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Abstract. Thread-modular analysis is an incomplete compositional tech-
nique for verifying concurrent systems. The heuristic works rather well
when there is limited interaction among system components. In this
paper, we develop a refinement algorithm that makes thread-modular
model checking complete. Our algorithm refines abstract reachable states
by exposing local information through auxiliary variables. The experi-
ments show that our complete thread-modular model checking can out-
perform other complete compositional reasoning techniques.

1 Introduction

Compositional reasoning is a promising technique to alleviate the state explosion
problem in model checking [2,17]. In compositional reasoning, one decomposes
a verification problem into simpler subproblems and solves each subproblem one
at a time. By the soundness of decomposition, the verification problem is solved
if all subproblems are solved. Soundness of decomposition apparently depends on
the underlying computation model. In this paper, we are interested in verifying
invariant properties on shared-memory interleaving systems.

A shared-memory interleaving system consists of several components. Each
component has two types of variables. Global variables are accessible to every
component in the system. Local variables, on the other hand, are only accessible
to the defining component. At any moment, exactly one component is active.
Inactive components do not perform any computation and hence keep their local
variables unchanged. Global variables may be updated by the active component
nonetheless. In such systems, global variables are used for communication among
components. Given a predicate on system states, the invariant checking problem
is to verify whether the given predicate holds on every reachable states.

Two compositional techniques for the invariant checking problem on shared-
memory interleaving systems are known. In thread-modular reasoning [9, 5],
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one computes an over-approximation of reachable system states by intersect-
ing reachable component states of all components. In order to compute reach-
able component states of a designated component, one disregards local variables
of other components and computes an abstract model of global variables. The
designated component is then composed with the abstract model to compute
its reachable component states. The effectiveness of thread-modular reasoning
depends on the abstraction. If the abstraction of global variables is able to es-
tablish the property, one concludes the verification. Otherwise, one reports that
the verification is inconclusive.

The (in)effectiveness problem in thread-modular reasoning is solved in the
second compositional technique called local proof [4]. In local proof, one still re-
quires reachable states of each component. Reachable component states however
are computed by early quantification of reachable system states. Abstract mod-
els for global variables are hence not needed. Moreover, techniques have been
developed to refine reachable component states. Local proof is hence a complete
compositional technique for shared-memory interleaving systems.

Although both techniques compute reachable component states and use the
intersection as an over-approximation of reachable system states, we would like
to point out a subtle difference between them. In thread-modular reasoning, one
constructs an abstract model for global variables. Reachable component states
are then computed via the abstract model. In local proof, on the other hand,
reachable component states are computed by quantifying out inaccessible local
variables during the exploration of reachable system states. Since no abstraction
is deployed during the exploration of component states, reachable component
states in local proof are more precise than those of thread-modular reasoning.
On the other hand, the computation of reachable component states in local proof
can be more expensive then thread-modular reasoning due to no abstraction.
One wonders whether an efficient yet complete compositional technique exists
for such systems.

Inspired by the refinement in local proof, we propose a complete thread-
modular model checking algorithm for the invariant checking problem on shared-
memory interleaving systems. Our technique contains two phases. At the veri-
fication phase, we apply thread-modular reasoning to the verification problem.
If the compositional technique suffices to conclude the verification, we are done.
Otherwise, our technique moves to the refinement phase. In the other phase,
we adopt ideas from local proof and expose information about local variables
during refinement. More precisely, we identify local variables that can refine the
approximation to reachable system states. Such information is then exposed to
other components by adding global variables. When our technique returns to the
verification phase, added variables will induce a refined abstract model for global
variables. Efficiency of thread-modular reasoning and effectiveness of local proof
are thus attained by our proposed technique.

We implement our thread-modular model checking with iterative refinement
algorithm on NUSMV, and compare with other algorithms in five examples.
Due to its aggressive abstraction, thread-modular reasoning fails to verify all



examples but the bakery algorithm. Our new technique performs better than
local proof in our examples. In several examples, our compositional technique
outperforms monolithic techniques in orders of magnitude. Our preliminary ex-
perimental results suggest that an efficient yet complete compositional technique
is indeed possible for shared-memory interleaving systems.

1.1 Related Work

In 1976, Owicki and Gries proposed some non-interference proof rules for parallel
programs in their work [15]. Chandy and Misra [13] and Jones [9] [10] extended
those rules with interference to introduce thread-modular reasoning. To make
thread-modular model checking automatic, the environment is automatically
generated [5] according to the interactions of the programs. Henzinger et al. [7]
[8] improved the original thread-modular model checking and made it complete
for safety property verification on finite state systems. In their approaches, each
thread is initialized as true and is then iteratively refined by addition of new
predicates, and the guarantee of each thread is initialized as false and is succes-
sively refined by considering abstract of current thread and guarantees of other
threads. Recently, Gu et al. [6] attempted to improve the generation of envi-
ronment assumptions with horn logic deductive rule. Malkis et al. [12] proposed
a technique, called thread-modular counterexample guided abstraction refine-
ment, which computes reachable states with cartesian abstraction. A refinement
step was involved to eliminate the infeasible states by excluding them from the
cartesian product. But this approach directly computes the reachable states for
all processes of concurrent system in an explicit way.

Another interesting branch for concurrent system verification is based on
the inductive invariant rule. The invisible invariants method [16] [1] generated
quantified invariants for parameterized protocols by analyzing reachable states
of a small instance; however, it is incomplete for some protocols. Absorbing the
completeness theory of [15] and [11], Namjoshi extended the inductive invariant
to non-interference invariant named split invariant [14]. Based on split invariant,
Cohen and Namjoshi proposed a local proof algorithm for global safety properties
of concurrent systems and used refinement procedure to make the verification
complete [4].

The remainder of this paper proceeds as follows. Section 2 gives basic defini-
tions. It is followed by a brief overview of thread-modular reasoning in Section 3.
Our technical contribution is presented in Section 4. Section 5 gives our experi-
mental results. We conclude our presentation in Section 6.

2 Preliminary

We assume a fixed set V of typed variables. A state over W C V is a valuation
for the variables in W. The set of states over W C V is denoted by St[W]. For
W CV and s € St[V], the projection of s on W (written s lw ) is a state over
W that s lw (w) = s(w) for every w € W. Let W C V, we write St[V] lw



to indicate the set St{W] = {s lw [|Vs € St[V]}. Given St[W] and St[X], their
join is St{W U X] = {s|s lwe St[W] and s |x€ St[X]} which is denoted by
St[W] a St[X]. A predicate over St[V] is a function from St[V] to the Boolean
domain B. Given a state s € St[V] and a predicate ¢ over St[V], we say s
satisfies ¢ (written s = ¢) if ¢(s) = T. For any predicate ¢ over St[V], define
[¢] = {s € St[V] : #(s)}. That is, [¢] consists of states that satisfy ¢. For
W C V and a predicate ¢ over St[V], define the predicate ¢ Ly over St[W] to
be that for any ¢t € St[W],

¢ Jw (t) = T if and only if there is an s € St[V] with ¢(s) = T and s Jw=t.

A process P = (X,L,1,T) is a quadruple where X C V is the set of global
variables, L C V the set of local variables disjoint from X, I the initial predicate
over St[X U L], and T the transition predicate over St[X U L] x St[X U L]. Let
8,8 € St{X UL]. We say s is initial if I(s) = T. If T(s,s") = T, we say s is
a predecessor of s/ and s’ a successor of s. A trace T is a sequence of states
s, 81, ..., 5" such that I(s°) = T and T(s?,s'T!) = T for 0 < i < n. The set of
traces of P is denoted by Tr[P]. A state s is reachable in P if there is a trace
7 =385l ..., 8" € Tr[P] such that s = s. The set of states reachable in P
is denoted by Re[P]. Let 7 be a predicate over St[X U L]. We say P satisfies
(written P |= ) if s = 7 for every s € Re[P)].

Let P; = (X, L;,I;,T};) be processes for j = 0,1 where Ly and L, are disjoint.
Let W; = XUL; C V for j = 0, 1. The composition of Py and P, (written Py||P;)
is a process (X, L, I,T) where

- LZL(JULl;
—I(s)=Tif In(sdw,) =T and I1i(s Jw,) = T;
- T(s,8")=Tif
o To(sdwy, s dwy) =T and s L, =" L, or
o Ti(slw,,s dw,) =T and s p,= " |L,-

That is, exactly one process updates the global variables and its local variables;
the other process stutters in a transition of the composition. It is straightforward
to see that the composition is associative. Py ||Py|| - - - || Py is thus well-defined for
N > 2.

3 Thread-Modular Reasoning

Definition 1. Let P = (X, L, I,T) be a process. The guarantee of P is a process
G(P) =(X,0,Ig,Tg) where I = I | x and T is a predicate over St[X]x St[X]
such that

To(t,t') =T if 3s,8" € St{X U L] with T(s,s") = T,s lx=t,and s’ | x=1'.

The main process of thread-modular model checking is shown in Algorithm
1. It first computes the reachable component states R; for each process P;, then
computes the reachable system states R by joining reachable component states



Input: P; = (X, L;,I;,T;) : a process for 1 < j < N; 7 : a predicate over
StIXULiU---ULp]
Output: “PASS” or “UNKNOWN?”
error — [-];
foreach j=1,...,N do
Rj < Re[G(P1)| - [G(P-)IIP|G(Pia)l - - |G(Pw)];
end
E(*§1 NEQIXI---NEN;
if RN error = () then
return PASS;
else
return UNKNOWN;

Algorithm 1: Thread-Modular Model Checking
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Fig. 1. MUX-SEM,

of all processes. Apparently, R is an over-approximation of the reachable system
states, so it can report “PASS” when there is no error state in R. Otherwise, it
cannot make any conclusion.

Ezxample 1. Consider a simple solution to the mutual exclusion problem in Fig.
1. In the figure, N processes attain mutual exclusion by the semaphore z. Each
process requests x before entering the critical section, and releases x after leaving
the critical section. Assume there are two processes P; and P>. We use P;.l to
denote the local variable [ in process P; where j € {1,2}. Each state in Fig. 1 (b)
is marked with the corresponding valuation for all variables, where before the
separator | is the valuation for global variables, and after the separator | is the
valuation for local variables. Mutual exclusion is specified as 7 : =((P1.l =2V
Pyl =3)N(Py.l =2V P,.l = 3)). We have the guarantee G(P;) = ({z},0, I;,T;)
where j € {1,2}, I;(s) is s(z) =1, and Tj(s,s’) is T. Hence

Ry = Re[G(P)||P2) = {s: s(x) € {0,1} and s(Py.l) € {0,1,2,3}}
Ry = Re[P||G(P)] = {s: s(z) € {0,1} and s(P,.l) € {0,1,2,3}}

Thus,
R=R; > Ry = {s:s(z) € {0,1},s(P1.l) € {0,1,2,3}, and s(P».l) € {0,1,2,3}}.
Since RN [-7] # 0, Algorithm 1 reports “UNKNOWN.”



4 TIterative Refinement

Let P = (X,L,I,T) be a process, | € L, and S a set of states. We say [ is an
essential variable of P with respect to s € S if there is a ¢ € St[X U L] such that

—te S,

— s(l) # t(1); and
— s(v) =t(v) for every v € (X UL)\ {l}.

In other words, a local variable is essential with respect to a state set if its value
signifies the membership of the given state set.

Let | be an essential variable with respect to s € S. Define the essential
predicate x; for | with respect to s € S by

xi () =T if t(l) = s(I).

Two essential predicate x§ and x!, are distinct if either [ is different from m or

s(l) # t(m).
FEzample 2. In Example 1, observe that
RN [-7] = {s:s(z) € {0,1},s(P1.l) € {2,3}, and s(P.l) € {2,3}}.

Let us consider the state sop € RN [-7] that so(x) = 0, so(Py1.l) = so(Pa.l) = 2.
Define to € St[{z, P1.l, P,.l}] where to(x) = 0, to(P1.l) = 1, and to(Ps.l) = 2.
Then to & RN [-n], so(P1.l) # to(P1.l), and so(v) = to(v) for v € {x, Py.l}.
Hence P; .l is an essential variable of P; with respect to sg. The essential predicate
Xp,1 for Py.lis hence

Xp ) =Tift(Pl) =2.

Similarly, consider the state s; € R N [-7] that si(z) = 0, s1(P1.l) = 3,
51(Pa.l) = 2. Define t1(z) = 0, t1(P1.l) = 1, and t1(Pe.l) = 2. Then P;.0 is
an essential variable of P, with respect to s;. The essential predicate xf}l_l for
P .l is therefore

Xik (8) = T if ¢(Py.D) = 3,

Definition 2. Let P = (X, L,I,T) be a process and ¥ a set of predicates. Define
W = X UL. The augmented process A(P, X4, Xy, V) = (X UXa, L, 14,T4) of
P with ¥ is defined by

— Xy ={u, € V:x € ¥} is the set of auziliary variables with respect to ¥;
— Xy C X4 and X4 — Xy is other processes’ auzxiliary variables;

T4(s) =T if I(sdw) =T and s(uy) = x(s) for every x € ¥;

Ta(s,s") =T if T(slw,s" lw) =T, s(uy) = x(5), s'(uy) = x(s") for every
X €V and s'(v) = s(v) for everyv € X4 — Xy.
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Ezample 3. Recall the essential predicates X;Ol‘l and X}ll‘l from Example 2.
Let ¥ = {x3 ;,Xp i} Denote the auxiliary variables for X3 ;, Xp, ;» X5,
and X‘;}Zl as uq,us,us,us respectively. Fig. 2 shows the augmented process
A(MUX-SEMl,XA,Xq/,!p), where va = {uhug} and XA = {ul,UQ,U3,U4},
and Fig. 3 shows its composition with the guarantee of augmented MUX-SEM,.
Thus

B — (1,0,0,0,0/0), (1,0,0,0,0[1), (0,1,0,0,0]2), (0,0,1,0,0|3),
1=11(0,0,0,1,0[0), (0,0,0,0,1[0), (0,0,0,1,0[1), (0,0,0,0,11)
Similarly,
E — (170a0a070|0)’ (1707070’0|1)7 (0a0707170|2)7 (070a05071|3)a
7 1(0,1,0,0,0[0), (0,0,1,0,0[0), (0,1,0,0,0[1), (0,0,1,0,0]1)
Thus,
Rzﬁl [><172
17070’070|O70)’ (1707070’0|071)’ (1707070’0|17O)7 (170707070‘171)7
= (07]‘70’030|270)’ (0717070’O|271)7 (0707170’O|370)7 (0’0717070‘371)7
(0,0,0,1,0[0,2), (0,0,0,0,10,3), (0,0,0,1,0[1,2), (0,0,0,0,1[1,3)
Since R > [-7] = ), we conclude that MUX-SEM; [MUX-SEM; = 7



Observe that additional constraints on the initial and transition predicates
are non-interfering. They merely update the augmented variables X4 by the
values of predicates. The following lemma hence follows from the definition.

Lemma 1. Let P = (X,L,I,T) be a process, ¥ a set of predicates, and 7 a
predicate. Then P = if and only if A(P,¥) | 7.

Proof. According to Definition 2, given any trace a = s’s!' ... s* in P, the corre-
sponding trace in A(P,¥) is 8 =%t .. . t* where t'(u,) = x(s') for any y € ¥
and s' =t | xur(0 <i < k). It is easy to prove a =7 <= B | 7. So we can
conclude that (P = 7) < (A E 7). O

The main process for thread-modular model checking with iterative refine-
ment is shown in Algorithm 2. Given N processes Py, P», -+ , Py and a predicate
m, the algorithm decides is 7 satisfied on the whole system or not. In lines 3-
8, the algorithm performs the regular thread-modular model checking. Then it
analyzes is there any initial state in the reachable set of error states. If so, it
reports “FAILURE”. Otherwise, it calls a subroutine to refine the model.

Input: P; = (X, L;,I;,T;) : a process for 1 < j < N; 7 : a predicate over
St[XULl U"'ULN}
Output: “PASS” or “FAILURE”
1 error + [-n];

2 W+ 0, forj=1,...,N; // the essential predicate set for P;
3 repeat

4 foreach j =1,...,N do

5 Rj < Re[G(P1)| -+ G(P-)||B5||G(Pj1) - |G(P)];

6 end

7 E%E1N§2N~"N§N;

8 if R error = () then

9 return PASS;

10 if Ro<error o< [[1] o< --- < [In] # 0 then
11 return FAILURFE;
// refine P, P>,..., Py by R and error
12 refinable <+ Refine(R, error, P, Ps, ..., Pn,W1,. .., Un);
13 if —refinable then
14 return PASS;

15 until forever ;

Algorithm 2: Thread-Modular Model Checking with Refinement

Algorithm 3 gives the subroutine for refining a model. For each state s €
R i error, the algorithm tries to find the distinct essential predicate for each
process. If successes, it refines the component model using these found predicates.
Otherwise, it adds the predecessors of s into error.



Input: R : a state set; error : a state set; P; = (X, L;, I;,T}) : a process for
1<j<N; ¥, UN
Output: T if any of the processes is refined; 1 otherwise
1 refined + L;
2 S « R error;
3 while S # () do
4 predicateAdded < L;

5 remove an s from S;
6 foreach j =1,...,N do
7 P« {xj : xj is a distinct essential predicate from all x € ¥;};
8 if U7 # () then
9 Pj,@j(—A(Pj,le]@,le]@,Qf),!pj UWJ‘?;
10 foreach i # j do
11 P, + A(Pi,Xq/f,Q,Q);
12 end
13 refined, predicateAdded < T, T;
14 break;
15 end

16 if —predicateAdded then

17 pre + {'slw:T(s,s) =T}

18 if pre \ error # () then

19 refined, error < T, error U pre;
20 end

21 return refined;

Algorithm 3: Refine(R, error, P, ..., Py)

Lemma 2. Let P; = (X, L;,I1;,T;) forj=1,...,N, and 7 a predicate. For any
system state s in Pi||Ps|---||Pnv = (X, L,I,T), when Algorithm 2 terminates,
we have

1. s £ 7 implies s € error;
2. s € error implies there is a sequence s* = s,s'T1 ... s" such that s" £
and T(s*,s**1) = T for every i <k < n.

Proof. (1) Note all states in [-7] are added to error in the begining of the
algorithm; (2) Note error contains only states in [-7] and their predecessors.
O

Lemma 3. Let P; :LX,Lj,Ij,T]) forj=1,....N, and 7 a predicate. Then
Re[Py||P|| - - || Pn] € R at line 7, Algorithm 2.

Proof. According to Definition 1, G(P;) simulates P; for j =1,..., N. Then we
can conclude G(Py )| e |G(P;—1)||P;||G(Pj41)]| - - - ||G(Pn) simulates Pi || - - - | Pn

for j =1,...,N. So R; is an over-approximation of Re[P;]--- || Pn] Ixur, for
j=1,...,N. Then the conclusion holds. a



Theorem 1. Let P; = (X,L;,1;,T;) for j=1,...,N, and w a predicate.

1. If Algorithm 2 returns “PASS”, then Py||Ps||---||Pn = 7;
2. If Algorithm 2 returns “FAILURE”, then Py||Py||--- ||Pn & .

Proof. (1) If Algorithm 2 returns “PASS” from line 11, with the precondition
R error = () and Lemma 3, we get the conclusion immediately. Otherwise, if
Algorithm 2 returns “PASS” from line 16, the model cannot be refined anymore.
Proof by contradiction, suppose Py ||Pz|| - - - || Py & 7, then there must be a state
s € error and it is reachable from an initial system state s°. Since s® ¢ error
(otherwise the Algorithm 2 returns “FAILURE” from line 13), there must be two
adjacent states s¢, s*t! along the trace from s° to s, such that s* ¢ error and
sitl € error. According to Algorithm 3, the state s* should be added into error,
which means the model is refinable. This is contradictory with the assumption.
(2) According to Lemma 2, if R > error < [[1] > -+ > [In] # 0, then
380 €[] o< [In], Ja = s"...s% € Tr[Py|---||Pn] : s* £ m, which means
(Pu] - [Py) . 0

Theorem 2. Let P; = (X,L;,I; T;) forj=1,...,N, and 7 a predicate. Algo-
rithm 2 always terminates.

Proof. In each refinement iteration, either some new states are added to the
error set, or the system is augmented by some new predicates. Note the state
space of the system is finite, the number of possible predicates is also finite
(each predicate corresponds to a subset of the states). In the worst case that the
algorithm cannot give conclusive answer in all iterations, it finally terminates
for no new state or new predicate can be found. a

Theorem 3. Let P; = (X,L;,1;,T;) forj=1,...,N, and m a predicate.

1. If P||Ps|| - - ||Pn & 7, then Algorithm 2 returns “PASS”;
2. If P1||Ps||--- ||Pn V& m, then Algorithm 2 returns “FAILURE”.

Proof. (1) According to the second statement of Theorem 1, if Pi||---||Py E T,
Algorithm 2 cannot return with “FAILURE”. According to Theorem 2, Algo-
rithm 2 always terminates. Thus, if Pi||---|| Py [ w, the algorithm can only
terminate with “PASS”. (2) Similarly, according to the first statement of The-
orem 1, and Theorem 2, if Pi||---||Py [~ 7, the algorithm can only terminate
with “FAILURE”. a

5 Experiments

We implemented our thread-modular model checking algorithm with iterative
refinement (TMMCIR) in NUSMV. For comparison, several model checking
algorithms are implemented as well. They are asynchronous forward reacha-
bility (AFR) and thread-modular model checking (TMMC). To compare with
SPLIT[3], we configure the tool to use the CUDD package. All benchmarks are
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downloaded from [18] and conducted on an 2.0GHz Intel T6400 CPU with 2GB
memory.

Table 1 shows the experimental results for the simple mutual exclusion pro-
tocol MUX-SEM in Fig. 1. In the table, the column “method” shows the name
of the model checking algorithm (TMMCIR, SPLIT, AFR, NuSMV, or TMMC).
The number of processes instantiated in MUX-SEM is shown in the column “pro-
cesses.” The time needed for verification is indicated by the column “time.” The
column “BDD’s” shows the peak number of BDD nodes required. The number of
refinement applied in TTMCIR and SPLIT is shown in the column “refinement.”
The column “preds” gives the number of essential predicates added during veri-
fication. Finally, the column “conclusive?” shows whether the verification result
is conclusive.

method processes time BDD’s refinement preds conclusive?

TMMCIR 20 0.064 45990 1 40 Y
SPLIT 20 0.887 331128 1 38 Y
AFR 20 0.064 45990 na na Y
NuSMV 20 0.144 141036 na na Y
TMMC 20 0.032 20440 na na N
TMMCIR 50 0.580 401646 1 100 Y
SPLIT 50 12.187 4555054 1 98 Y
AFR 50 3.320 1242752 na na Y
NuSMV 50 3.412 2444624 na na Y
TMMC 50 0.228 203378 na na N
TMMCIR 100 5.536 1510344 1 200 Y
SPLIT 100 207.233 57265726 1 198 Y
AFR 100 208.561 3059868 na na Y
NuSMV 100 614.806 4762520 na na Y
TMMC 100 4.200 2057907 na na N
TMMCIR 200 27.966 2439514 1 400 Y
TMMCIR 300 145.093 5767146 1 600 Y

Table 1. Experimental Results of MUX-SEM

For MUX-SEM (Fig. 1), thread-modular model checking does not give a con-
clusive verification result due to abstraction. Our algorithm (TTMCIR) clearly
outperforms other complete algorithms in large cases. For 100 processes, TTM-
CIR takes only 5.536 seconds to conclude the verification; other algorithms re-
quire more than 200 seconds to give conclusive results. Moreover, our algorithm
is able to finish cases with 200 and 300 processes in less than 2.5 minutes. Other
complete algorithms fail to finish the verification within an hour.

We now consider a variant of the simple mutual exclusion algorithm called
MUX-SEM-LAST (Fig. 4(a)). In the new algorithm, a new global variable last
is added to record the last process which enters its critical section. Table 2 gives
the experimental results.
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global z: boolean initially x =1
local counter : initially counter = 0
loop forever

{ =0 : Non-Critical

l=1:request x A

counter := (counter + 1)%M
l = 2 : Critical
I =3 : release x
(b) MUX-SEM-COUNT)

global z: boolean initially z =1
global last : N initially last =0
loop forever

[ = 0 : Non-Critical

Il =1:request x Alast :=j

I = 2: Critical

[ = 3 :release ©

(a) MUX-SEM-LAST);

Fig. 4. MUX-SEM-LAST; and MUX-SEM-COUNT}

method processes time BDD’s refinement preds conclusive?

TMMCIR 50 1.548 1263192 1 100 Y
SPLIT 50 4.047 3219300 0 0 Y
AFR 50 87.297 2480394 na na Y
NuSMV 50 189.900 3113012 na na Y
TMMC 50 0.624 488516 na na N
TMMCIR 100 12.945 4143188 1 200 Y
SPLIT 100 36.557 28470876 0 0 Y
AFR 100 >1h - na na N
NuSMV 100 >1h - na na N
TMMC 100 6.636 2454844 na na N

Table 2. Experimental Results for MUX-SEM-LAST

Thread-modular model checking again fails to verify the property conclu-
sively. Our algorithm still performs better than other complete algorithms in
this example. The SPLIT tool also performs reasonably well; it finishes the case
with 100 processes in 36.557 seconds whereas forward reachability and NUSMV
cannot conclude in an hour. Interestingly, the SPLIT tool is able to prove the
result without any refinement. Although TMMCIR requires one refinement and
adds 100 essential predicates, the algorithm still concludes the verification with
less time and space than SPLIT. This suggests the overhead of the proposed
refinement technique is insignificant in this example.

We now consider another variant of the simple mutual exclusion algorithm
(Fig. 4(b)). In MUX-SEM-COUNT, a local counter is added to each process.
When a process enters its critical section, the local counter is incremented by one
(modulo a constant M). Thread-modular model checking fails to give any con-
clusive result in this example. Thanks to abstraction, our algorithm and SPLIT
can verify all cases in seconds. In comparison, forward reachability and NUSMV
need more than 20 minutes to finish the case with 20 processes (Table 3).

For the bakery algorithm, thread modular model checking is able to verify the
property conclusively (Table 4). It therefore attain the best performance with
the larger case with 8 processes. Our algorithm is slightly slower (.466 seconds)
than the incomplete algorithm and finishes the verification of the same case in
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method processes time BDD’s refinement preds conclusive?

TMMCIR 10 0.020 14308 1 20 Y
SPLIT 10 0.321 100019 1 18 Y
AFR 10 5.996 617288 na na Y
NuSMV 10 2.288 1030176 na na Y
TMMC 10 0.016 10220 na na N
TMMCIR 20 0.104 122640 1 40 Y
SPLIT 20 2.520 930020 1 38 Y
AFR 20 1584.179 2634716 na na Y
NuSMV 20 3914.385 159986 na na Y
TMMC 20 0.044 47012 na na N

Table 3. Experimental Results for MUX-SEM-COUNT

less than a half minute. The SPLIT tool is able to prove the same property in
less than 1.5 minutes. Conventional forward reachability and NUSMV require
more than 6 and 21 minutes to obtain the verification result respectively.

method processes time  BDD’s refinement preds conclusive?

TMMCIR 4 0.100 96068 0 0 Y
SPLIT 4 0.267 218708 0 0 Y
AFR 4 0.084 91980 na na Y
NuSMV 4 0.140 106288 na na Y
TMMC 4 0.100 96068 na na Y
TMMCIR 8 26.246 2389436 0 0 Y
SPLIT 8 75.141 26776400 0 0 Y
AFR 8 240.555 4258674 na na Y
NuSMV 8 1282.984 25237268 na na Y
TMMC 8 25.780 2389436 na na Y

Table 4. Experimental Results for the Bakery Algorithm

Finally, we consider the dining philosopher problem (Table 5). Thread-modular
model checking cannot give conclusive answers. Most interestingly, conventional
forward reachability algorithm is most efficient in this example. It takes less than
3 seconds to prove the property in the case with 10 processes. NUSMYV is about
1 second slower than forward reachability. In comparison, our algorithm and
the SPLIT tool require several refinements to conclude the verification. In the
case with 8 processes, TMMCIR adds 20 essential predicates in 3 refinements;
SPLIT adds 11 essential predicates in 6 refinement. Subsequently, both are sig-
nificantly inefficient than conventional algorithms. Our algorithm requires about
16 seconds to finish whereas SPLIT takes more than 80 minutes.

In our experiments, TMMC does not give conclusive results in all examples
but the bakery algorithm. If an example needs no refinement, our algorithm and
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method processes time BDD’s refinement preds conclusive?

TMMCIR 6 0.104 85848 3 12 Y
SPLIT 6 0.320 158410 3 6 Y
AFR 6 0.016 14308 na na Y
NuSMV 6 0.036 17374 na na Y
TMMC 6 0.008 7154 na na N
TMMCIR 8 1.028 367920 3 16 Y
SPLIT 8 16.442 1176322 5 10 Y
AFR 8 0.236 243236 na na Y
NuSMV 8 0.236 223818 na na Y
TMMC 8 0.020 24528 na na N
TMMCIR 10 15.981 1475768 3 20 Y
SPLIT 10 5274.488 4193266 6 11 Y
AFR 10 2.592 1815434 na na Y
NuSMV 10 3.556 1739444 na na Y
TMMC 10 0.052 48034 na na N

Table 5. Experimental Results for Dining Philosophers

thread-modular model checking have comparable performance. In most exam-
ples, TMMCIR and SPLIT are faster than conventional forward reachability
and and NUSMYV. Between our algorithm and SPLIT, ours usually performs
better. This is due to the fact that our algorithm computes the reachable states
separately with only one process and its environment.

6 Conclusions

This paper uses iterative refinement to make thread-modular model checking
complete. Thread-modular model checking computes the reachable states of each
process with its environment—the composition of other processes’ global infor-
mation. With limited global information, thread-modular model checking can
compute the system reachable states quickly. However, it is incomplete for many
protocols, which is what we resolved by the refinement in our approach. In most
examples, our approach performs substantially better than other complete ver-
ification algorithms. The main reason is that we compute the reachable states
separately with only one process and its environment. In MUX-SEM with 200
processes, we only use about 27 seconds, while other approaches use more than
1 hour.

According to our experimental data, the approach about thread-modular
model checking cannot give good performance when the global variables are
much more than local variables. We will take abstraction for global variables to
improve its efficiency in our future work.
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