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Abstract We investigate a first-order array theory of bounded elements. This theory
has rich expressive power that allows free use of quantifiers. By reducing to weak
second-order logic with one successor (WS1S), we show that the proposed array
theory is decidable. Then two natural extensions to the new theory are shown to be
undecidable. A translation-based decision procedure for this theory is implemented,
and is shown applicable to program verification.
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1 Introduction

It is common in programming that we want to count the number of different elements
in an array. Consider the following pseudo code:

Input a : array of [0..255]
for i← 0 to 255 do b [i] ← 0;
for i← 0 to |a| − 1 do b [a[i]] ← 1;
k← 0;
for i← 0 to 255 do
k← k+ b [i];

where a is an array of bytes and |a| denotes the size of a. The array b is a list of
indicators. b [v] indicates whether there is an element in a with the value v. The time
complexity of this program is O(|a|).

After executing the program, we would like to see that the following property
hold: b [v] = 1 if and only if there is an index i such that a[i] = v. More formally, it
must hold that

∀v ∈ [0, 255]. (b [v] = 1 ↔ (∃i.a[i] = v))

This gives a formula in array theory.
Array theory in its most general form is undecidable. Various decidable fragments

have been studied by researchers. Quantifier-free array theory fragments are con-
sidered in [25, 26], etc. In their works, arrays are often treated as uninterpreted
functions. Existing decision procedures for uninterpreted functions can be used to
decide the satisfiability of array formulas. In [3, 10], array formulas with restricted
use of quantifiers are discussed. Instantiation strategies are proposed to convert
quantified formulas to equisatisfiable quantifier-free ones. Array theories with re-
stricted use of quantifiers could also be found in [14] and [2] where the satisfiability
of array formulas is reduced to the reachability problem of counter automata. In
these approaches, the decidable fragments are very restrictive. Arbitrary quan-
tification induces undecidability, and nested reads is allowed in few of the fragments
with quantifiers.

We consider the theory of array with bounded elements in this paper. In our
theory, an array can have arbitrarily large but finite size. Its elements, however, must
be bounded. Quantifiers can be freely used in our first-order theory. We show that
the proposed array theory with bounded elements is decidable. Using this theory,
program properties, which cannot be verified by existing fragments, can be specified
and verified. Particularly, the sample formula is in our decidable fragment.

In our theory, bounded elements reflect data storage format in the physical world.
In current computer systems, primitive data types are actually stored with a bounded
size. For example, variables of the int type are actually stored in most systems as
32-bit integers. Our array theory of bounded elements is surely a realistic abstraction
of the array data type.

Adopting bounded elements moreover relieves us from the imposed restriction of
decidable fragments in previous theories. In the array theory of bounded elements,
arbitrarily quantified first-order formulas are decidable. Nested reads do not induce
undecidability either. Both can be freely used in array formulas without incurring
computability issues.



Array Theory of Bounded Elements and its Applications 381

In addition to its generality, another significant advantage of adopting the array
theory of bounded elements is its simplicity. It is almost standard to establish the
decidability result by reducing it to WS1S. Since decision procedures for WS1S are
publicly available (for example, Mona in [20]), our reduction immediately gives a
decision procedure for the array theory of bounded elements.

We also discuss two natural extensions to the array theory of bounded elements.
Our conclusion is that both unbounded elements and linear arithmetic on indices
would introduce undecidability. We show the arrays with unbounded elements is
undecidable by reducing from the Hilbert’s tenth problem. For arrays of bounded
elements, the undecidability result of linear arithmetic on array indices is somewhat
surprising. We show that multiplication is expressible with linear arithmetic and
arrays of bounded elements. Hence the Hilbert’s tenth problem can be reduced to
the extended theory.

Towards the practical interests of the new theory, a translation-based decision
procedure is implemented. We demonstrate its applications by verifying some array-
manipulating programs, for instance, a sorting algorithm. Experimental results show
this new theory is quite helpful in expressing and verifying complex array properties.
Some of those properties can not be formalized or verified by existing array theories.

A preliminary version of this research was published in [29]. A main drawback
of the previous work is its lack of necessary proofs for the translation as well as
implementation for the proposed decision procedure. In this paper, we add the
proofs that were ignored in [29]. Moreover, we report our new results on the
implementation. With this implementation, we are able to show the usability of the
proposed theory in program verification.

This paper is organized as follows: First, we give the preliminaries in Section 2.
Then the array theory UABE is presented in Section 3. In Section 4, we show that the
satisfiability of UABE is decidable by reducing it toWS1S. The translation procedure
is also formalized. A couple of extensions are discussed in Section 5. It is shown
that both extensions lead to undecidability. Experiments and applications in program
verification are given in Section 6. Relatedworks are compared in Section 7, followed
by the conclusion.

2 Preliminaries

2.1 WS1S

Weak Second-order logic with One Successor (WS1S) was first discussed in [6]. It is
a second order logic with the signature {=,∈,S}. There are first-order and second-
order variables in WS1S. Using V1,V2 to denote them respectively, the minimal
syntax of WS1S is defined as:

φ ::= (p = S(q)) | p ∈ X | ¬φ | φ ∨ φ | ∃p.φ | ∃X.φ, p,q ∈ V1, X ∈ V2

An interpretation is an assignment on variables. First-order variables are in-
terpreted over the set of natural numbers N while second-order variables are
interpreted over f inite subsets of N, i.e. P(N). S is the successor function on N.
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∈ is the membership relation on N× P(N). Given an interpretation σ , the semantics
of WS1S is defined as:

σ |= (p = S(q)) ⇐⇒ σ(p) = σ(q)+ 1
σ |= p ∈ X ⇐⇒ σ(p) ∈ σ(X)

σ |= ¬φ ⇐⇒ σ � φ

σ |= φ1 ∨ φ2 ⇐⇒ σ |= φ1 or σ |= φ2

σ |= ∃p.φ ⇐⇒ σ [p← i] |= φ, for some i ∈ N

σ |= ∃X.φ ⇐⇒ σ [X ← M] |= φ, for some f inite set M ⊆ N

Based on the minimal syntax, other predicates such as “<”, “⊆” can be defined:

p < q ⇐⇒ ∀X.(q ∈ X ∧ ∀r.(S(r) ∈ X → r ∈ X)→ p ∈ X)

X ⊆ Y ⇐⇒ ∀p.(p ∈ X → p ∈ Y)

A first-order variable plus a constant natural number is expressible by nesting “S”.
I.e, i+ 3 is equivalent to S(S(S(i))).

Büchi proved in [6] that WS1S is decidable. Technically, there is a correspon-
dence between WS1S formulas and regular languages. Some verification tools are
developed, such as Mona in [16, 20]. Given a WS1S formula, Mona is able to give a
satisfiable, valid or unsatisfiable answer as well as a satisfying-example
or a counter-example.1

2.2 Terminology

In this paper, the domains of arrays, array indices and array elements are denoted
by A, N, and Zn respectively. Array indices are natural numbers in N = {0, 1, 2, . . .}.
Given a fixed n, array elements are fixed-size integers in Zn = {0, 1, . . . , 2n − 1} and
arrays are finite sequences of elements, i.e. A = Z∗n. We assume for simplicity that
Zn contains only non-negative values. This is not a limitation because the element
theory could be more general as long as it could be encoded in WS1S by bit blasting.

For λ ∈ {N,Zn,A}, we use V(λ) to denote the set of variables whose type is λ.
Specially, V = V(N) ∪ V(Zn) ∪ V(A) is the set of all variables. For convenience, the
following convention is followed throughout this paper:

i, j,k ∈ V(N)

x, y, z ∈ V(Zn)

a,b ∈ V(A)

c ∈ N

l ∈ Zn

Without causing ambiguity, Boolean values are expressed as 0 and 1.
Given an array variable a, we use a[i] to denote the array read which returns the

i-th element of a, and a{i← x} the array write which returns a new array obtained by
replacing the i-th element with x.

1A satisfying-example is an interpretation that satisfies the formula while a counter-example is one
that falsifies the formula. The result of valid means all interpretations are satisfying-examples
while unsatisfiablemeans all interpretation are counter-examples. satisfiablemeans some
interpretations satisfy the formula but some falsify it.
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To distinguish functions and predicates on different domains, a subscript ·n is used
to denote those on Zn. For instance, the addition function on Zn is denoted by “+n”.

3 The Theory of UABE

The “read-over-write” axioms for array theory is introduced in [22] and accepted by
almost all array theories:

∀a, i, j, x. (i = j)→ a{i← x}[ j] = x
∧ (i �= j)→ a{i← x}[ j] = a[ j]

UABE is a single dimensional extensional array theory. In our array theory, the
index domain is not bounded while the element domain is bounded, so we call it
Unbounded Array with Bounded Element (UABE). It consists of:

– the index theory TN: whose domain is N and its signature is {S, <,=};
– the element theory TZn : whose domain is Zn and its signature is {+n,<n,=n};

3.1 Syntax

The minimal syntax of UABE is shown in Table 1. Predicates and functions on Zn is
denoted by the subscript n, for instance “=n”. A special predicate “�” is defined on
N× Zn, which establishes the equality between N and Zn.

The size of an array is considered as one of its attributes, denoted by |a|.
Although in many other works, arrays are treated as uninterpreted functions for
which the concept of size is not clear. We think array size is helpful for writing
precise array properties. For instance, each array a has an attribute a.length
in Java. The property that a is sorted in ascending order could be formulated as
∀i, j : N. ((0 ≤ i < j < |a|)→ (a[i] ≤n a[ j])). Without this attribute, the sortedness
property could only be discussed in an interval [l, r] as in many related works.

In the index theory TN, constant offsets are allowed, such as i + 3. But additions of
two variables, such as i+ j, are forbidden. We will show later that allowing addition
of index variables leads to undecidability. UABE is extensional, i.e, equality over
array variables is allowed. For instance, “a and b are identical arrays” could be
formulated as a = b . The axiom of extensional is different from others because we
take into consideration the size of arrays:

a = b ⇐⇒ |a| = |b | ∧ ∀i.(i < |a| → a[i] = b [i])

Table 1 The minimal syntax of UABE

Identifier Definition Remarks

∼ ∈ {=,<} Comparisons on N

∼n ∈ {=n,<n} Comparisons on Zn

P := x ∼n y | x ∼n l | x =n y+n z | x =n a[i] Atomic formulas
i ∼ j | i ∼ c | i = j+ c | i = |a|
i � x | a = b | a = b{i← x}

F := P | ¬F | F1 ∧ F2 | ∃v : λ.F[v] v ∈ V, λ ∈ {N,Zn,A}
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Table 2 Semantics of UABE

(1) V |= (x ∼n y) ⇐⇒ μ(x) ∼ μ(y)
(2) V |= (x ∼n l) ⇐⇒ μ(x) ∼ l
(3) V |= (x =n y+n z) ⇐⇒ μ(x) = μ(y) + μ(z)
(4) V |= (x =n a[i]) ⇐⇒ (ν(i) < |τ (a)|) ∧ (μ(x) =

τ (a)ν(i))
(5) V |= (i ∼ j) ⇐⇒ ν(i) ∼ ν( j)
(6) V |= (i ∼ c) ⇐⇒ ν(i) ∼ c
(7) V |= (i = j+ c) ⇐⇒ ν(i) = ν( j)+ c
(8) V |= (i = |a|) ⇐⇒ ν(i) = |τ (a)|
(9) V |= (i � x) ⇐⇒ ν(i) = μ(x)
(10) V |= (a = b) ⇐⇒ τ (a) = τ (b)
(11) V |= (a = b{i← x}) ⇐⇒ τ (a) = τ (b){ν(i)← μ(x)}
(12) V |= ∃v.F[v] ⇐⇒ V |= F[v← p], p is type

consistent with v

(13) V |= ¬F ⇐⇒ V � F
(14) V |= F1 ∧ F2 ⇐⇒ (V |= F1) ∧ (V |= F2)

Unlike most of other decidable array theories, our array theory allows arbitrary
quantifiers on all index variables, element variables and array variables.

3.2 Semantics

A valuation2 for UABE is a triple V = (μ, ν, τ), where

– μ : V(Zn) �→ Zn assigns each element variable an integer in Zn,
– ν : V(N) �→ N assigns each index variable a non-negative natural number,
– τ : V(A) �→ Z∗n assigns each array variable a a f inite sequence of Zn, i.e. τ(a) =

a0, a1, . . . , aν(|a|)−1.

Given a finite sequence τ(a), we use |τ(a)| to denote the length of it, τ(a)p the p-th
element of it, and τ(a){p← v} a new sequence by replacing the p-th element of τ(a)
with v. Given a variable v in UABE, the value of v under the valuation V is denoted
by V(v).

The semantics of UABE is listed in Table 2. (1) and (2) are comparisons between
integer values. The semantics of adding two variables in Zn is defined in (3). Note
that x, y, z are all n-bit integers, a necessary condition for x =n y+n z evaluating
to true is that the sum does not exceed the range of n-bit integers. The semantics
enforces this because x is also interpreted over Zn and μ(x) < 2n. A note for (4) is
that array accessed by indices that are equal to or larger than |a| is not defined. For
example, if m ≥ |a|, then x = a[m] does not hold for any x since a[m] is not defined.
(8) actually defines the value of the variable |a| to be the length of τ(a). With rule
(9), a variable in N and a variable in Zn can be compared. Hence, the index theory
and the element theory are related, thus nested reads are possible. In rule (10), a = b
means the sequences of τ(a) and τ(b ) are identical, which implies |τ(a)| = |τ(b )|. The
semantics of existential quantifier is defined in (10). We say p, v are type consistent,
if p ∈ λ and v ∈ V(λ) for any λ ∈ {N,Zn,A}.

2For UABE we say valuation to distinguish from interpretation of WS1S.
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This semantic is defined conservatively. There are two kinds of undefined values in
the semantics and both result in false when evaluating the truth value. Undefined
values does not equal to any concrete value. Two undefined values are not equal,
either.

– Array reads with out-of-bound index are undefined. In practice, it reflects
memory access with an invalid address.

– The value of an arithmetic operation x+n y becomes undefined when V(x)+
V(y) exceeds 2n. In practice, it reflects possibly arithmetic overflow. For instance,
it is not expected that x+n 1 =n 0 evaluates to true when V(x) = 2n − 1.
Usually, overflow implies design error in the program. Moreover, the element
theory of UABE is actually parameterized. The addition +n could also be
defined modulo 2n.

When an atomic formula evaluates to false, the reason is that either the valuation
falsifies the formula or there is some term evaluates to undefined. This ambiguity
is inconvenient in verification. However, undefined values are produced when some
sanity conditions are violated. We can refine the formula by adding those conditions.
For instance, a[i] =n x is refined to i < |a| ∧ a[i] =n x and the latter one could be used
in verification.

Semantically, elements belonging to a are indexed from 0 to |a| − 1. Two arrays
are identical if they have the same size and their defined elements at the same
position are equal.

The size of an array is interpreted as the length of the sequence. It is finite but
could be arbitrarily large. For instance, the statement “for any natural number m,
there is an array a whose size is m and all elements in a are identically 0” can be
expressed in UABE as:

∀m : N. (∃a : A. (|a| = m ∧ (∀i : N.i < |a| → a[i] =n 0)))

Therefore, each UABE may have infinitely many models and its decidability is not
obvious.

3.3 Expressiveness

The syntax presented in Table 1 is minimal. Complex array properties can be formu-
lated with the help of that syntax. This section briefly demonstrate the expressiveness
of UABE:

– Boolean combinations of atomic formulas are expressible because {¬,∧} is
sufficient to express {∨,→,↔}.

– Universal quantifier is expressible since ∀v : λ.F[v] ⇐⇒ ¬(∃v : λ.¬F[v]).
– The minus function “−” is expressible since it can be converted to “+” by

transposing the negative terms. e.g. (x−n y =n z) ⇐⇒ (x =n y+n z).
– Comparison operations {≤,>,≥} on both index and element theory are express-

ible by using {¬, <,+}.
Nested reads is expressible. Although index and element terms are of different

types, we can compare them by using “�”. For example, the formula z =n a[a[i]] can
be written as: ∃v : N.(z =n a[v] ∧ v � a[i]).
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For convenience, while writing a UABE formula, we feel free to use any syntax
that has a logically equivalent formula in the minimal syntax. Then a lot of array
properties can be formulated. Here we list some useful examples:

– Distinct: All elements in the array a are distinct

∀i, j : N.(a[i] =n a[ j] → i = j)

– Sorted: An array a is sorted in ascending order

∀i, j : N. ((0 ≤ i < j < |a|)→ (a[i] ≤n a[ j]))
– Monotonic: Elements in the array a monotonically increase by 1 each step

∀i : N.(i+ 1 < |a| → a[i + 1] =n a[i] +n 1)

– Periodical: Elements in a repeats periodically with period T

∀i : N. (i+ T < |a| → a[i] =n a[i+ T])
– Partitioned:Elements with indices less than p are no larger than those with indices

greater or equal to p

∀i, j : N. (i < p ≤ j < |a| → a[i] ≤n a[ j])
– Fibonacci array: The array a is a Fibonacci array

(a[0] =n 1) ∧ (a[1] =n 1) ∧ ∀i : N. (i + 2 < |a| → a[i + 2] =n a[i] +n a[i + 1])
– Existence of the maximum element

|a| ≥ 0 → ∃x. ((∃i.a[i] =n x) ∧ ∀0 ≤ i < |a|.a[i] ≤ x)

– Strictly sorted arrays are distinct

∀i, j : N. ((0 ≤ i < j < |a|)→ (a[i] <n a[ j]))→ ∀i, j : N.(a[i] =n a[ j] → i = j)

– Also the example at the beginning of this paper

∀v : Zn.
(
(0 ≤ v ≤ 255)→ ((∃v′ : N.v′ � v ∧ b [v′] =n 1

)↔ (∃i : N.a[i] =n v)
))

There is no limit or restriction on using of quantifiers in UABE. We will see in
Section 6 that it is rather useful in program verification because many verification
conditions can be expressed directly.

4 Decidability

In this section, we show that the satisfiability and validity problem of UABE are
decidable and present a decision procedure by translating UABE formulas into
WS1S. For simplicity, it suffices to translate the minimal syntax.

4.1 Encoding of N, Zn and A Types in WS1S

Constants and variables of N type can be encoded directly because natural numbers
are in the domain of WS1S. This section mainly focuses on encoding Zn and A types.
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Notice that Zn elements can be viewed as n-bit non-negative integers. Consider a
constant or a variable t of type Zn. In the binary view, t = t[n−1]t[n−2] · · · t[0], where t[d]
is the d-th bit for d = 0, 1, . . . ,n− 1 and t[n−1] is the most significant bit. In WS1S, t
is encoded as a single set St such that

St = {d | t[d] = 1}

For instance, assume n = 4, the value x = 5 (in binary, 0101) is encoded as
Sx = {0, 2}.

For A type variables and constants, they are viewed as sequences of Zn ele-
ments. Their encoding is different. Given an array a, it is encoded as n finite sets
a(0), a(1), . . . , a(n−1) and one natural number |a|. Each set a(d) consists of all indices of
array elements whose d-th bit is 1. More formally:

a(d) = {i | a[i][d] = 1}

Notice that we are encoding each bit of all elements as a set. For example, assume
n = 4, an array a with the size of 2 and a[0] = 1, a[1] = 5 is encoded as a(0) = {0, 1},
a(1) = ∅, a(2) = {1} and a(3) = ∅.

Definition 1 (Value Encoding Function: δ) Given a UABE formula, the free
variable set is Y and they are encoded in WS1S as Y ′. A value encoding function
is a function δ that translate a valuation V (on Y) to an interpretation σV (on Y ′)
such that:

– For each variable i ∈ Y ∩ V(N): assume i is encoded by i′. Then it must hold that
σV(i′) = V(i).

– For each variable x ∈ Y ∩ V(Zn), assume x is encoded by Sx. Then it must hold
that σV(Sx) ⊆ {0, 1, . . . , n− 1} and ∀0 ≤ d < n.(d ∈ σV(Sx)↔ (V(x)[d] = 1)).

– For each variable a ∈ Y ∩ V(A): assume a is encoded by |a|, a(0), . . . , a(d−1).
Then it must hold that σV(|a|) = V(|a|), for 0 ≤ d < n, σV(a(d)) ⊆ {0, 1, 2, . . . ,
V(|a|)− 1} and

∀0 ≤ d < n, 0 ≤ i < σV(|a|).(i ∈ σV(a(d)))↔ (V(a[i])[d] = 1)

Here σV = δ(V). Intuitively, δ is a function that translate a valuation of UABE to
an interpretation of WS1S according to the encoding.

4.2 Encoding of Predicates and Functions in WS1S

Predicates and functions on N are encoded directly in WS1S. Moreover, the only
predicate over arrays is equality and it can be reduced to the equality over Zn

elements. So, in this section, we focus on predicates and functions in Zn.
Predicates on Zn are {=n,<n} and the only function is {+n}. We assume that x, y, z

are constants or variables of Zn type and x[d] is the d-th bit of x (similarly for y
and z). Based on the discussion in the previous subsection, x[d] can be encoded as a
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well-formed WS1S expression. For the predicates “=n” and “<n”, they can be
encoded in WS1S by bit-wise comparisons.

– Equality relation x =n y can be encoded in WS1S:

P=(x, y) ≡
n−1∧

d=0

(
x[d] ↔ y[d]

)

– Order relation x <n y can be encoded in WS1S:

P<(x, y) ≡
n−1∨

d=0

(

(¬x[d] ∧ y[d]) ∧
(

n−1∧

d′=d+1

(x[d
′] ↔ y[d

′])

))

Addition function “+n” is only allowed in the form of: x =n y+n z. Instead of
defining a function, we define a special predicate which formulates the ripple-carry
adder:

P+(x, y, z) ≡ ∃C.( ∧¬(0 ∈ C) ∧ ¬(n ∈ C)
∧n−1

d=0(d+ 1 ∈ C↔ d ∈ C ∧ y[d] ∨ d ∈ C ∧ z[d] ∨ y[d] ∧ z[d])
∧n−1

d=0(x
[d] ↔ ¬(d ∈ C↔ ¬(y[d] ↔ z[d]))))

These predicates are defined intuitively. Using V |=UABE f to denote that anUABE
formula f evaluates to true under the valuation V (similarly for “|=WS1S”), the
following lemmas hold.

Lemma 1 For all x, y of Zn type, all valuation V, it must hold

V |=UABE (x =n y) ⇐⇒ δ(V) |=WS1S P=(x, y)
V |=UABE (x <n y) ⇐⇒ δ(V) |=WS1S P<(x, y)

Proof P= and P< are just encoding of bit-wise comparisons, the conclusion is
obvious. ��

Lemma 2 For all x, y and z of Zn type, all valuation V:

V |=UABE (x =n y+n z) ⇐⇒ δ(V) |=WS1S P+(x, y, z)

Proof P+(x, y, z) formulates a ripple-carry adder. In its definition, C is the add-
carry. The first line restricts the sum not to exceed 2n − 1. The second line constrains
C[d+1] = 1 if and only if at least two of y[d], z[d],C[d] are 1. The third line constrains
x[d] = (y[d] xor z[d] xor C[d]). It is the encoding of binary (equality with) addition. ��

In WS1S, user can not define new predicates. However, P=(x, y), P<(x, y) and
P+(x, y, z) are just defined terms. They can be replaced by their body of definition.
The resulted formulas are also well-formed in WS1S.

4.3 Translation

A translation rule is denoted by a horizontal line which separates the original and
translated formula. Above the line is the original formula in UABE, while the
translated formula in WS1S is shown below the line.
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In the translation, each index variable i in UABE is translated to a variable in
WS1S (also denoted by i); each element variable x is translated to a set Sx and each
array variable a corresponds to a variable |a| and n sets: a(0), . . . , a(n−1).

Our translation is applied in 2 phases: (1) translating the atomic formulas; (2)
translating the quantifiers and Boolean structures.

4.3.1 Translation of Atomic Formulas

Translation rules for atomic formulas are listed in Table 3. Above the lines are all the
possible atomic formulas in the minimal syntax. Each rule is tagged with a number.
Rule (x.y) in this table corresponds to item (x) in Table 2. Among those rules, (1.1),
(1.2), (2.1), (2.2), (3), (4) are comparisons or addition on Zn, defined with the help of
predefined terms P=, P< and P+. In (4), we add the sanity condition for array reads,
i < |a|. (5), (6), (7), (8) are translated without modification since they are already
well-formed in WS1S. For (9), to translate the atomic formula i � x, the difficulty
is type inconsistency between i and x: i ∈ V(N) but x ∈ V(Zn). With the help of a
specialized array A�, we replace the comparison between i and x to that of A�[i]
and x. In (10), a = b implies that the size of a,b are identical. In (11), array a and b
are identical except at index i.

The array A� is used to establish the connection between N and Zn types. Notice
that Zn ⊆ N. A� is defined such that for indices i < 2n, i and A�[i] are equal in
value. To encode A� in WS1S, fortunately, we can avoid defining its elements
one by one. By observation, A(d)� is a set which does not contain {0, . . . , 2d − 1}
but contains {2d, . . . , 2d+1 − 1}. Furthermore, it is periodical: for numbers i ≥ 2d+1,
i ∈ A(d)

� ⇐⇒ (i− 2d+1) ∈ A(d)
� . For example, A(0)

� contains all the 0-th (lowest) bit
of array [0, 1, 2, . . . , 2n − 1], i.e. A(0)

� = {1, 3, 5, 7, . . .}. Thus A(d) is defined directly in
WS1S:

∀i. ((i < 2d → i /∈ A(d)
� ) ∧ (2d ≤ i ∧ i < 2d+1 → i ∈ A(d)

� )
)

∧ ∀i. (i + 2(d+1) < 2n → ((i ∈ A(d)
� )↔ (i+ 2(d+1) ∈ A(d)

� ))
)

∧ ∀i. (i ≥ 2n → i /∈ A(d)
�

)

Use � to denote the conjunction of |A�| = 2n and all the definition of A(d) (d =
0, 1, . . . ,n− 1).

Lemma 3 Formula � is satisf iable.

Table 3 Translation rules for atomic formulas

(1.1)
x =n y
P=(x, y)

(1.2)
x <n y
P<(x, y)

(2.1)
x =n l
P=(x, l)

(2.2)
x <n l
P<(x, l)

(3)
x =n y+n z
P+(x, y, z)

(4)
x =n a[i]

(i < |a|) ∧ P=(x, a[i]) (5)
i ∼ j
i ∼ j

(6)
i ∼ c
i ∼ c

(7)
i = j+ c
i = j+ c

(8)
i = |a|
i = |a|

(9)
i � x

i < 2n ∧ P=(A�[i], x) (10)
a = b

(|a| = |b |) ∧ (∀i.(i < |a|)→ P=(a[i],b [i]))
(11)

a = b{i← x}
(i < |a|) ∧ P=(a[i], x) ∧ |a| = |b | ∧ (∀ j.( j �= i ∧ j< |a|)→ P=(a[ j],b [ j]))
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Proof Let V(A�) = [0, 1, . . . , 2n − 1], Then δ(V) |=WS1S �. ��

Denote the interpretation above that satisfies � by σA, i.e. σA |=WS1S �. Denote
the translation procedure for atomic formulas by 	a(·). Given two interpretations
α and β , use α ◦ β to denote the composed interpretation such that for all x,
(α ◦ β)(x) = α(β(x)). Notice that if α and β are defined on disjoint variable sets,
then α ◦ β = β ◦ α.

Lemma 4 For all valuations V, σA ◦ δ(V) |=WS1S �.

Proof Because � is defined on |A�| and A(d)
� only. For each free variable v in

�, (σA ◦ δ(V))(v) = σA(v). We already know σA |=WS1S �, therefore this lemma
holds. ��

Theorem 1 If P is an atomic formula, then for all valuation V:

V |=UABE P ⇐⇒ σA ◦ δ(V) |=WS1S (� ∧	a(P))

Proof By Lemmas 1 and 2, we know that V |=UABE P ⇐⇒ δ(V) |=WS1S 	a(P)
holds for rules (1.1), (1.2), (2.1), (2.2), (3). It also holds for rules (4), (5), (6), (7) and
(8) according to the semantics. Furthermore, V |=UABE P ⇐⇒ σA ◦ δ(V) |=WS1S

	a(P) for all these rules.
For the rule (9), by construction, we know for all 0 ≤ l < 2n, σA |=WS1S 	a(l �

A�[l]). If V is a model for i � x, then i < 2n should hold and A�[i], x should be
equal, which means σA ◦ δ(V) |=WS1S i < 2n and σA ◦ δ(V) |=WS1S Pn(A�[i], x).
Thus σA ◦ δ(V) |=WS1S 	a(i � x). Along with the fact σA |=WS1S �, the theorem
holds.

According to the semantics of equalities over array variables and array writes, it
can be proven that the theorem holds for rules (10) and (11). ��

4.3.2 Translation of Complex Formulas

Translation of quantifiers and Boolean structures are described recursively. Use	(·)
to denote the total translation function. If F is an atomic formula, then 	(F) =
	a(F), otherwise 	(F) is obtained by exhaustively applying the translation rules to
F. Among the rules listed in Table 4, (12.1), (12.2) and (12.3) handle quantifiers and
(13), (14) handle Boolean structures of formulas.

Theorem 2 Given any UABE formula f and any valuation V,

V |=UABE f ⇐⇒ σA ◦ δ(V) |=WS1S � ∧	( f )

Table 4 Translation rule for complex formulas

(12.1)
∃x.F

∃Sx .	(F)
(12.2)

∃i.F
∃i.	(F)

(12.3)
∃a.F

∃ (|a|, a(0), . . . , a(n−1)
)
.	(F)

(13)
¬F
¬	(F)

(14)
F1 ∧ F2

	(F1) ∧	(F2)
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Proof It suffices to show that V |=UABE f if and only if (i) σA ◦ δ(V) |=WS1S � and
(ii) σA ◦ δ(V) |=WS1S 	( f ). Lemma 4 ensures (i), then we prove (ii) by induction.

– If f is an atomic formula, (ii) holds by Theorem 1.
– If f is an existential quantified formula ∃x.g. It is translated to ∃Sx.	(g).

The inductive hypothesis is V |=UABE g ⇐⇒ σA ◦ δ(V) |=WS1S 	(g). It is known
that x is a free variable in g ⇐⇒ Sx is a free variable in 	(g). Then V |=UABE

∃x.g ⇐⇒ there exists a constant c such that V |=UABE g[x/c] ⇐⇒ there exists
a constant Sc such that σA ◦ δ(V) |=WS1S 	(g)[Sx/Sc] ⇐⇒ σA ◦ δ(V) |=WS1S

∃Sx.	(g). Here g[x/c] is the formula obtained by replacing all free occurrences
of x to c in g. Sc is obtained by encoding c.

– If f is a negation ¬g. It is translated to 	(¬g) = ¬	(g). From the inductive hy-
pothesis we know V |=UABE g ⇐⇒ σA ◦ δ(V) |=WS1S � ∧	(g). Along with
Lemma 4, we know V |=UABE ¬g ⇐⇒ σA ◦ δ(V) |=WS1S � ∧	(¬g).

– If f is a conjunction g1 ∧ g2, the conclusion can be proven similarly.

The Boolean structure of any formula has finite levels, therefore we know that (ii)
holds for all well-formed formulas. ��

Theorem 2 explains the fact that given a UABE formula f and a valuation V,
we can always find an interpretation σV for � ∧	( f ) such that V |=UABE f iff
σV |=WS1S � ∧	( f ).

Similarly, we can define the value decoding function which maps an interpretation
of WS1S to a valuation of UABE.

Definition 2 (Value Decoding Function: δ−1) Given a WS1S formula, the free
variable set is Y ′ and assume they are encoded from UABE variable set Y. A value
decoding function is a function δ−1 which translate an interpretation σV (on Y ′) to a
valuation V (on Y) such that:

– For variable i ∈ Y ∩ V(N): assume i is encoded by i′. Then it must hold that
V(i) = σV(i′).

– For variable x ∈ Y ∩ V(Zn), assume x is encoded by Sx. Then it must hold that
∀0 ≤ d < n.(V(x)[d] = 1 ↔ d ∈ σV(Sx)).

– For variable a ∈ Y ∩ V(A): assume a is encoded by |a|,a(0), . . . , a(d−1). Then it
must hold:

V(|a|) = σV(|a|)∧ ∀0 ≤ d < n, 0 ≤ i < V(|a|).
(
V(a[i])[d] = 1

)
↔ (i ∈ σV(a(d)))

Note that δ is an injection but δ−1 is not. If some Sx contains some elements that
are no less than n, they will be ignored when decoding. So δ−1 is not the inverse
function of δ. However, it is correct that

Lemma 5 For all valuation V, δ−1(δ(V)) = V.

Proof This lemma is correct by definition. ��
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Theorem 3 Given any UABE formula f and any interpretation σV such that
σV |=WS1S �, then it holds that:

δ−1(σV) |=UABE f ⇐⇒ σV |=WS1S 	( f )

The proof is similar to that for Theorem 2. We do not repeat it here.
Theorems 2 and 3 actually show the fact that for each UABE formula f , there

is a correspondence between valuations for f and interpretations for 	( f ) that
satisfies �.

Theorem 4 Given any UABE formula f , f is satisf iable if and only if � ∧	( f ) is
satisf iable, f is valid if and only if �→ 	( f ) is valid.

Proof We first prove that f is satisfiable if and only if � ∧	( f ) is. If f is sat-
isfiable, then there exists some V such that V |=UABE f . By Theorem 2, we know
σA ◦ δ(V) |=WS1S � ∧	( f ). For the other direction, if there is some σV such that
σV |=WS1S � ∧	( f ), then it is obvious that σV |=WS1S �. We know by Theorem 3
that δ−1(σV) |=UABE f .

For the other half of this theorem, f is valid ⇐⇒ ¬ f is unsatisfiable ⇐⇒ � ∧
¬ f is unsatisfiable ⇐⇒ ¬(�→ f ) is unsatisfiable ⇐⇒ �→ f is valid. ��

Theorem 5 The satisf iability problem for UABE is decidable.

Proof The function 	(·) is a linear translation procedure. Because the satisfiability
problem for WS1S is decidable, so is UABE. ��

If the size of a formula is measured by the number of nodes in the syntax tree, the
translated formula is at most O(n) times larger than the original one. Such conclusion
can be obtained by analyzing each translation rule.

An observation is that the element domain of UABE could be generalized. For
instance, negative numbers can be encoded in Zn using a sign bit. Those predicates
P=, P< and P+ have to be refined accordingly. In fact, the essential requirement for
the element domain is that it can be encoded in WS1S.

5 Extensions

In this section, we consider extending UABE to enrich its expressiveness. Currently,
there are two major restrictions for UABE, one is that the array elements are
bounded and the other is that addition is not allowed on two index variables. So
the natural extensions are:

– Let the domain of the element theory be unbounded.
– Allow addition of index variables such as k = i+ j.

In both cases, we prove their satisfiability problem are undecidable by reducing the
Hilbert’s tenth problem [21] to them.
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Hlibert’s Tenth Problem The Hilbert’s Tenth Problem is a well-known undecidable
problem. In short, it is the problem of deciding whether the following equation has
any (non-negative) integer solutions:

p(x1, x2, . . . , xn) = 0

here p is a polynomial of integer coefficients.
To reduce the Hilbert’s Tenth Problem to the extended array theory, what we

need to do is to define, in the extended theory, a formula ϕ+(k, i, j)which is satisfiable
if and only if k = i + j, and a formula ϕ×(k, i, j) which is satisfiable if and only if k =
i× j. Here, k, i, j are non-negative integer variables. Furthermore, we can assume
k, i, j are strictly positive because the definition is trivial when one of them is 0.

5.1 Extend Array Elements to N

We call this extended theory UAUE (Unbounded Array with Unbounded Ele-
ments). Knowing that i, j,k are positive, we can define ϕ+(k, i, j) and ϕ×(k, i, j) as
follows:

ϕ+(k, i, j) ≡ ∃a. |a| > j∧ a[0] = i ∧ ∀p. (p < j→ a[p+ 1] = a[p] + 1)∧ k = a[ j]
ϕ×(k, i, j) ≡ ∃a,b . a[0] = i ∧ b [0] = 0 ∧ a[k] = 0 ∧ b [k] = 0

∧ ∀p. (b [p] > 0 → a[p+ 1] = a[p] ∧ b [p+ 1] = b [p] − 1)

∧ ∀p. (a[p] > 0 ∧ b [p] = 0 → a[p+ 1] = a[p] − 1 ∧ b [p] = j− 1)

∧ ∀p. (a[p] = 0 ∧ b [p] = 0 → k ≤ p)

Lemma 6 ϕ+(k, i, j) is satisf iable if and only if k = i+ j.

Proof ϕ+(k, i, j) is constructed in such a way that a[p] = i+ p holds for all p ≤ j.
So a[ j] = i+ j. If ϕ+(k, i, j) is satisfiable, then k = a[ j] = i + j, and vice versa. ��

Lemma 7 ϕ×(k, i, j) is satisf iable if and only if k = i × j.

Proof ϕ×(k, i, j) is constructed in such a way that a[p] × j+ b [p] + p = i × j holds
for all 0 ≤ p ≤ i × j. Initially, a[0] = i and b [0] = 0. Then the value of a[p] × i + b [p]
decreases by 1 each step when p increases. k is the minimal index such that a[k] =
b [k] = 0. From the equation we know 0× j+ 0+ p = p = i × j. Therefore, when
ϕ×(k, i, j) is satisfiable, we have k = i × j. Vice versa. ��

Theorem 6 The satisf iability problem of UAUE is undecidable.

Proof An equation that contains polynomial of variables can be formulated with the
help of ϕ+ and ϕ×. Thus the Hilbert’s Tenth Problem is reducible to the satisfiability
problem of UAUE. Since the former one is undecidable, so is the latter one. ��
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5.2 Allow Additions on N Variables

We call this extended theory UABE+. If we extend the theory of index to allow ad-
ditions, ϕ+(k, i, j) can be defined directly as k = i + j. It remains to define ϕ×(k, i, j).
At first, we assume i, j are both no less than 2.

The proof in the previous section can not be applied because it relies on the fact
that elements of an array can be arbitrarily large, but it is not the case for UABE+.
However, we can assume the domain of array element contains at least two values,
say {0, 1}. Then an array a can be treated as a finite set of integers which consists of
all the indices where the corresponding array element is 1. Use â to denote the set
represented by the array a. i.e: â = {i ∈ N | a[i] = 1}.

In this section, we also use:

– [x, y] to denote the least common multiple of x and y;
– 〈x〉 to denote the set {α · x | α ∈ N}, i.e, all multiples of x;
– 〈x, y〉 to denote the set {α · [x, y] | α ∈ N}, i.e, all multiples of [x, y];
It is obvious that: ∀x, y.〈x, y〉 = 〈[x, y]〉 = 〈x〉 ∩ 〈y〉

A finite set P is a pref ix of some set Q (finite or infinite) if there is an integer r
such that P = {0, 1, 2, . . . , r} ∩ Q. denoted by P � Q. If P is a set, c is a non-negative
integer, then P+ c = {α + c | α ∈ P} is the set obtained by adding c to each element
in P.

Use (i, j) to denote the set = 〈i, j〉 ∩ (〈i − 1, j− 1〉 + i+ j− 1). The idea behind
the construction is expressed as the following lemma:

Lemma 8 If i, j ≥ 2, then i × j is the minimum element in (i, j).

Proof Firstly, i · j− i− j+ 1 = (i− 1)( j− 1) implies i · j− i − j+ 1 ∈ 〈i − 1, j− 1〉.
Thus i · j ∈ (〈i− 1, j− 1〉 + i + j− 1) and i · j ∈ (i, j).

We prove that i · j is the minimal element by contradiction. Assume there is an
integer p ∈ (i, j) and p < i · j. Then p ∈ 〈i, j〉 and p− i − j+ 1 ∈ 〈i − 1, j− 1〉 both
hold, which implies i|p, j|p, (i− 1)|(p− i− j+ 1) and ( j− 1)|(p− i − j+ 1).

Suppose [i, j] = i · j/b where b is the greatest common divisor of i and j. then
p = t[i, j] = t · (i · j/b ) where 1 ≤ t < b . Since (i− 1)|(p− i− j+ 1), we know:

(i− 1)|(p− j)⇐⇒ (i− 1)|
(
t · i · j
b

− j
)

⇐⇒ (i− 1)|
(
((i− 1)+ 1)

t · j
b
− j

)
⇐⇒ (i− 1)|

(
(i− 1)

t · j
b
+ t · j

b
− j

)

⇐⇒ (i− 1)|
(
t · j
b
− j

)
⇐⇒ (i− 1)|(t− b ) j/b

Symmetrically, ( j− 1)|(t− b )i/b . Hence (i− 1)( j− 1)|(b − t)2 × j/b × i/b .
We assert that (i− 1) > (b − t)× i/b , it suffices to show t · i > b : since p ∈

(i, j), it is a necessary condition that p ≥ i+ j− 1. i.e: (t · i · j/b ≥ i + j− 1)⇒
(t · i · j/b > j)⇒ (t · i > b ). Symmetrically, we know ( j− 1) > (b − t)× j/b . Hence
(i− 1)( j− 1) > (b − t)2 × j/b × i/b holds. Combined with the fact that (i− 1)( j−
1)|(b − t)2 × j/b × i/b , we know (b − t)2 × j/b × i/b = 0 must hold. But this is
impossible because t < b and i, j,b , t are all positive integers. Contradiction. ��
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Following the idea presented in the previous lemma, we are able to construct
ϕ×(k, i, j). But the problem is, sets such as 〈i, j〉 are infinite, while arrays are finite
in UABE+. Good news is the finite (but arbitrarily large) prefixes of these infinite
sets are sufficient to define ϕ×(k, i, j). We use a variable γ to bound the size of arrays
and quantify γ with an existential quantifier. For sufficiently large γ (larger than
i× j), everything works through. Detailed steps are:

– construct a set m̂i � 〈i〉, by asserting F1:

(mi[0] =n 1)∧(∀p.(0 < p < i)→ mi[p] =n 0)∧(∀p.p < γ → mi[p] =n mi[p+ i])

– construct a set m̂ j � 〈 j〉 in the same way, call it F2;
– construct a set m̂i, j � m̂i ∩ m̂ j, i.e: m̂i, j � 〈i, j〉 by asserting F3:

∀p < γ.((mi, j[p] =n 1)↔ (mi[p] =n 1 ∧mj[p] =n 1))

– construct m̂i−1, j−1 in the same way, call it F4;
– shift every element in m̂i−1, j−1 by i + j− 1, result in m̂′

i−1, j−1 by asserting F5:

∀p.((p < i + j− 1)→ m′
i−1, j−1[p] =n 0)

∧ ∀p < γ.mi−1, j−1[p] =n m′
i−1, j−1[p+ i + j− 1]

– find the minimal number in the intersection of mi, j and m′
i−1, j−1, say it k, by

asserting F6:

(mi, j[k] = 1 ∧m′
i−1, j−1[k] =n 1)∧ (∀p.(mi, j[p] =n 1 ∧m′

i−1, j−1[p] = 1)→ k ≤ p)

We conjunct all these Fi and quantify free variables with an existential quan-
tifier, let:

ψ(k, i, j) = ∃γ,mi,mj,mi, j,mi−1,mj−1,mi−1, j−1,m′
i−1, j−1.(∧6

i=1Fi)

By Lemma 8, we knowwhen γ is sufficiently large, such kwill exist in the intersection
ofmi, j andm′

i−1, j−1 . So, ψ(k, i, j) is satisfiable if and only if k = i × j.
It is trivial when one of i, j is less than 2. Hence ϕ×(k, i, j) is defined as:

((i = 0 ∨ j = 0)→ k = 0)

∧ (i = 1 → k = j) ∧ ( j= 1 → k = i)

∧ (i ≥ 2 ∧ j ≥ 2 → ψ(k, i, j))

Theorem 7 The satisf iability for UABE+ is undecidable.

Wemention the fact that “PresburgerArithmetic with predicate is undecidable” is
already proved in [15]. However it can not be used directly because arrays are finite
in UABE+ and finite arrays can not be used to encode predicates over the infinite
domain N.
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6 Implementation and Experiments

Implementation issues are discussed in this section. Then we conduct the experi-
ments on some array formula examples and in program verification. All experiments
are carried out on a PC with 2.53 GHz CPU and 2 GB memory.

6.1 Implementation

A decision procedure for UABE is implemented on top of Mona (version 1.4). It
acts following the steps below:

1. Parse the input formula f0.
2. Rewrite f0 into f , where f is logically equivalent to f0 and is in the minimal

syntax.
3. Apply the translation rules to f until saturation. The result is	( f ).
4. Generate� ∧	( f ) (and �→ 	( f )) and pass it to Mona.
5. IfMona returns “satisfiable” or “valid”, report the satisfying-example; otherwise

report “unsatisfiable” as well as the counter-example.

For example, the following formula states that an array a is sorted.

∀i, j : N. (i < j < |a| → a[i] ≤ a[ j])
Assume n = 8, to check its satisfiability, the above formula is first translated to
the minimal syntax: ∀i, j : N. ((i < j∧ j < |a|)→ a[i] ≤ a[ j]), and then to the WS1S
formula� ∧	( f ) (Fig. 1). In the WS1S formula, the first few lines are the definition
of �. Then follows the predicates such as P<. The last part is the formula � ∧	( f ).
We can check its satisfiability by calling Mona. The verification result is satisfiable

Fig. 1 An example of translated WS1S formula
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and an example is returned. A valuation for the array a can be obtained by analyzing
the returned example.

6.2 Verify Array Properties

In order to test our decision procedure, we collected a few array properties which
are frequently considered when writing programs. For example, some asserts that an
array is sorted, or any subsequence of a sorted array is still sorted, or an array is a
Fibonacci sequence.

These properties are formulated in UABE. Then our tool is applied to solve their
satisfiability (or validity). The experimental results are shown in Table 5, where the
n column gives the number of bits used to encode an array element, the UABE
and WS1S columns list the size of formulas (measured in the number of nodes of
the syntax tree) respectively, the Status column gives the verification results (either
satisfiable, valid or unsatisfiable), and the Time andMem columns show the resource
consumption for solving these problems. Time is measured in seconds and memory is
measured in megabytes. The last column is a brief description of the array property.

As shown in Table 5, all instances can be solved in no more than 20 seconds.
On the contrary, the memory consumption is large, ranging from 1 M to 1.4 G. As
mentioned above, our solver is built on top ofMona.Mona employs automaton and
BDD to solveWS1S formulas. The BDD size can grow non-elementarily with respect
to the number of quantifier alternations.

Table 5 Experiment on array formulas

n f UABE WS1S Status Time Mem Note

8 f1 5 35 Sat 0.04 s 1 M Normal equality
8 f2 22 180 Sat 0.31 s 1 M Equality with addition
4 f3 19 166 Sat 0.12 s 1 M Array read
7 f3 19 1058 Sat 10.4 s 16 M Array read
4 f4 45 280 Sat 0.12 s 1 M Addition on index
8 f5 22 145 Sat 0.35 s 1 M Monotonically increasing array
8 f6 29 220 Sat 9.07 s 533 M Fibonacci array
4 f7 23 60 Sat 2.12 s 136 M Sorted property
4 f8 48 114 Valid 18.03 s 1416 M Sorted implies distinct
4 f9 37 165 Sat 15.39 s 671 M Periodical array
4 f10 29 66 Sat 18.09 s 1343 M Distinct array
4 f11 32 69 Sat 10.09 s 656 M Partitioned array
8 f13 25 300 Sat 0.06 s 1 M Array write
8 f15 16 74 Valid 0.03 s 1 M Unbounded array
8 f16 54 345 Sat 0.10 s 1 M Quantifier alternation
4 f17 20 84 Sat 9.06 s 200 M Miscellaneous array property
6 f17 20 116 Sat 12.19 s 330 M Miscellaneous array property
7 f17 20 132 Sat 17.11 s 340 M Miscellaneous array property
8 f18 80 617 Sat 0.70 s 1 M Count elements in an array
7 f19 53 385 Sat 2.37 s 147 M Find the maximal number
4 f20 63 129 Valid 3.27 s 259 M Sorted implies sub-array sorted
8 f21 53 298 Valid 4.78 s 199 M Array axiom
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6.3 Applications in Program Verification

In this subsection, we report the results in program verification. Five program
instances are considered:

– array shift: A program that right-shifts an array with a positive size. Desired
property is that after shifting, each element is in the expected position.

– f ind max: A simple program that traverse an array and find the maximum value.
The property to verify is that the returned value does appear in the array and it
is indeed the maximum value.

– binary search: Implementation of the typical binary search algorithm. The prop-
erty to verify is that if the desired element exists in the array, the program will
eventually locate it.

– bucket counting: The sample program given at the beginning of this paper. The
property to verify is that for each bucket v there should be at least one element
in the array holding this value.

– selection sort: Implementation of selection sort and we verify that it returns a
sorted array.

The verification results are given in Table 6. For each program instance, we
generated several verification conditions. The correctness of the program instance is
ensured by the validity of all verification conditions. Notice that several verification
conditions are not in the decidable fragments of other decision procedures.

In the following, we elaborate the details for verifying bucket counting and
selection sort. The details for array shift, f ind max and binary search are omitted.

6.3.1 Bucket Counting

This example is introduced at the beginning of this paper. a is an array whose
elements range over [0..255]. The number of different elements in a needs to be
counted. b is an array used as indicators such that b [i] = 1 iff i appears in a. The key
step is to set b [a[i]] = 1 for all indices i ∈ [0, |a| − 1]. For convenience, the pseudo-
code is rewritten as a while loop as follows:

i← 0;
while i < |a|
b [a[i]] ← 1;
i← i + 1;

endwhile

If we can guarantee before this loop, that |b | ≥ 256 ∧ ∀0 ≤ v < |b |. b [v] = 0, then
after this loop, a property should hold that

∀v ∈ [0, 255]. (b [v] = 1 ↔ (∃i.a[i] = v))

We verify this property in Hoare-Logic [17]. We also assume the program is
already annotated and verification conditions are generated. Technically, we need
to verify that all verification conditions are tautologies so that the desired property
hold.
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Table 6 Experiment on program verification

Program n f UABE WS1S Status Time Mem

Array shift 8 vc1 45 181 Valid 0.03 s 1 M
Array shift 8 vc2 95 383 Valid 0.03 s 1 M
Array shift 8 vc3 112 578 Valid 13.3 s 619 M
Array shift 8 vc4 74 310 Valid 5.17 s 157 M
Find max 4 vc1 40 104 Valid 0.03 s 1 M
Find max 4 vc2 87 210 Valid 0.03 s 1 M
Find max 4 vc3 93 235 Valid 17.3 s 170 M
Find max 4 vc4 92 231 Valid 24.3 s 768 M
Find max 4 vc5 74 163 Valid 21.09 s 500 M
Binary search 4 vc1 65 177 Valid 2.21 s 100 M
Binary search 4 vc2 39 147 Valid 0.06 s 1 M
Binary search 4 vc3 50 183 Valid 0.06 s 1 M
Binary search 4 vc4 96 308 Valid 2.35 s 118 M
Binary search 4 vc5 30 113 Valid 0.06 s 18 M
Bucket counting 2 vc1 43 114 Valid 0.09 s 1 M
Bucket counting 2 vc2 85 239 Valid 0.49 s 50 M
Bucket counting 2 vc3 65 162 Valid 0.01 s 1 M
Bucket counting 2 vc4 61 294 Valid 0.29 s 2 M
Selection sort 3 vc1 57 109 Valid 0.0 s 1 M
Selection sort 3 vc2 127 225 Valid 0.0 s 1 M
Selection sort 3 vc3 90 165 Valid 0.03 s 1 M
Selection sort 3 vc4 187 329 Valid 0.04 s 1 M
Selection sort 3 vc5 259 695 Valid 0.1 s 1 M
Selection sort 3 vc6 259 467 Valid 0.1 s 1 M
Selection sort 3 vc7 259 467 Valid 0.07 s 1 M
Selection sort 3 vc8 239 425 Valid 0.07 s 1 M
Selection sort 3 vc9 203 501 Valid 0.17 s 1 M

An observation is that “b [a[i]] ← 1” is actually an array write expression “b ←
write(b ,a[i], 1)”. Moreover, the range of elements in a is restricted to [0, 255] if they
are encoded by 8-bit integers. The annotated program is given as in Fig. 2. Among
these specifications, P2 is a loop invariant. The verification conditions generated are
listed below.

vc1 ≡ P1 → P2[i/0]
vc2 ≡ P2 ∧ (i < |a|)→ P3[b/write(b ,a[i], 1)]
vc3 ≡ P3 → P2[i/ i + 1]
vc4 ≡ P2 ∧ ¬(i < |a|)→ P4

Here, P[x/e] is the formula obtained by replacing free occurrences of x with e.
It is obvious that all vci contain quantifier alternation. They are not in the

decidable fragment of other known theories. However, all of them are in the
decidable fragment of UABE. Despite of the large time complexity, it is possible
to automatically verify that these vci are indeed tautologies using our decision
procedure. Therefore, the property P4 holds after this program as desired.
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Fig. 2 Annotated bucket
counting program

6.3.2 Selection Sort

Another example is selection sort. Given an array a, the selection sort algorithm runs
for |a| iterations. In the i-th iteration, the smallest element in {a[ j] | (i− 1) ≤ j <
|a|} is swapped with a[i]. After |a| iterations, the array is sorted in ascending order.
We assume that the program is annotated as in Fig. 3. In the specifications, a few
“predicates” such as min, sorted, partitioned are used:

– sorted(a, l, r) formulates the proposition that elements in the interval [l, r] are
sorted in ascending order.

sorted(a, l, r) ≡ ∀l ≤ i < j ≤ r.a[i] ≤ a[ j]
– partitioned(a, l, p, r) formulates the proposition that a segment (index interval

[l, r]) in array a is partitioned at the index p.

partitioned(a, l, p, r) ≡ ∀i, j.(l ≤ i < p ∧ p ≤ j ≤ r→ a[i] ≤ a[ j])

Fig. 3 Annotated selection sort program
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– min(x, a, l, r) formulates the proposition that x is the minimal value in a segment
(index interval [l, r]) of the array a.

min(x,a, l, r) ≡ (∃l ≤ i ≤ r.x = a[i]) ∧ (∀l ≤ i ≤ r.a[i] ≤ x)

For this example, verification conditions are:

vc1 ≡ P1 → P2[i/0]
vc2 ≡ P2 ∧ (i < |a|)→ P3

vc3 ≡ P2 ∧ ¬(i < |a|)→ P7

vc4 ≡ P3 → P4[ j/ i+ 1][k/ i]
vc5 ≡ P4 ∧ ( j < |a|)→ P5

vc6 ≡ P5 ∧ (a[ j] < a[k])→ P4[ j/j+ 1][k/j]
vc7 ≡ P5 ∧ ¬(a[ j] < a[k])→ P4[ j/j+ 1]
vc8 ≡ P4 ∧ ¬( j < |a|)→ P6

vc9 ≡ P6 → P2[i/ i + 1][a/write(a,k, ai)][a/write(a, i, ak)][ai/a[i]][ak/a[k]]

Notice that these are non-trivial array formulas. Good news is our decision procedure
still managed to verify all of them. Thus, we know the sorted property holds.

During the verification, some properties caught our attention. For instance, “a
sub-segment of a sorted segment is still sorted”

∀l1, r1, l2, r2. l1 ≤ l2 ∧ r2 ≤ r1 → sorted(a, l1, r1)→ sorted(a, l2, r2)

This property has complex Boolean structure and quantifiers (included in the sorted
predicate). It is good to see that they are verified by our decision procedure.

7 Related Works

Quantifier-free array formulas have been well studied. In [25], a non-extensional
array theory is discussed and its decision procedure is given based on the congruence
closure algorithm. An extensional array theory is considered in [26]. Its satisfiability
is also checked by a variant of congruence closure algorithm. In [18], a reduction
approach for array theory is proposed. Array formulas are converted to formulas
in the theory of equality. Other data structures such as lists, sets and multisets
are also considered. Combinatory array logic is considered in [7]. Sets and bags
can be formulated in that way. Its decision procedure is given as inference rules.
In [13], frugality of axiom instantiation for array theory is discussed. Arrays are
treated as updatable functions. While it is common to eliminate the write function
in most works, the authors present a write based approach and eliminate read on
the other hand. In [12], a rewriting based decision procedure is proposed, in which
array length (referred as dimension in that paper) could be used as an attribute
of an array. Predicates such as sorted could be interpreted and handled in their
decision procedure. Similar work could be found in [27] where the PERM predicate
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is explicitly considered for practical interest. While it is almost standard to model
arrays as uninterpreted functions, there are also eager approaches that employ SAT
solving for array theories. Such works could be found in [4, 9] and [5]. All above
works consider quantifier-free array theories.

In [3], a more expressive logic is presented. The authors defined a ∃∗∀∗-fragment
of array theory. The index theory is alike to Presburger arithmetic, but addition is
only allowed on the existentially quantified index variables. The authors present
a mechanism to instantiate universal quantifiers by replacing the quantified index
variables with each term in the index set. Then arrays are treated as uninterpreted
functions. It is shown that allowing nested reads or general Presburger arithmetic
over universally quantified index variables (even just i + 1) induces undecidability.
Although predicates such as sorted can be defined naturally, many verification
conditions listed in the experiments can not be handled by their approach.

A complete quantifier instantiation algorithm is presented in [10]. Its array theory
subsumes that in [3]. For instance, nested reads and offsets on indices are allowed.
For certain subclasses of their array formulas, model-based quantifier instantiation is
used to decide the satisfiability. Their algorithm is complete as long as the constraints
set introduced by the formula has a finite solution. For certain cases, such as those
contain offsets on array indices, their procedure will result in an infinite set of
instantiations.

In [28], quantified bit-vector formulas (QBVF) are considered. Arrays could be
formulated as uninterpreted functions which are supported in QBVF. Both indices
and elements are bit-vectors. QBVF formulas could be reduced to equisatisfiable
EPR formulas whoseHerbrand universe is always finite, so the satisfiability of QBVF
is decidable. The authors present a group of rewriting rules for preprocessing and
use template based model finding to check quantifiers. For their array theory to be
decidable, arrays should have bounded length.

An automata based approach is presented in [14]. The authors define an array
theory SIL which allows formulas like ∀i.φ(i)→ γ (i) where i is the only index
variable in γ (i) and disjunction is forbidden in γ (i). The same as in [3], quantifiers
can be used only in the form of ∃∗∀∗. An SIL formula is translated into a flat counter
automaton, then the satisfiability is checked by testing if the language of automaton
is empty. Furthermore, in [2], they encode pieces of program into counter automata.
In SIL, there are some unnatural restrictions on the structure of formulas. Nested
reads are not allowed, either.

A theory of integer sequences is proposed in [8]. The operations of concatenating
two sequences are supported. Universal quantifiers can be used at the beginning of
the formula. The decidability result is obtained by reducing to the theory of concate-
nation. However, the ∀∗∃∗ and ∃∗∀∗ fragments are undecidable either. Moreover, it
does not support explicitly access by indices such as a[i]. That is a big inconvenience
when writing array formulas.

There are incomplete algorithms handling array formulas with arbitrary quan-
tifiers. Those algorithm may not terminate for all inputs. References could be found
in [11] and [24].

Table 7 is a summary of the above related works. TI and TE are theories of
index and element respectively. P is the Presburger Arithmetic and “bv” is the
theory of bit-vector. A star “∗” means the theory is parameterized. The right half
of table describes features for each individual theory. The “∃, ∀” column represents
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Table 7 Summary of related works

Reference TI TE ∃,∀ a[a[·]] | · | ext dim

Nelson [25] ∗ ∗ × √ × × n
Stump et al. [26] ∗ ∗ × √ × √

n
Kapur and Zarba [18] ∗ ∗ × √ × √

n
de Moura and Bjorner [7] ∗ ∗ × √ × √

n
Goel et al. [13] ∗ ∗ × √ × √

n
Bofill et al. [1] ∗ ∗ × √ × √

n
Suzuki and Jefferson [27] P P × √ × × 1
Ghilardi et al. [12] P ∗ × √ √ √

n
Ganesh and Dill [9] bv bv × √ × × 1
Brummayer and Biere [5] bv bv × √ × √

1
Brummayer and Biere [4] ∗ ∗ × √ × √

n
Bradley et al. [3] P ∗  × × √

n
Ge and Moura [10] ∗ ∗  √ × √

n
Habermehl et al. [14] TN TN  × √ √

1
Wintersteiger et al. [28] bv bv

√ √ × √
1

This work TN ∗ √ √ √ √
1

if quantifiers are supported. “ ” means quantifiers could be used with restriction.
“a[a[·]]” represents if nested reads is allowed, “| · |” represents if array length could
be used as an attribute in the formula, “ext” represents if the theory is extensional
and “dim”represents the dimension of arrays.

WS1S is a simple but expressive logic. An example where integer arrays are
broken to bits and expressed as finite sets in WS1S is known in [19]. We employ and
further develop this idea in this paper. Furthermore, solving decidability problem by
reducing to WS1S is not uncommon. In [23], a decision procedure for bit-vectors by
mapping a bit-vector to a set in WS1S is presented.

8 Conclusion

In this paper, we investigated a new array theory UABE. It is quite expressive and
decidable. A decision procedure is given by translating UABE into WS1S and its
soundness and completeness are proven. We also proved that two natural extensions
of UABE lead to undecidability. Experimental results show the usage of UABE in
program verification.
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