The set Σ(PC)
is utilized as the node set for the association graph.

We will now proceed with establishing the relations E.
Given two elements t1 and t2 from Σ(PC), there are two
situations in which t1 is associated with t2 (i.e., (t1, t2) ∈ E):
• If there is a relational expression in the program where
t1 and t2 appear in the operands on opposite sides of the
relational operator (Lines 4 to 5 of Algorithm 1).

• If there is an assignment statement in the program where
t1 represents the left operand, and t2 represents the ele-
ment in the right operand (Lines 7 to 14 of Algorithm 1).

In the latter case, when the register in the assignment statement
(i.e., register read or write statement) is accessed with a non-
constant index, it is necessary to consider all possible elements
of the register and associate each of them with t2, as in Line
11 of Algorithm 1.

However, when generating atoms, the relation E may be too
coarse for precise analysis. In order to address this limitation,
we introduce an equality relation E= as its complement.
As the name suggests, for any two elements t1 and t2 in
Σ(PC), (t1, t2) ∈ E= if t1 is equal to t2 at some point
in PC . Discovering all semantically equivalent elements can
be time-consuming and sometimes impossible. Therefore, we
choose to identify evident equality relations between program
elements. Specifically, we identify such relations when there
is an assignment statement in the form of t1 := t2, r[e] := t2,
or t1 := r[e], where r[e] represents a register variable with a
non-constant index (at Lines 16-17 and recall that r[e] is not
an element of V ).

Algorithm 2 Atomic Predicate Generation
Input: an association graph (V,E,E=)
Output: an atomic predicate set AP

1: AP ← ∅
2: for each register r[c] ∈ V do
3: for each reachable constant cc ∈ V via E do
4: AP ← AP ∪ genAtom(r[c], cc)
5: for each reachable register r′[c′] ∈ V via E do
6: AP ← AP ∪ genAtom(r[c], r′[c′])
7: for each branch condition and assertion b in PC do
8: if each non-register variable v of b is reachable from

some register r[c] ∈ V via E= then
9: br ← b[v/r[c]] for each v in b

10: AP ← AP ∪ {br}
11: return AP

2) Atoms Generation: Given the association graph we
constructed, we can now proceed with generating atomic pred-
icates. The generation algorithm is presented in Algorithm 2.
A register variable, denoted by r[c], is considered associated
with a constant cc (or another register variable, r′[c′]) if there
exists a path from r[c] to cc (or r′[c′]) through edges in E. For
each pair of such associated elements, we employ the function
genAtom to generate the corresponding atoms (at Lines 4 and
6 of Algorithm 2). It is important to note that our focus in this
context is solely on these two types of associated elements, as
an atom encompasses only these two program elements.

The genAtom function generates atoms using predefined
templates. On the one hand, we require the generated atoms to
be sufficiently expressive, which is necessary for constructing
a proper packet invariant to conclude the verification. On the
other hand, generating too many atoms can bring significant
computational overhead to the subsequent packet invariant
generation. Therefore, designing an appropriate template for
genAtom is crucial to ensure the effectiveness of our verifi-
cation framework.

In this paper, we focus on generating atoms in the following
forms: r[c] ≺ cc, cc ≺ r[c], and r[c] ≺ r′[c′], where
≺∈ {<,≤}. We have opted not to generate atoms like
r1[c1] ≺ r2[c2] + r3[c3], or (r[c])2 ≺ cc, as these complex
atom templates could lead to a significantly large search space
during subsequent packet invariant generation. To summarize,
the function genAtom is defined as follows:

genAtom(r[c], cc) = {r[c] ≺ cc, cc ≺ r[c]}
genAtom(r[c], r′[c′]) = {r[c] ≺ r′[c′], r′[c′] ≺ r[c]}

Specifically, the ALL index in the configuration is treated as
a special constant. Consequently, r[ALL] is also a register
variable with a constant index and can be included in the
association graph. If r[ALL] is associated with t, where t is a
constant or another register variable (without the ALL index),
we introduce ∀ to interpret the ALL index. As a result, we
generate atoms ∀i.r[i] ≺ t and t ≺ ∀i.r[i]. If t is also a
register variable with the ALL index and it has the same size
as r, denoted as r′[ALL], we generate atoms ∀i.r[i] ≺ r′[i]
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Fig. 4. Subgraph of the association graph for Blink.

and ∀i.r′[i] ≺ r[i]. It is worth noting that we avoid generating
complex quantified atoms such as ∀i∀j.r[i] ≺ r′[j], which
involve nested quantifiers that are difficult to be efficiently
solved by existing SMT solvers.

Furthermore, we acknowledge the significance of branch
conditions and assertions in program verification. However,
these Boolean formulas contain non-register variables, making
them unsuitable for direct use as atoms. To overcome this lim-
itation, we employ the equality relation E= to identify register
variables that can substitute for the non-register variables in
these formulas. When all non-register variables in a Boolean
formula can be replaced with register variables, the resulting
formula becomes a register predicate and can be included in
AP as an atom (Lines 8 to 10). It is important to note that
we utilize E= instead of E for substitutions, since the latter
relation is too coarse and can lead to a combination explosion
when substituting.

Example. To better illustrate the workflow of the atomic
predicate generator, let’s consider the Blink mechanism pre-
sented earlier in Fig. 2. For simplicity, we will use i to
represent the constants 0, 1, 2 and 3. We will demonstrate the
generation process based on Line 25 and Lines 33-36. At Line
25, since the index does not evaluate to a constant, we link
every corresponding register node with a constant index (i.e.,
sw[i]) to the variable and constant in the value expression
(i.e., constant 1 and variable val_tmp). At Lines 33-36, both
the relation E and the equality relation E= are generated, such
as links between sw0 and sw[0]. As a result, the association
graph shown in Fig. 4 is obtained, with val_tmp omitted for
brevity. In the graph, the dashed node represents the register
node, the solid line represents relation E, and the dashed line
represents the equality relation E=. Since sw[i] is reachable
by the constant 1 via E, we can obtain atoms like sw[0] ≤ 1.
Additionally, since sw[i] is reachable from each other, we
can obtain atoms like sw[0] ≤ sw[1]. Furthermore, since the
variable swi is reachable via E= from sw[i], and similarly
sw_sum0 is reachable via E= from sw_sum[0], we can obtain
sw[0] + sw[1] + sw[2] + sw[3] == sw sum[0] by replacing
variables with the corresponding registers at Line 36.

Invariant Generator
(Learning Algorithm)

Validator
(SMT Solver)

Conjectured Invariant I

Positive, negative, or implication counterexample

Fig. 5. The general black-box framework.

B. Invariant Generator

After generating atomic predicates, we employ a black-box
framework [34], [36] as shown in Fig. 5 to automate the
generation and validation of packet invariants, which is the
general framework for learning conjunctive invariants over a
finite class of predicates. For completeness, we briefly describe
the core idea in the context of packet invariant as follows.

The black-box framework consists of two main components:
the invariant generator and the validator. It operates iteratively,
with an initial setting of the conjectured invariant I as >. In
each iteration, the validator receives the conjectured invariant
I from the invariant generator and checks if it satisfies the con-
ditions (1) and (2) for the packet invariant. If I does not meet
these conditions, the validator provides a counterexample,
which is then passed on to the invariant generator to improve
the conjectured invariant for the next iteration. Specifically,
the framework categorizes the counterexample into one of the
following three forms:

1) If the conjectured invariant I falsifies condition (1), then
the validator returns a positive counterexample σ such
that σ ∈ sp(>, C) but σ 6|= I .

2) If the conjectured invariant I leads to the violation of
assertion, then the validator returns a negative counterex-
ample σ such that σ |= I but sp(I,P) contains the
“error” state.

3) If I falsifies condition (2) but sp(I,P) does not contain
the “error” state , then the validator returns a implication
counterexample such that σ1 |= I but σ2 6|= I .

Intuitively, a positive counterexample satisfies the config-
uration but falsifies the conjectured invariant. A negative
counterexample adheres to the conjectured invariant but results
in a violation of the assertion. An implication counterexample
indicates that the conjectured invariant is not inductive.

The invariant generator aims to conjecture invariant I over
the atomic predicate set AP = {p1, · · · , pn} using the
collected counterexample set Cex. The counterexample set is
divided into three categories: S+ for positive counterexamples,
S− for negative counterexamples, and SH for implication
counterexamples. A conjectured invariant I is said to be
consistent with Cex if

1) I is consistent with S+, i.e., ∀σ ∈ S+. σ |= I ,
2) I is consistent with S−, i.e., ∀σ ∈ S−. σ 6|= I , and
3) I is consistent with SH , i.e., ∀(σ1, σ2) ∈ SH , σ1 |= I

implies σ2 |= I .



We employ the widely-used Houdini algorithm [33] for syn-
thesizing conjunctive invariants consistent with Cex. Initially,
I = p1∧ · · ·∧pn and we remove all atomic predicates p from
I that violate a positive example (i.e., ∃σ ∈ S+.σ 6|= p) to
derive the largest conjunctive formula I that is consistent with
S+. Then, for every (σ1, σ2) ∈ SH that is not satisfied by
I , indicating that σ1 |= I and σ2 6|= I , it adds c2 as a new
positive counterexample to S+ to enforce σ2 to satisfy I , as
otherwise I will not be consistent with SH . Furthermore, we
repeat these two steps until a fixed point is reached, resulting
in the largest conjunctive set that is consistent with S+ and
SH . Finally, we verify if I satisfies S−. If it does, then I
represents the formula that is consistent with Cex; otherwise,
no consistent conjunctive formula based on AP exists. By
definition, if there exists no counterexample that violates the
conditions (1) and (2), the conjectured invariant I is no other
than a packet invariant. As proved in [35], the algorithm
ensures convergence, or it reports that no conjunctive invariant
exists over the provided atomic predicates.

C. Validator

The role of the validator is to verify whether the conjectured
formula I , satisfies the conditions (1) and (2) of packet invari-
ant. Since the P4 language does not contain loop instructions,
the only component that may contain a loop is the parser.
According to the P4 specification [39], the hardware may
limit the max number of times a packet can visit a parser
state. Therefore, infinite loops are impossible. As a result,
we follow the unrolling technique used in bf4 [8]. By taking
advantage of the loop-free feature of P4, we can encode the
conditions of packet invariant into SMT formulas, leveraging
the classic program verification approach [26], [28], and check
their satisfiability using SMT solvers. Similar to the approach
used in p4v [10] and bf4 [8], we expand the application of
tables into nondeterministic decision processes for all actions,
assuming that all rules are possible.

V. IMPLEMENTATION

In this section, we present the detailed implementation of
P4Inv. The implementation comprises roughly 10,000 lines of
code, written in C# and C++. Along with the implementation
for the validator, atomic predicates and invariant generator, we
describe P4Inv’s noteworthy verification features.

To verify the validity of the packet invariant, namely con-
ditions (1) and (2), P4Inv employs a two-step process. Firstly,
similar to p4v [10], it translates the P4 code into an interme-
diate representation called Boogie [40]. Then, it utilizes the
Boogie verifier [40] to encode the conditions as SMT formulas
and uses the Z3 solver [41] to check their satisfiability. Our
translator is implemented as a separate backend to p4c, the P4
compiler suite. The implementation of the atomic predicate
generator is integrated with the translator since both require
traversing the P4 syntax tree. For the invariant generator, we
build it upon the Sorcar implementation [35], which is an
extension of Houdini algorithm [33] that aims to generate
tighter conjunctive formulas based on heuristics. Furthermore,

we adapt its implementation to be compatible with the latest
version of the Boogie verifier.

A. Verification Features

To facilitate network functionality verification of stateful P4
programs, P4Inv offers different features as follows.

Assertion annotation. Network programmers can use P4Inv
to query general security and functionality properties using
assertions. Line 36 of Fig. 2 illustrates how developers can
annotate P4 programs with the @assert keyword to indicate
intended behavior. The assertion language syntax currently
supports full boolean expression features in P4, allowing pro-
grammers to write properties similar to P4 branch conditions.
This feature relieves programmers of learning other domain-
specific languages.

Assumption annotation. Bug-free P4 programs can be
difficult to code due to the non-deterministic contents of
incoming packets in actual environments. In specific cases, we
may only expect switches to work as intended in particular
situations. For example, we may not anticipate malicious
entities in a fail-recover consensus protocol. To account for
this, P4Inv allows programmers to use the @assume keyword
to inject assumptions about the network environment during
verification. Consequently, program traces that violate the
assumed condition will not be considered in verification.

User-defined packet invariant. The manual specification
of a user-defined packet invariant is possible through P4Inv.
With the @invariant keyword, developers can specify packet
invariants manually. With this feature, expert knowledge can
be harnessed to enhance verification by specifying packet
invariants beyond the limits of the template presented in
Section IV-A, thereby further assisting the verification process.

B. Limitations

While P4Inv provides multiple verification features, it also
has limitations in its current version. To begin with, P4Inv
fully supports V1Model, but its support for TNA and PSA is
limited. This limitation arises from the fact that full support for
TNA and PSA necessitates more sophisticated modeling for
the ingress and egress process than the V1Model. Nonetheless,
we believe that the concept of packet invariant still functions
effectively even in these intricate architectures, and providing
full support for them is part of our future endeavors.

It is also important to note that for specific cases, the
packet invariant generation process in P4Inv may not be
general enough to cover them. However, it’s worth noting
that P4Inv suffices to verify stateful functionalities while
existing P4 verifiers fail to prove, as outlined in Section VI.
Additionally, allowing user-defined packet invariants enables
users to leverage expert knowledge to mitigate the situation.

VI. EVALUATION

In this section, we present our evaluation results and anal-
ysis, which demonstrates the effectiveness and efficiency of
P4Inv in verifying stateful P4 programs.



A. Evaluation Settings

Benchmark. To test P4Inv’s ability to verify stateful P4
programs, we collected five non-trivial benchmarks varying
size and complexity. These benchmarks implement stateful
network functionalities including consensus, load balancing,
and link recovery. These programs were obtained from the
open-source community. For each benchmark, we meticu-
lously examined its design and manually formalized safety
properties that we expect them to be satisfied. Currently we
only provide the common zeroing configuration to P4Inv.

Setup. We compared P4Inv with other state-of-the-art P4
verifiers, including:

• bf4 [8], a state-of-the-art verification approach for P4
programs that uses a mix of static verification techniques.

• p4v [10], an innovative verification approach for P4
programs that resolves verification conditions.

• Vera [11], a novel verification approach for P4 programs
that is grounded in symbolic execution.

For p4v, since it is not open-sourced, we followed its
approximate implementation introduced in [8]. For bf4 and
Vera, we leveraged the publicly released code. All experiments
in this section were conducted on a machine with an Intel(R)
Core(TM) i5-12400 2.50 GHz CPU and 32GB RAM.

B. Proving Safety Properties

With evaluations, we showcase the effectiveness of P4Inv
in verifying the correctness of stateful P4 programs.

Blink [14]. Blink is a data-driven mechanism that uses
characteristic failure signals to detect link failure and trig-
ger rerouting. As shown previously in Section III, P4Inv
successfully verifies the correct implementation of the sum
register by inferring packet invariant. Moreover, note that
we made slight modifications to the original version of the
Blink implementation. These modifications involve changing
the sliding window size in macro.p4 from 10 to 4 due to the
limitation of the backend solver and addressing the issue of
register index overflow (by introducing an additional branch
that ensures the indexing metadata will not go out of bounds).

P4xos [13]. The P4xos explores the utilization of a stateful
data plane to improve the performance of the Paxos protocol
[42]. Within the P4xos, there are multiple roles involved in
the protocol. In this study, our focus is on verifying the
correctness of the acceptor and learner. Additionally, note that
it is crucial to initialize the round registers with zero for the
proper functioning of P4xos, as illustrated in [13].

The role of the acceptor in the Paxos protocol is to
achieve agreement on a specific value. Each acceptor is tasked
with selecting and voting for a value to ensure consensus
is maintained for each instance. One important property of
the acceptor is that the stored consensus value round must
always be less than the current valid round. This ensures that
outdated messages are ignored, which is crucial for consensus.
However, proving the correctness of this property is non-trivial

due to the need to keep track of the round and value round
registers. By inferring packet invariant

∀i.registerV Round[i] ≤ registerRound[i],

P4Inv can successfully prove the safety property while bf4,
p4v and Vera failed to verify.

The learner’s role in the Paxos protocol is to collect votes
from acceptors and deliver the corresponding vote value once
a quorum (i.e., a majority of votes) is obtained for a specific
instance. In the implementation of the learner for P4xos, it
is important to ensure that no abnormal vote status will be
recorded, meaning that the number of votes should not exceed
the number of acceptors during any vote round. However,
we discovered a potential issue where malicious acceptor IDs
might be included in the packet, which would violate this
property. Nevertheless, P4Inv can prove a stronger version of
the property: when only valid acceptor IDs are assumed, the
vote statuses will remain valid regardless of the number of
packet processing times.

To verify this property, we introduce an additional branch
condition to the implementation that accepts only valid IDs.
By effectively inferring packet invariant

∀i.registerHistory2B[i] ≤ MAX ACCEPTOR NUM,

P4Inv can ensure the validity of the safety property.
P4NIS [12]. The Processors based Network Immune

Scheme (P4NIS) leverages the stateful data plane to protect
against packet eavesdropping. This scheme incorporates three
defense lines. The first line of defense employs load balancing
to distribute packet traffic across various network links. The
second line of defense focuses on encrypting the port fields
of incoming packets. Finally, the third line of defense utilizes
existing encryption measures.

For P4NIS, we focus on verifying the correctness of the
first line of defense, which utilizes a register called count to
distribute packets in a circular manner. It is crucial to guarantee
that this defense should not entail implicit drops, as this is
a common bug in P4 programs and can negatively impact
subsequent defense lines. However, if the value in the count

register is incorrectly configured (i.e., a value that exceeds
the number of available circular ports), it can lead to implicit
drops. Nonetheless, this line of defense does not trigger
any implicit drops when provided with zeroing configuration.
P4Inv successfully verifies this property by inferring

count[0] ≤ NUM PORTS.

On the other hand, bf4, p4v and Vera failed to verify the
property and produce false positives.

Fast Reroute [15]. The benchmark [15] implements a fast
in-network failover mechanism in P4 without control plane
interference. This mechanism utilizes the stateful feature of
P4 to indicate the availability status of ports. Additionally, we
added minor modifications to the implementation by utilizing
P4 registers to record the reroute status of packets, which
reduces the number of bits transmitted in the network.



TABLE I
RESULTS FOR VERIFICATION OF STATEFUL P4 PROGRAMS.

Benchmark P4Inv Bf4 P4v Vera
Blink [14] 3 7 7 7

P4xos-acceptor [13] 3 7 7 7
P4xos-learner [13] 3 7 7 7

P4NIS [12] 3 7 7 7
Fast Reroute [15] 3 7 7 7

3: A tool successfully validates the safety property.
7: A tool reports a spurious counterexample.

An essential requirement of the fast reroute mechanism is
to ensure that a packet is transmitted through the parent link
or the available links configured for rerouting. By effectively
discovering the following packet invariant

∀i.pktcurr[i] ≤ PORT,

P4Inv is able to prove the safety property while other P4
verifiers fail to do so.

Effectiveness. Table I presents the description and evalua-
tion results in detail for the benchmark. The symbol 3 denotes
a successful proof of the corresponding safety property by
the tool, whereas the symbol 7 signifies a false positive (i.e.,
the tool reports a spurious counterexample that will not occur
under the configuration).

The results presented in Table I indicate that P4Inv outper-
forms existing verifiers in validating the functional property
of stateful P4 programs.

Among the compared verifiers, none of them succeeded in
verifying the correctness of stateful network functionalities.
Although they support verification for P4 programs, they
overestimate the register states of P4 programs by always
assuming that they are non-deterministic during every packet
processing. Due to their inability to trace the states, they
cannot accurately capture the behavior of stateful P4 programs.
Hence, they generate false positives.

On the other hand, P4Inv accurately verifies the safety
properties of stateful P4 programs, effectively validating all
anticipated behaviors. Verifying such queries requires it to
infer the precise range of registers, track the interactions
between registers, and reason about the complex state op-
erations for each packet processing, as the packet invariants
indicated. P4Inv captures the interactions between states and
the P4 program accurately by effectively discovering packet
invariants, and consequently solving the verification task.

Efficiency. All verification tasks finish in less than 6 seconds
except for Blink. P4Inv takes about 7 hours to verify the
correctness of Blink. We surmise that the time cost may
result from the presence of numerous states (on the order
of 10k register elements) and the requirement for complex
invariants to verify the property. However, it is important
to note that even when provided with the correct invariant
directly, meaning that the program verification is done solely
with the Boogie verifier backend, it still takes over an hour
to prove the safety property. Consequently, we conjecture that
the inherent complexity of the verification task contributes to

the relatively long proofing time. For the rest of the cases,
P4Inv is able to verify their correctness efficiently.

C. Case Study: switch.p4

As far as we know, P4Inv is the first tool to use packet
invariant generation for correctness verification of stateful
P4 programs. However, in this section, we experimentally
compared P4Inv with bf4, p4v and Vera to gain confidence in
its verification capabilities for finding bugs of P4 programs.

Our experiment is conducted on switch.p4, which is a
representative open-source P4 program that comprises over
6000 effective lines of code. switch.p4 is an industrial-grade
router implementation containing complex packet processing
operations. In the experimental setting, we checked for the
common P4 program bug “invalid header”. We adopted the
definition of invalid header introduced in [8] and imple-
mented the corresponding assertion instrumentation technique
for P4Inv.

P4Inv, bf4 and p4v all successfully confirm the existence
of invalid accesses for 32 headers, while reporting safe for
the remaining ones. It takes 82s for bf4 to verify switch

.p4 while p4v takes about 1 minute. For P4Inv, verifying
the invalid accesses takes about 3 minutes. For Vera, it takes
about 10s for a concrete snapshot of switch.p4, whereas
identifying all invalid accesses takes over 25 minutes.

As a result, P4Inv is capable of effectively and efficiently
verifying P4 programs compared to existing P4 verifiers. Bf4
and the approximation implementation for p4v optimize the
control flow graph of P4 programs using various techniques,
such as constant propagation, local copy propagation [43],
and domain-specific slicing to achieve better efficiency. P4Inv,
bf4 and p4v utilize the classic program verification technique
[26], [28]. Vera utilizes symbolic execution and is effective
in identifying all program paths that lead to vulnerabilities.
Nevertheless, as indicated in [11], it might encounter the
path explosion issue inherent in symbolic execution, hindering
complete code coverage, especially for large P4 programs.

VII. CONCLUSIONS

This paper introduces P4Inv, an automated verification tool
designed for stateful P4 programs. Additionally, we propose
a novel concept called packet invariants for verifying stateful
P4 programs. To the best of our knowledge, this is the first
attempt to employ domain-specific invariants in the verifica-
tion of P4 programs. Furthermore, we present an algorithm
that efficiently infers packet invariants through a data-driven
approach. Our evaluation showcases the effectiveness of P4Inv
in verifying stateful P4 programs.

The authors have provided public access to their code and
data at https://thufv.github.io/research/p4inv.
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