
199

Termination Analysis for Evolving Programs

An Incremental Approach by Reusing Certified Modules

FEI HE, Tsinghua University, China, Key Laboratory for Information System Security, MoE, China, and Beijing

National Research Center for Information Science and Technology, China

JITAO HAN, Tsinghua University, China, Key Laboratory for Information System Security, MoE, China,

and Beijing National Research Center for Information Science and Technology, China

Research on program termination has a long tradition. However, most of the existing techniques target a
single program only. We propose in this paper an incremental termination analysis approach by reusing
certified modules across different program versions. A transformation-based procedure is further developed
to increase the reusability of certified modules. The proposed approach has wide applicability, applicable to
various program changes. The proposed technique, to the best of our knowledge, represents a novel attempt to
the termination analysis of evolving programs. We implemented the approach on top of Ultimate Automizer.
Experimental results show dramatic improvement of our approach over the state-of-the-art tool.

CCS Concepts: · Software and its engineering→ Correctness; Software verification.

Additional Key Words and Phrases: Termination analysis, incremental analysis, Büchi automaton, ranking

function

ACM Reference Format:

Fei He and Jitao Han. 2020. Termination Analysis for Evolving Programs: An Incremental Approach by
Reusing Certified Modules. Proc. ACM Program. Lang. 4, OOPSLA, Article 199 (November 2020), 27 pages.
https://doi.org/10.1145/3428267

1 INTRODUCTION

Termination is a fundamental program property. There is a wide variety of work on proving
program termination from different angles [Brockschmidt et al. 2013; Cook et al. 2006a,b, 2013;
Gulwani et al. 2008; Harris et al. 2010; Heizmann et al. 2014; Kroening et al. 2008, 2010; Larraz et al.
2013; Podelski and Rybalchenko 2004; Podelski and Rybalchenko 2005, 2011; Ströder et al. 2017].
However, most of these techniques target a single program version only. Note that programs evolve
throughout their life cycles. How to efficiently prove termination of evolving programs is the main
problem addressed in this paper.

Incremental analysis is a methodology that attempts to reuse the intermediate results, computed
in the previous round of analysis, in the current analysis. The incremental analysis has been
successfully applied to model checking [Beyer et al. 2012; Conway et al. 2005; He et al. 2016;
Henzinger et al. 2003; Lauterburg et al. 2008; Yang et al. 2009], program verification [Beyer et al.
2013; Fedyukovich et al. 2013; Rothenberg et al. 2018; Sery et al. 2012; Yang et al. 2014], etc. However,

Authors’ addresses: Fei He, School of Software, Tsinghua University, China, Key Laboratory for Information System Security,
MoE, China, Beijing National Research Center for Information Science and Technology, Beijing, China, hefei@tsinghua.edu.
cn; Jitao Han, School of Software, Tsinghua University, China, Key Laboratory for Information System Security, MoE, China,
Beijing National Research Center for Information Science and Technology, Beijing, China, hanjt18@mails.tsinghua.edu.cn.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART199
https://doi.org/10.1145/3428267

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428267
https://doi.org/10.1145/3428267

199:2 Fei He and Jitao Han

to the best of our knowledge, we are not aware of any incremental technique for termination analysis
of evolving programs.
Certified module, proposed by Heizmann, Hoenicke and Podelski [Heizmann et al. 2014], is a

special case of Büchi automaton. A certified module guarantees that: 1) all accepted ω-traces are
terminating, and 2) they share the same termination argument. To prove the termination of a
program, it suffices to find a set of certified modules such that all ω-traces of the program are
covered by these certified modules. The Ultimate Automizer tool that implements this approach
won the 1st place in the Termination category of SV-COMP from 2017 ś 2019.

We found that certified modules are reusable. Construction of a certified module is not guided by
the program structure (see Section 2). Instead, a certified module may recognize traces that do not
belong to the program, and can also reject traces of the program (i.e., left to other certified modules
to cover). This freedom in representing the ω-language gives them more possibilities to be reused
across different program versions. Recall that a certified module represents a set of terminating
ω-traces. These traces can be subtracted from the program without proving their termination again.
The whole verification efforts can thus be considerably reduced.

We propose an incremental termination analysis approach by reusing certified modules. Each
certified module is decomposed into a number of Hoare triples. A Hoare triple {φ}b {ψ } is reusable
as long as the block b does not change. The certified module can guarantee that all decomposed
Hoare triples are valid. So these triples can be reused without proving their validity again. Moreover,
the precondition φ and the postconditionψ convey information about the ranking function. This
information is also reusable when we consider to add new Hoare triples. In this way, we realize as
much as possible reusing of certified modules.

Regarding the program as an automaton over the alphabet of blocks (or statements), the program
changes can be categorized into two types: the block changes, that add or delete blocks to the
program, or the control-flow changes, that add or delete control-flow edges to the program. We
show that our approach is applicable to both types of changes. As long as the two program versions
share some blocks (or statements), our incremental approach is beneficial.
We implemented our approach on top of Ultimate Automizer. We evaluated our approach

on two sets of programs, where the first contains 90 manually-crafted program revisions, and the
second contains 611 real-world program revisions. Compared to the state-of-the-art Ultimate
Automizer, our approach is x4.16 faster for manually-crafted revisions, and x3.08 faster for real-
world revisions.

The main technical contributions of this paper are summarized as follows:

• We proposed, to the best of our knowledge, the first approach for termination analysis of
evolving programs.
• We developed a transformation-based procedure for increasing the reusability of certified
modules. We showed that our approach are applicable to various program changes.
• We implemented the proposed approach. Experimental results showed dramatic improvement
of our approach.

The remainder of this paper is organized as follows. Section 2 introduces the necessary prelimi-
naries. Section 3 motivates our approach using a simple example. Section 2.5 reviews the existing
termination analysis approach for a single program version. Section 4 presents our incremental
termination analysis approach for evolving programs. Section 5 discusses the applicability of our
approach. Section 6 reports evaluation results on our approach. Section 7 discusses related work
and Section 8 concludes this paper.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:3

2 PRELIMINARIES

2.1 Program, Alphabet and Trace

Let P be a program. A basic block (or shortly, block) b of P is a straight-line sequence of program
statements in P without any program jumps. Let Σ be the set of blocks in P . A program is a control-
flow automaton P = (Loc, δ , l◦), where Loc is the set of program locations, δ ⊆ Loc × Σ × Loc is the
set of control-flow edges labeled with blocks, and l◦ is the initial location.
We may treat Σ as the alphabet and each b ∈ Σ as a letter [Heizmann et al. 2013a]. Then a

finite trace over Σ is a finite sequence of letters in Σ, and an ω-trace over Σ is an infinite sequence
of letters in Σ. Note that Σ is a finite set, the ω-trace σ over Σ is always in the lasso shape, i.e.,
σ = b0 . . .bk−1 (bk . . .bn)

ω , where the prefix b0 . . .bk−1 is called the stem of the lasso, and the
periodic part bk . . .bn is called the loop of the lasso. Denote Σ∗ the set of all traces over Σ, and Σ

ω

the set of all ω-traces over Σ.
A program is a special case of a Büchi automaton (Σ, Loc, δ , l◦, Loc), where the alphabet is the set

of program blocks, the set of nodes is the set of the program locations, and the set of accepting
nodes contains all program locations. A path π of P is an alternating sequence of locations and
blocks, i.e.,

π = l◦
b0
−−→ l1

b1
−−→ . . . ,

such that (li ,bi , li+1) ∈ δ for each i ≥ 0. A trace (or anω-trace) over Σ is called a trace (or anω-trace)
of P if it labels a path of P . Denote L(P) (or Lω (P)) the set of all traces (or ω-traces) recognized by
P . Obviously, L(P) ⊆ Σ

∗ and Lω (P) ⊆ Σ
ω .

2.2 Infeasible Trace

In the following, we use Hoare triple to define the feasibility of traces.
Let φ andψ be two first-order predicates, and b be a program block. The Hoare-triple {ϕ}b {ψ }

is valid iff ϕ ⇒ wp(b,ψ), wherewp stands for the weakest precondition transformer [Bradley and
Manna 2007]. Moreover, letb0b1 . . .bn be a finite sequence of blocks, the Hoare triple {ϕ} b0b1 . . .bn
{ψ } is valid iff ϕ ⇒ wp(b0,wp(b1, . . . ,wp(bn,ψ))).
Let V be the set of variables in the program. A state of P is a pair (l, s), where l is a program

location, and s is a valuation to V . Denote ϕs the formula represention of s . For instance, the
valuation {x0 7→ 0, x1 7→ 1} can also be represented as x0 = 0 ∧ x1 = 1. Let (l, s) and (l ′, s ′) be two

states of the program, we say (l ′, s ′) is reachable from (l, s), iff there is a trace σ such that l
σ
−→ l ′,

and the Hoare triple {ϕs } σ {ϕs ′} is valid.
A finite trace τ of P is infeasible if {true} τ {false} is valid, i.e., there exists no possible execution

of P for τ . An ω-trace τ is infeasible if either: 1) any of its finite prefix is infeasible, or 2) there exists
no initial valuation to enable any infinite execution of τ .

2.3 Module

Termination analysis needs only to consider ω-traces of the program. An ω-trace is terminating
if and only if it is infeasible. In the following, we introduce module [Heizmann et al. 2014] as a
representation of a set of ω-traces.

Definition 1. A module is a 5-tupleM = (Σ,Q, δ ,q◦,q•), where Σ is the alphabet, Q is a finite set
of nodes, δ ⊆ Q × Σ ×Q is a set of edges labeled with letters in Σ, q◦ ∈ Q is the initial node, q• ∈ Q is
the accepting node, and Q can be partitioned into two sets Q0 and Q1, such that q◦ ∈ Q

0, q• ∈ Q
1 and

no node in Q1 has a successor in Q0.

Note that a node in a module is not necessarily a program location, and an edge of a module
may not correspond to any control-flow edge of the program.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:4 Fei He and Jitao Han

A module is a special case of a Büchi automaton where the set of states is the set of nodes and
the set of accepting states contains q• only. An infinite path ofM is fair (also said, accepted byM)
if it visits the accepting node q• infinitely often. An ω-trace ofM is fair (also said, accepted byM) if
it labels a fair path ofM . Denote Lω (M) the set of all fair ω-traces accepted byM . A moduleM is
terminating if all traces in Lω (M) are terminating.

2.4 Ranking Function and Certified Module

Let f be a function over the program variables V that returns an element in a well-ordered set
(S, ≺). The function f is called a ranking function forM [Heizmann et al. 2014] if the values of f (V)
decrease every time the accepting node is visited. Note that this definition is a little different from
the ranking function of a program, where the values of f (V) are required to decrease on every
transition of the program.

In the following, we use an auxiliary variable oldrnk to refer to the value of f (V) at the previous
visit of the accepting node q•, and∞ to represent a big value that is greater than all other values
from the well-ordered S . The value of oldrnk needs to be updated every time q• is visited. To certify
that f (V) is indeed a ranking function, we need to guarantee f (V) < oldrnk and oldrnk ≥ 0 at
each visit of q•.

Definition 2. Given a moduleM = (Σ,Q, δ ,q◦,q•) and a function f (V) that returns an element
in a well-ordered set (S, ≺), a rank certificate I for f andM is an annotation that maps each node of
M to a predicate, such that

• the initial node q◦ is mapped to a predicate where oldrnk has the value∞, i.e.,

I(q◦) ⇔ oldrnk = ∞;

• the accepting node q• is mapped to a predicate stating that the value of f (V) decreases since the
last visit of q•, i.e.,

I(q•) ⇒ (f (V) < oldrnk ∧ oldrnk ≥ 0);

• for any edge (q,b,q′) ∈ δ where q , q•,

{I(q)}b {I(q′)} is valid; and

• for any edge (q•,b,q
′) ∈ δ ,

{I(q•)} oldrnk:=f(V); b {I(q′)} is valid.

The triple (M, f ,I) is called a certified module.

Throughout the paper, we often write a certified module asM when f and I are clear from the
context.

Lemma 1. [Heizmann et al. 2014] A certified module is always terminating.

A certified module can be used as a representation of a set of fair ω-traces that share the same
reason (i.e., the ranking function and the rank certificate) for termination.

2.5 Termination Analysis Using Certified Modules

Theorem 1. [Heizmann et al. 2014] A program P is terminating if there exists a set of terminating
modulesM0,M1, · · · ,Mn , such that

Lω (P) ⊆ Lω (M0) ∪ L
ω (M1) ∪ · · · ∪ L

ω (Mn).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:5

𝜔ܮ 𝑃 ⊆ 𝜔ܮ 𝑖𝑛𝑖=0ܯ ? Is 𝜎 terminating?

Program 𝑃

Unknown

Yes

Return a 𝜔-trace 𝜎 ∈ 𝜔ܮ 𝑃 𝜔ܮ / 𝑖𝑛𝑖=0ܯ

Not decided
No

Yes 𝑛 ≔ Ͳ

𝑃 is terminating

with 0ܯ, … 𝑛 being the certificateܯ,

𝑛 ≔ 𝑛 + ͳ;

Return a certified module ܯ𝑛

s.t., 𝜎 ∈ 𝜔ܮ 𝑛ܯ

Fig. 1. Termination analysis using certified modules

1 int x, y;

2 x = nondet_int ();

3 while (x >= 0){

4 y = 1;

5 while (y < x) {

6 y = 2∗y; // y = y + 1;

7 }

8 x = x − 1;

9 }

Fig. 2. A program example loop0

Heizmann et al. [2014] proposed a decomposition-based approach for proving termination of a
single program version. Figure 1 shows an overview of this approach. The basic idea is to iteratively
construct a set of certified modulesM0,M1, . . . ,Mn , such that Lω (P) ⊆

⋃n
i=0 L

ω (Mi).
Each iteration of this approach consists of two phases: the language inclusion checking and

the certified module construction. During the language inclusion checking, we check if Lω (P) ⊆⋃n
i=0 L

ω (Mi) or not. If the check succeeds, by Theorem 1, we immediately conclude that P is
terminating. Otherwise, the program termination can not be proved with the current set of certified
modules, and the checker returns a counterexample σ ∈ Lω (P) \

⋃n
i=0 L

ω (Mi).
During the certified module construction phase, the ω-trace σ returned by the former phase is

semantically analyzed to decide if it is terminating or not. Termination analysis for a single ω-trace
(or equivalently, for a lasso program that contains a single ω-trace) has long been studied. Many
specialized methods was developed for lasso programs [Ben-Amram and Genaim 2013, 2014, 2015,
2017; Bradley et al. 2005a; Cook et al. 2010; Heizmann et al. 2013b; Kroening et al. 2008; Podelski
and Rybalchenko 2004]. Even so, termination of this kind of simple programs is undecidable [Ben-
Amram and Genaim 2014]. If the termination of σ cannot be decided, we report łunknownž 1.
Otherwise, with the termination argument (usually, a ranking function) generated by the existing
methods, we proceed to construct a certified module.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:6 Fei He and Jitao Han

3 A MOTIVATING EXAMPLE

Figure 2 shows a simple program loop0 that contains a double nested while loop. Blocks in this
program are: b0 = x=* , b1 = assume x>=0; y=1 , b2 = assume y<x; y=2*y , and b3 =

assume y>=x; x=x-1 .

3.1 Termination Analysis of loop0

To prove the termination of loop0, we need to show that all ω-traces of loop0 are terminating.
Let us first take an ω-trace of loop0:

b0b1(b2)
ω

that enters the outer while loop and then visits the inner while loop infinitely often. Termination
of this trace can be certified by the moduleM0 in Figure 3a together with the linear ranking function
f (x,y) = x − y and the following rank certificate:

I(q1) ⇔ oldrnk = ∞, and

I(q2) ⇔ (oldrnk > x − y ∧ oldrnk ≥ 0 ∧ y > 0).

Note that the moduleM0 accepts not only the input trace but also all traces that eventually always
take the inner loop, i.e., (Σ0)

∗b1(b2)
ω , where Σ0 = {b0,b1,b2,b3}. The rank certificate forM0 further

guarantees that all ω-traces accepted byM0 are terminating.
Then, we check if Lω (loop0) ⊆ L

ω (M0) or not. This check returns a counterexample. Let us
take the following counterexample trace:

b0(b1b3)
ω

that visits the outer while loop infinitely often. The termination of this trace can be certified by
the moduleM1 in Figure 3b together with the ranking function f (x) = 2x + 1 and the following
rank certificate:

I(q0) ⇔ oldrnk = ∞,

I(q1) ⇔ (oldrnk > 2x + 1 ∧ oldrnk ≥ 0), and

I(q2) ⇔ (oldrnk ≥ 2x + 1 ∧ x ≥ 0).

Again, all ω-traces accepted byM1 are terminating.
Finally, we check whether Lω (loop0) ⊆ L

ω (M0) ∪ L
ω (M1). We see that this check succeeds,

i.e., all ω-traces of loop0 are covered byM0 andM1. We thus conclude that loop0 is terminating (by
Theorem 1).

3.2 Termination Analysis of loop1

Now, let us assume that the program loop0 evolves into a new version loop1, where the statement
y=2*y (at line 6) is replaced by the statement y=y+1 . In terms of alphabet, loop1 differs loop0
only in block b2. Denote b ′2 = assume y<x; y=y+1 as the altered version of b2. Note that this
change has side effects to the ranking function f (x,y) = x − y and also the inner loop condition.

Observe that the certified modulesM0 andM1 are intermediate results generated in the previous
analysis, conveying important information about the termination of loop0. Note that these two
modules are defined over the alphabet Σ0, but not Σ1. They cannot directly be applied to the
termination analysis of loop1. However, if we look deep into the nodes and the edges of these two
modules, reusable information can be identified.

1Before that, we will try to apply the non-termination analysis [Leike and Heizmann 2018] to get a conclusive łnon-
terminatingž result.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:7

q1

{φ0}

q2

{φ1}

b1
Σ0 b2

(a) The certified module M0, where φ0 ⇔ oldrnk = ∞ and φ1 ⇔ (oldrnk > x − y ∧

oldrnk ≥ 0 ∧ y > 0)

q0

{ψ0}

q1

{ψ1}

q2

{ψ2}

b0
b1

b3

b2

(b) The certified module M1, where ψ0 ⇔ oldrnk = ∞, ψ1 ⇔ (oldrnk > 2x + 1 ∧

oldrnk ≥ 0) andψ2 ⇔ (oldrnk ≥ 2x + 1 ∧ x ≥ 0)

Fig. 3. Certified modules for loop0

Let us consider the edge (q1,b1,q2) of M0. According to the definition of a certified module
(Definition 2), the Hoare triple {I(q1)}b1 {I(q2)} is valid, where

I(q1) ⇔ oldrnk = ∞

I(q2) ⇔ (oldrnk > x − y ∧ oldrnk ≥ 0 ∧ y > 0)

are two predicates mapped by the rank certificate I to q1 and q2, respectively.
The above Hoare triple is reusable, because b1 is not changed in loop1. With this valid Hoare

triple, we know that if b1 is executed from a state satisfying I(q1), its final state must satisfy I(q2).
The validity of this Hoare triple just tells a fact about the semantics of b1, which always hold as
long as b1 does not change. By reusing this Hoare triple, we need not to check its validity again.
Given that the validity checking of Hoare triples needs to invoke an SMT solver, and in many cases
is quite time-consuming. Reusing this information significantly reduces redundant computation.
Moreover, let us look at the postcondition I(q2) of this Hoare triple. The ranking function

f (x,y) = x − y is embraced in this predicate. In other words, reusing this Hoare tripe can save
us the efforts for re-computing the ranking function (if this ranking function still takes effect).
Recall that the synthesis of ranking function is among the most time-consuming operations for
termination analysis, reusing this information can save a great deal of effort.

4 INCREMENTAL TERMINATION ANALYSIS

This section proposes our incremental termination analysis approach. The basic idea is to reuse the
previously-computed information in the current analysis.
In the sequel of this section, we first present the framework of our approach, then explain our

Reuse technique, and our on-demand construction technique, and finally prove the correctness of
our approach.

4.1 The Whole Procedure

Let P− and P be two versions of a program, and Σ
− and Σ be their alphabets, respectively. As-

sume the termination of P− has already been analyzed, generating a set of certified modules, say
M−

0
,M−

1
, . . . ,M−m . Figure 4 shows an overview of our incremental termination analysis using cer-

tified modules. Before the new round of analysis starts, an initialization procedure is performed,
which attempts to reuse the information stored in the previously-constructed certified modules.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:8 Fei He and Jitao Han

𝜔ܮ 𝑃 ⊆ 𝜔ܮ 𝑖𝑖=0ܯ ? Is 𝜎 terminating?

𝑃 is terminating

with 0ܯ, … being the certificateܯ,

Unknown

Yes

𝑛 ≔ 𝑘

No

Yes

Return a 𝜔-trace 𝜎 ∈ 𝜔ܮ 𝑃 𝜔ܮ / 𝑖𝑖=0ܯ

Not decided

𝑛 ≔ 𝑛 + 1;

Return a certified module ܯ

s.t., 𝜎 ∈ 𝜔ܮ ܯ

Program 𝑃

Certified modules 0ܯ−, … −ܯ,

for the old program

Construct a set of reuse

modules 0ܯ, … 𝑘ܯ,

Fig. 4. Incremental termination analysis using certified modules

The reuse procedure is applied to each of the input certified modules, and outputs a reuse module.
A reuse module is a certified module over Σ, and can be used for proving termination of P . Due to the
diversity of program changes, the constructed reuse module may recognize an empty ω-language.
For this case, this module covers no ω-traces of P , and is directly abandoned. Therefore, the number
k of constructed modules is less than or equal to the numberm of the input certified modules, i.e.,
k ≤ m.

In each iteration, the language inclusion checking

Lω (P) ⊆

n⋃

i=0

Lω (Mi)

is equivalent to check if P ∩M0 ∩ · · · ∩Mn recognizes an empty language or not. The latter check
can be implemented in an incremental way, i.e., P (0) = P , P (1) = P (0) ∩M0, . . . , P (n+1) = P (n) ∩Mn .
Each automaton P (l) (0 ≤ l ≤ n + 1) is called a remainder automaton. We iteratively check if P (l)

recognizes an empty ω-language or not.

4.2 The Reuse Procedure

Given a certified moduleM− of the previous program version, we construct a new moduleM , called
the reuse module, in the following steps.

Step 1. Extract predicates and Hoare triples. Recall that the previously-constructed certified module
M− and the current program version P are over different alphabets. TheM− may not be entirely
reusable for the current analysis. However, we may decompose the certified module into a set of
Hoare triples, many of which are reusable for the current analysis.

According to the certified module definition (Definition 2), on each edge ofM−, there is a valid
Hoare triple. Particularly, for any edge (q,b,q′) ofM−, where q , q−• , we get a Hoare triple

{I(q)}b {I(q′)};

and for any edge (q−• ,b,q
′), we get a Hoare triple

{I(q−•)} oldrnk:=f(V); b {I(q′)}.

DenoteH1 as the set of Hoare triples obtained in this step.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:9

We also collect the set of predicates used in the rank certificate ofM−, i.e.

U1 =

⋃

∀q∈Q−

{I(q)}.

Especially, we use u◦ = I(q−◦) and u• = I(q
−
•) to mark the predicates that are mapped to the

initial and accepting nodes ofM−, respectively. Note thatU1 can also be considered as the set of
predicates (precondition or postcondition) of all Hoare triples inH1.

Example 1. Consider the certified moduleM0 in Figure 3a, the predicates mapped to q1 and q2 by
the rank certificate are respectively

φ0 ⇔ oldrnk = ∞, and

φ1 ⇔ (oldrnk > x − y ∧ oldrnk ≥ 0 ∧ y > 0).

The set of predicates ofM0 is thus {φ0,φ1}. The Hoare triple for edges (q1,b1,q2) and (q2,b2,q2) are
respectively

{φ0}b1 {φ1}, and

{φ1} oldrnk:=f(V); b2 {φ1}.

The set of all Hoare triples ofM0 are listed in Figure 5a.

Step 2. Delete inapplicable predicates and Hoare triples. The extracted predicates and Hoare triples
record information about the previous program version. They may not all be applicable to the
current analysis.
Let V be the set of program variables in P . For any predicate φ ∈ U, define FV (φ) as its set of

free variables. Basically, φ can only use program variables in V and a special variable oldrnk as its
free variables. The predicate φ is inapplicable to P if

FV (φ) \ (V ∪ {oldrnk }) , ∅.

A Hoare triple {φ}b {φ ′} is inapplicable to P if either (1) φ or φ ′ is inapplicable to P , or (2) b does
not exist in P .
The inapplicable predicates and Hoare triples need be removed from U and H , respectively.

Note that u◦ and u• are necessary for constructing the reuse module. If u• is deleted from U in
this step, we stop the reuse procedure for M−, and proceed to process the next certified module.
Note that u◦ will never be deleted, since it always represents oldrnk = ∞, containing a single free
variable oldrnk . Denote the resulting sets of predicates and Hoare triples after elimination asU2,
H2, respectively.

Example 2. Consider the predicate set U obtained in Example 1, except of oldrnk , other two
variables x and y are declared in loop1, thus no predicate needs to be eliminated fromU. Consider the
Hoare triple setH1 obtained in Example 1 (in Figure 5a). Note that the only changed block in loop1
against loop0 is b2. Therefore, the third and sixth Hoare triples inH1 are inapplicable to loop1 and
need to be removed from this set.

Step 3. Add new Hoare triples. The new program version may contain new blocks, which should be
tested for addition of new Hoare triples.
Let b ∈ Σ \ Σ− be a new block. In this step, we limit the precondition and postcondition of the

candidate Hoare triple to among the predicates inU2. For any two predicates φ,φ ′ ∈ U2, if φ , u•,
we test the validity of {φ}b {φ ′}; if φ = u•, we test the validity of {φ} oldrnk:=f(v); b {φ ′}; we
then add the passed Hoare triples toU2. In this way, the previously-computed rank certificate are
adapted to the new program version. LetH3 be the triple set after addition of new Hoare triples.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:10 Fei He and Jitao Han

Example 3. Consider the Hoare triple setH2 obtained in Example 2. Note that b ′
2
is the only new

block in loop1 compared to loop0. After validity testing, two new Hoare triples (colored red in Figure 5b)
are added into this triple set.

Step 4. Construct the reuse module. GivenU2 andH3, we now construct a moduleM , called a reuse
module, and a mapping I, in the following steps:

• create a node q for each predicate φ inU2, and set I(q) = φ;
• add an edge (q,b,q′), if q , q• and there is a Hoare triple

{I(q)}b {I(q′)} ∈ H ;

• add an edge (q,b,q′), if q = q• and there is a Hoare triple

{I(q)} oldrnk := f(V); b {I(q′)} ∈ H ; and

• the node q is made the initial node (or the accepting node) if I(q) = u◦ (or I(q) = u•).

Recall that the extraction procedure in Step 1 extracts a set of valid Hoare triples from a certified
module. The above construction procedure works in the reverse direction, i.e., constructs a certified
module from a set of valid Hoare triples.

Example 4. Consider the predicate set U2 = {φ0,φ1} and the Hoare triple set H3 in Figure 5b.
According to the above module construction rules, two nodes are created for the reuse module, named
q0 and q1, and mapped to φ0 and φ1, respectively. Additionally, six edges are connected in the reuse
module, each standing for one Hoare triple in Figure 5b. The reuse module after construction is shown
in Figure 5c.

Theorem 2. The reuse module constructed in the reuse procedure is terminating.

Proof. Let M = (Q, δ ,q◦,q•) be a reuse module constructed from a certified module M− =
(Q−, δ−,q−◦ ,q

−
•) by the reuse procedure. By Step 1 and Step 4, I(q◦) = I(q−◦) and I(q•) = I(q

−
•).

Moreover,M− is a certified module, the first two conditions of Definition 2 are thus satisfied. For
any edge (q,b,q′) ∈ δ , it is either inherited from M−, or added by Step 3 of the reuse procedure.
For the former case, the validity of the corresponding Hoare triple is ensured by M− (a certified
module); for the latter case, the processing of Step 3 guarantees the validity of the corresponding
Hoare triple. Therefore, the last two conditions in Definition 2 are also satisfied. Therefore,M is a
certified module (by Definition 2), andM is terminating (by Lemma 1). □

4.3 On-Demand Construction

The reuse procedure indeed enforces an eager construction of the reuse module ś the whole module
is constructed before it participates in the verification. In practice, the eager construction can be
very expensive. Note that in Step 3 of the reuse procedure, we need to check the validity of all
candidate Hoare triples. In the worst case, the number of validity checking is O(δ · |U|2), where δ
is the number of new blocks in P , and |U| is the number of predicates inU. The validity checking
(in Step 3) is the most computationally expensive step in the reuse procedure.

Recall that the constructed certified modules are devoted to cover ω-traces of P . Not all edges
of the reuse module are related to the automaton of P . Validation checking of Hoare triples for
these irrelative edges are redundant. To avoid such redundant validation checking, we apply an
on-demand approach to construct the reuse module on-the-fly. The basic idea is to defer the validity
checking to the verification phase, and add the corresponding edges only on demand.

More specifically, let P (l) be the current remainder automaton, andM− the certified module to be
processed, in the language inclusion checking, we compute a new remainder automaton P (l+1), and

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:11

𝐻ଵ =
𝜑 𝑏 𝜑𝜑 𝑏ଵ 𝜑𝜑 𝑏ଶ 𝜑𝜑 𝑏ଷ 𝜑𝜑 𝑏ଵ 𝜑ଵ𝜑ଵ oldrnk ≔ ݔ − ;ݕ 𝑏ଶ 𝜑ଵ

(a)

𝐻ଷ =
𝜑 𝑏 𝜑𝜑 𝑏ଵ 𝜑𝜑 𝑏ଷ 𝜑𝜑 𝑏ଵ 𝜑ଵ𝜑 𝑏ଶ′ 𝜑𝜑ଵ oldrnk ≔ ݔ − ;ݕ 𝑏ଶ′ 𝜑ଵ

(b)

q0

{φ0}

q1

{φ1}

b1
Σ1 b ′

2

(c)

Fig. 5. Construction of the reuse module, where φ0 ⇔ oldrnk = ∞, φ1 ⇔ (oldrnk > x − y ∧ oldrnk ≥

0 ∧ y > 0)

in the meanwhile transformM− toM . Algorithm 1 depicts our on-demand construction procedure.
This algorithm consists of two phases. In the first phase, the algorithm transforms the inputted
certified module to an (incomplete) reuse module M by applying Step 1, Step 2 and Step 4 of the
reuse procedure in turn (lines 1 ś 3). Note that the most time-consuming step (i.e. Step 3) is skipped,
and the edges with respect to the new blocks have not been added to the reuse module.
In the second phase, the algorithm checks the language inclusion by constructing the next

remainder automaton P (l+1) = P (l) ∩ M . Denote Q , Q (l) and Q (l+1) the node sets of M , P (l) and
P (l+1), respectively. Each node in Q (l+1) is a composition of a node in Q (l) and a node in Q . In

the beginning, Q (l+1) contains only the initial node (q(l)◦ ,q◦) (line 5). Then the algorithm tries to

traverse and add all reached nodes to Q (l+1). Let (q(l)
1
,q1) be the current node to be explored (line

7). We first take an edge of P (l), say (q(l)
1
,b,q

(l)
2
) (line 8), then try to simulate this edge inM from q1

(lines 9ś10). IfM has an edge, say (q1,b,q2), that leads from q1 on label b to q2, we reach a state

(q
(l)
2
,q2) of Q (l+1). Otherwise, we check if such an edge should be added or not, by checking the

validity of the corresponding Hoare triple. The returned Hoare triple by Triple(q1,b,q2) (line 11)
is {I(q1)}b {I(q2)} if q1 , q•, and {I(q1)} oldrnk:=f(V); b {I(q2)} if q1 = q•. If the reached

state (q(l)
2
,q2) is a new state (line 17), we add it to Q (l+1) (line 18) andwaitlist (line 19).

Theorem 3. The reuse module constructed in the on-demand procedure is terminating.

Proof. Let M be a reuse module constructed from a certified module M− by the on-demand
procedure. Similar to the proof for Theorem 2, I(q◦) and I(q•) satisfy the first two conditions of
Definition 2. For any edge (q,b,q′) of theM , if it is inherited fromM−, the corresponding Hoare
triple must be valid (M− is a certified module); if it is added by the on-demand procedure (at line
12), the checking at line 11 guarantees that the corresponding Hoare triple is valid. Therefore,M is
a certificate module (by Definition 2) andM is terminating (by Lemma 1). □

4.4 Correctness

We prove the correctness of our incremental termination analysis in this subsection. Let us start
with the soundness.

Theorem 4. If our procedure in Figure 4 returns łterminatingž, the input program is terminating.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:12 Fei He and Jitao Han

Algorithm 1: On-demand construction

Input: A remainder automaton P (l) = (Σ,Q (l), δ (l),q(l)◦ ,q
(l)
•) and a certified moduleM−.

Output: A new remainder automaton P (l+1) = (Σ,Q (l+1), δ (l+1),q(l+1)◦ ,q
(l+1)
•) and a reuse

moduleM = (Σ,Q, δ ,q◦,q•).
/* Certified module transformation */

1 (U,H) ← Extract(M−) ; /* step 1: extract Hoare triples */

2 (U,H) ← Filter (U,H) ; /* step 2: delete inapplicable triples */

3 M ← Construct(U,H) ; /* step 4: construct reuse module */

/* Language inclusion checking */

4 Initialize P (l+1) to be an empty automaton ;

5 Q (l+1) ← {(q
(l)
◦ ,q◦)},waitlist ← {(q

(l)
◦ ,q◦)};

6 whilewaitlist , ∅ do

7 Pop (q(l)
1
,q1) fromwaitlist ;

8 foreach (q
(l)
1
,b,q

(l)
2
) ∈ δ (l) do /* following an edge of P (l) */

9 foreach q2 ∈ Q do

10 if (q1,b,q2) < δ then /* edge with same label */

11 if Triple(I(q1),b,I(q2)) is valid then

12 δ ← δ ∪ {(q1,b,q2)} ; /* add the edge to M */

13 else

14 Continue;
15 end

16 end

17 if (q
(l)
2
,q2) < Q

(l+1) then /* a new state of P (l+1) */

18 Q (l+1) ← Q (l+1) ∪ {(q
(l)
2
,q2)} ;

19 waitlist ← waitlist ∪ {(q
(l)
2
,q2)};

20 end

21 δ (l+1) ← δ (l+1) ∪ {((q
(l)
1
,q1),b, (q

(l)
2
,q2))} ;

22 end

23 end

24 end

25 return (P (l+1),M);

Proof. This procedure returns łterminatingž only when the language inclusion checking suc-
ceeds. In other words, there exists a set of modulesM0,M1, . . . ,Mn , each of which is either con-
structed from an ω-trace, or transformed from a previously-constructed certified module, such that
Lω (P) ⊆ Lω (M0) ∪ L

ω (M1) ∪ · · · ∪ L
ω (Mn). The modules constructed from ω-traces [Heizmann

et al. 2014] are terminating. By Theorem 2 and Theorem 3, the reuse modules are terminating. Thus
all modules are terminating. According to Theorem 1, the program is terminating. □

The completeness of our approach cannot be directly guaranteed, since our approach requires to
synthesize a ranking function for any lasso program, which in some cases maybe impossible [Ben-
Amram and Genaim 2014]. Note that a terminating program can always be decomposed into a

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:13

finite set of certified modulesM0,M1, . . . ,Mn [Heizmann et al. 2014], such that

Lω (P) ⊆ Lω (M0) ∪ L
ω (M1) ∪ · · · ∪ L

ω (Mn).

Then, under the assumption of an oracle that synthesizes a ranking function for any lasso program,
we prove the relative completeness of our approach ś if the input program is terminating, the
procedure in Figure 4 always deduces this result and returns łterminatingž.

5 APPLICABILITY TO VARIOUS PROGRAM CHANGES

This section discusses the applicability of our approach to various kinds of program changes.
A program is a control-flow automaton over the alphabet of blocks. In this respect, the program

changes can be categorized into two types:

• Type I (Block changes): the changes that add or delete basic blocks to the program.
• Type II (Structure changes): the changes that add or delete control-flow edges to the
program.

5.1 Type I Changes

This type of changes may alter the alphabet of the program. Let Σ− and Σ be the alphabet before
and after the program changes, respectively.
Type I changes can be efficiently handled by our approach. For any block b ∈ Σ ∩ Σ

−, all
previously-established Hoare triples on b are reusable. For any new block b ′ ∈ Σ \ Σ−, we process
as the Step 3 in Section 4 to prove the validity of new Hoare triples on b ′. Finally, a certified module
is constructed from the set of valid Hoare triples.

Example 5. The change of loop1 over loop0 (in Figure 2) is a Type I change. It modifies the value of
y, and has side effects to the inner loop condition. As discussed before (see Section 4), our incremental
approach can efficiently handle this change.

5.2 Type II Changes

This type of changes does not alter the program alphabet. As a result, all previously-constructed
certified modules can be directly reused in the current analysis. There is even no need to apply
the Reuse procedure. The certified moduleM− can be directly used as the reuse module. The only
consequence of this type of changes is that some traces of Lω (M−)may no longer belong to Lω (P).

Example 6. The following two versions of a program show a Type II change.

1 x = nondet_int ();

2 y = nondet_int ();

3 while (y < x) {

4 y = 2 ∗ y;

5 }

6 x = x − 1;

1 x = nondet_int ();

2 y = nondet_int ();

3 while (y >= x) {

4 x = x − 1;

5 }

6 y = 2 ∗ y;

All certified modules of the first program can be directly applied to the analysis of the second
program.

5.3 Mixed Changes

A real-world program revision often relates to both types of program changes.

Example 7. The following program can also be considered as a changed version of loop0 (in Figure 2),
although they looks very different:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:14 Fei He and Jitao Han

1 x = nondet_int ();

2 while (x >= 0){

3 x = x − 1;

4 }

5 x = nondet_int ();

6 y = 1;

7 while (y < x) {

8 y = 2 ∗ y;

9 }

We find two common blocks between the above program and loop0, i.e., assume x>=0; x=x-1

and x=* . The previously-established results on these two blocks are reusable. We still benefit from
the incremental approach.

In conclusion, our incremental approach has a wide applicability. No matter what types of
program changes, it is applicable, and can lead a significant saving in computational efforts.

5.4 More Reuse Possibilities

Throughout the paper, programs are assumed to be composed of blocks. Our approach can be
naturally adapted to the statement-based program model.
If we consider the termination analysis under the statement-based program model, more infor-

mation is reusable. Let b = st1st2...stl be a block, where each sti (1 ≤ i ≤ l) is a statement. With
the block-based program model, any statement change leads the previously-established results on
the whole block be abandoned. On the contrary, under the statement-based program model, only
Hoare triples on the changed statements need to be abandoned, previously-established results on
other unchanged statements can be kept for further analysis.

6 EVALUATION

We implemented our incremental termination analysis algorithm on top of Ultimate Automizer,
a verification tool that implemented the decomposition-based approach [Heizmann et al. 2014]. In
the following, we refer to the underlying Ultimate Automizer and our enhanced implementation
as Baseline and Reuse, respectively.
We used two benchmarks to evaluate our approach. The first benchmark contains 90 artificial

programs and the second benchmark contains 611 real-world programs. In our experiments, a run
set consists of a series of revisions of the same program. The first revision is analyzed from scratch,
and the subsequent revisions are verified with/without reuse. In the following, we call a run of
termination analysis on any program revision an analysis task, and a run of termination analysis
on not-first revision an regression analysis task. We compare the performance of Baseline and Reuse
on regression analysis tasks.

All experiments were conducted on a machine with a Intel(R) Core(TM) i7-8700 CPU of 3.2GHz
and 16GB RAM. We used Ultimate Automizer of version 0.1.24-57e1ae7 with the default configu-
ration. We took Z3 as the default SMT solver and set 500 seconds as the time limit for all analysis
tasks.

6.1 Experiment on Artificial Benchmark

Benchmark. The first benchmark consists of 90 revisions of 15 distinct programs. The 15 original
programs were obtained from [Heizmann et al. 2014]. We then asked five students (2 undergraduate
students and 3 first-year graduated students, none participated in this project) to manually create
more revisions for these programs. Every student was assigned three programs and was required to

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:15

craft five new revisions for each of them. They can alter the program as they want, disregarding the
original meanings of the program; especially, they are encouraged to make loop-relevant changes;
the only requirement is that the program after modification must be compilable.

In total, this benchmark contains 90 analysis tasks, among which 75 are regression analysis tasks.

Results. Experimental results on artificial benchmark are listed in Table 1. The first column
assembly (łRun setž) lists information about the run set, including the program name (łProgramsž),
the number of terminating/non-terminating (łT/Nž) cases in this set, the total number of lines
of code (łLoCž) for all revisions in this set, and the consumed CPU time (łTr0ž) for verifying the
first revision of this set. The following two column assemblies report the experimental results
of Baseline and Reuse, respectively. For each approach, we report the total consumed CPU time
(łTimež) and the total number (ł#Iter.ž) of iterations for this run set. The ł#CertModulež column
assembly lists information about the certified modules, including the total number (łAvai.ž) of
available certified modules that were generated in the analysis of the previous revision, and the
total number (łReusež) of (non-empty) reuse modules that were transformed from the previous
certified modules. The last column (łSpeedupž) shows the speedup of Reuse over Baseline, computed
by Baseline .time/Reuse .time . Note that only statistics for regression analysis tasks are counted.
The table is sorted by the łspeedupž column. The last two rows (łSumž and łAveragež) report the
total and average amounts of all rows in the table, respectively.
From Table 1, we observed that our approach outperforms baseline in all run sets, with a x4.16

average speedup. Looking at the edn.t2 run set, the maximum speedup is x9.99. Even in the worst
case ud.t2, reuse outperforms Baseline by x1.95 of speedup.
The ł#Iter.ž columns can reveal the main reason of the efficiency of our technique. Observing

these columns, we found that each run set has a dramatic reduction of iterations. On average, our
approach decreases the number of iterations by 89.8%. From the ł#CertModulež column assembly,
we conclude that our algorithm is practical on these artificial revisions. The average proportion of
the reuse modules among all previously-constructed certified modules (łReusež / łAvai.ž) is 89.6%.

Results for a single run set. To address the detailed mechanism of our approach and to demonstrate
the acceleration of our approach on three types of program changes, we present the results for
bubbleSort.t2 in Table 2.
The first column (łRev.ž) indicates the number of revisions, where the first row with Rev. = 0

represents the original revision of bubbleSort.t2. The second column (łTypež) presents the
type of program changes applied to this revision (see Section 5). The column (łRst.ž) presents the
verification result (T for terminating and N for non-terminating). All other columns have the same
meanings as in Table 1.

During the preparation of this run set, we deleted an irrelevant variable and the corresponding
statements (Type I changes) from Rev. 0 to Rev. 1. Among the 8 certified modules, 7 can be reused
with the iterations decreased from 7 to 2, achieving a speedup of x12.86. In Rev. 2, we modify several
variables via adding some statements (Type I changes). By reusing all 8 previously-constructed
certified modules successfully, reuse reduces iterations from 5 to 0 and gets a x4.42 speedup. Rev.
3 changes control-flow edges (Type II changes) by inserting goto statements into the program
causing the program to be non-terminating. Baseline spends some time on the last iteration for
finding a non-terminating arguments. By reusing 5 out of 8 certified modules, our approach reduces
80% of iterations on Rev. 3. Although the last iteration is a little bit time-consuming, we still
get a x1.83 speedup. Rev. 4 deletes some basic blocks directly and removes two goto statements
(Mixed changes). The program turns to be much simpler, and Baseline only needs 4 iterations to
get the result. Only 2 certified modules are successfully reused from 8 previously-constructed
certified modules. Reuse decreases 2 iterations and gets a x1.37 speedup. The last revision changes

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:16 Fei He and Jitao Han

Table 1. Experimental results on artificial benchmark

Run Set Baseline Reuse #CertModule

Programs T/N Loc Tr0 Time #Iter. Time #Iter. Avai. Reuse Speedup

edn.t2 5/0 1471 223.73 1059.02 666 106.01 14 725 713 9.99
firewire.t2 5/0 897 14.02 66.97 77 10.89 4 100 97 6.15
eric.t2 2/3 266 3.71 25.23 28 4.91 5 40 35 5.14
a.10.c.t2 2/3 922 87.80 320.86 39 72.61 9 45 33 4.42
traverse_twice 5/0 7132 4.74 19.54 28 6.01 8 30 26 3.25
sas2.t2 2/3 1364 17.02 53.55 42 17.44 8 85 74 3.07
reverse.t2 4/1 9683 15.71 54.62 21 19.92 7 20 16 2.74
b.f20.t2 5/0 772 3.00 13.60 31 4.98 7 55 44 2.73
consts1.t2.c 4/1 204 1.31 6.54 18 2.40 3 15 12 2.72
s3-work.t2 4/1 23137 11.90 68.71 46 27.20 1 55 53 2.53
sumit.t2 3/2 420 4.64 15.99 29 6.86 8 50 39 2.33
spiral.t2 5/0 333 4.70 26.09 81 11.60 16 80 69 2.25
bubbleSort.t2 4/1 547 9.78 22.93 28 10.66 8 40 28 2.15
mc91.t2 4/1 237 4.49 23.54 53 11.50 14 70 45 2.05
ud.t2 5/0 1402 158.92 421.27 206 215.72 30 360 302 1.95

Sum 59/16 48787 565.48 2198.45 1393 528.74 142 1770 1586 -
Average - 650 7.54 29.31 18.57 7.05 1.89 23.60 21.15 4.16

Table 2. Results for run set bubbleSort.t2

Baseline Reuse #CertModule

Rev. Type Rst. Time #Iter. Time #Iter. Avai. Reuse Speedup

0 - T 9.78 7 - - - - -
1 Type I T 9.87 7 0.77 2 8 7 12.86
2 Type I T 1.60 5 0.36 0 8 8 4.42
3 Type II N 1.48 5 0.81 1 8 5 1.83
4 Mixed T 0.98 4 0.72 2 8 2 1.37
5 Type I T 9.00 7 8.01 3 8 6 1.12

Sum - - 22.93 28 10.66 8 40 28 -
Average - - 4.59 5.60 2.13 1.60 8.00 5.60 2.15

a loop condition (Type I changes) which affects the corresponding ranking function. To prove the
termination of Rev. 5, our algorithm needs to recompute new ranking functions. Even so, Reuse can
get a fair acceleration (x1.12) against Baseline by reducing 4 iterations.
On average, Reuse gets x2.15 speedup on run set bubbleSort.t2 by reusing 70% of certified

modules. This experiment reveals the relevance of the performance of our algorithm to the adopted
program changes (refer to Section 5): no matter which type of program changes, our algorithm is
always applicable and can often lead to significant computational saving.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:17

6.2 Experiment on Real-World Benchmark

Benchmark. This set of programs were collected from Codeforces 2, a website that hosts com-
petitive programming contests. The program collection was limited to the first 100 contests hosted
on this website, and filtered by the following restrictions:

• C programs;
• compilable by gcc;
• contains at least 2 loops; and
• Ultimate Automizer can prove termination/non-termination in 500 seconds.

The initial collection contains some trivial, identical or isolated revisions. We took the following
steps to remove them:

• We grouped the programs submitted by some contestant for a certain problem into a run set;
• We removed trivially non-terminating programs that contains statements like

while(scanf("%d",&n)) ;
• We compared each pair of adjacent revisions using the following command:

$ git diff --ignore-cr-at-eol --ignore-all-space

--ignore-blank-lines --ignore-space-change --no-index -U0

and removed one if they are identical;
• We removed the run sets with only one program revision.

Finally, we get 276 run sets of 611 program revisions. Therefore, this benchmark contains 611
analysis tasks, among which 335 are regression analysis tasks.

Results. Experimental results on real-world benchmark are listed in Table 3. Due to page limitation,
we restrict this table to the 20 best and 20 worst run sets, sorted by the łspeedupž column.

Looking at the 20 best run sets, our approach gets noteworthy acceleration. The reason is that
for almost of these run sets, the previously-constructed certified modules can all be reused and the
transformed reuse modules can cover all ω-traces of the program. Thus, the termination is proved
immediately.

For the worst several run sets, our approach gets deceleration. The reason is multiple-folds. One
is that the program changes make the subsequent revisions much simpler and their termination
becomes easy to determine (even for Baseline), such as 59A-usr206, 6C-usr199 and 59A-usr047.
These cases are not friendly to our approach, since there are a lot of previously-constructed certified
modules, while most of them are useless for proving termination of the subsequent revisions,
leading worthless computation of our approach. For example, when analyzing the second revision
of 59A-usr206, our approach only reduces 5 iterations by reusing 16 out of 54 certified modules
generated by the first version.
Another reason is that the program changes may have impact to the previous termination

arguments, causing the previously-constructed certified modules invalid for the current analysis,
such as 15C-usr072, 4A-usr082.

The third reason is that the number of the previously-constructed certificate modules is too small
(e.g. ≤ 2), such as 1B-usr035, 14D-usr103 and 58A-usr154. As a result, there is little chance
to get a non-empty reuse module, so as to accelerate the current analysis. This can be avoided
by setting a minimal number of certified modules. Only when the available number of certified
modules exceeds that number, can we apply the incremental approach.

Example 8. We present two revisions of 4A-usr082 in the following. The right version heavily
changes the nested loop (lines 4 ś 5) of the left version, leading the termination arguments for the left

2https://codeforces.com

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:18 Fei He and Jitao Han

Table 3. Experimental results on real-world benchmark

Run set Baseline Reuse #CertModule

Programs T/N Loc Tr0 Time #Iter. Time #Iter. Avai. Reuse Speedup

96A-usr146 2/0 121 39.99 39.04 6 0.35 0 4 4 112.84
94A-usr112 2/0 122 178.52 178.63 37 2.09 0 36 36 85.27
66A-usr023 3/0 80 12.07 24.35 6 0.37 0 4 4 65.20
36A-usr085 3/0 120 22.38 44.51 16 0.93 0 14 14 47.69
71A-usr056 2/0 84 22.38 22.08 13 0.52 0 11 11 42.36
58A-usr237 2/0 98 16.66 16.64 6 0.44 0 5 5 37.99
94A-usr167 5/0 203 26.19 137.34 104 4.72 4 101 100 29.11
58A-usr234 2/0 114 8.22 8.23 5 0.28 0 4 4 29.00
16A-usr055 2/0 69 41.44 40.88 18 1.50 0 17 17 27.18
58A-usr184 2/0 82 41.86 52.37 35 1.96 0 23 23 26.75
2A-usr133 0/5 904 15.33 598.35 18 24.35 8 12 8 24.57
71A-usr041 2/0 58 19.85 19.41 17 0.83 0 16 16 23.34
58A-usr150 2/0 72 3.11 3.30 2 0.14 0 1 1 22.75
58A-usr002 2/0 68 3.55 7.42 7 0.34 0 4 4 21.71
71A-usr058 2/0 48 5.66 5.56 4 0.26 0 3 3 21.63
9A-usr068 2/0 55 9.87 6.96 10 0.33 0 9 9 21.17
78A-usr217 2/0 68 5.36 15.67 15 0.75 0 14 14 21.02
25A-usr227 4/0 142 6.52 19.53 18 0.97 0 15 15 20.17
11A-usr091 2/0 60 95.97 41.79 5 2.17 2 8 3 19.29
38A-usr049 2/0 33 3.79 3.91 3 0.21 0 2 2 18.64

.

.

.

.

.

.

.

.

.

94A-usr099 2/0 48 1.36 1.28 7 1.36 6 8 1 0.94
92A-usr207 0/2 68 0.45 0.45 2 0.49 1 1 1 0.93
58A-usr079 2/0 68 0.96 0.97 2 1.04 2 1 1 0.93
46C-usr003 2/0 76 0.36 0.52 4 0.56 4 2 0 0.93
58A-usr138 2/0 115 3.52 0.91 2 0.98 2 4 1 0.93
58A-usr017 2/0 56 3.57 0.86 2 0.94 2 4 1 0.91
71A-usr001 2/0 85 0.61 0.44 4 0.48 4 4 1 0.91
61A-usr046 2/0 57 1.62 1.70 4 1.88 4 3 1 0.91
58A-usr000 2/0 129 1.20 1.09 2 1.26 2 1 1 0.86
59A-usr047 2/0 88 14.88 2.63 7 3.22 3 37 12 0.82
1B-usr035 2/0 148 0.33 0.26 2 0.32 2 2 1 0.81
14D-usr103 2/0 132 0.52 0.42 3 0.52 3 2 1 0.81
81A-usr118 0/2 36 3.62 2.74 7 3.46 4 7 4 0.79
49A-usr192 2/0 54 1.90 1.43 3 2.18 4 4 3 0.66
4A-usr082 2/0 88 7.95 63.24 10 96.62 9 10 1 0.65
15C-usr072 2/0 37 32.86 20.52 8 32.58 6 8 2 0.63
58A-usr188 2/0 156 6.86 5.63 10 9.02 8 10 7 0.62
58A-usr154 2/0 86 0.93 18.80 28 35.83 42 1 0 0.52
6C-usr199 2/0 54 130.02 3.71 4 8.55 3 13 2 0.43
59A-usr206 2/0 79 99.34 4.47 7 14.00 2 54 16 0.32

Sum 586/25 24627 4054.47 4555.25 2962 1476.76 984 2677 1902 -
Average - 40.31 14.69 13.60 8.84 4.41 2.94 7.99 5.68 3.08

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:19

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

#P濦濛濦濕m濧 澥澬澧 澨澥 澦澭 澦澥 澥澫 澥澧 澥澩 澥澤 澩 澥

濇濤濙濙濘濩濤 澨.澩澦 澥.澭澬 澥.澥澬 澧.澭澤 澥.澦澬 澩.澨澬 澥.澬澨 澤.澭澬 澥.澥澥 澤.澭澧

澤

澦澤

澨澤

澪澤

澬澤

澥澤澤

澥澦澤

澥澨澤

澥澪澤

澥澬澤

澦澤澤
N

濩m
濖濙

濦
濣濚

 濤
濦濣

濛濦
濕m

濧

Di濚濚濆濕濨濙

澤 濇濤濙濙濘濩濤 澪

Fig. 6. Experimental results divided by DiffRate

version inapplicable to the right version. As a result, the right version can only reuse 1 out of the 10
previously-constructed certified modules. In the end, Reuse takes more time than Baseline.

1 int w,i,j,a;

2 scanf ("%d", &w);

3 if(w %2==1)

4 for(i=2;i<w;i=i+2)

5 for(j=w−1;j >0;j=j−2){

6 a=i+j;

7 if(w==a)

8 return 0;

9 }

10 ...

1 int w,i,j,a;

2 scanf ("%d", &w);

3 if(w %2==1)

4 for(i=2;i <=w/2;i=i+2)

5 for(j=w−1;j >=w/2;j=j−2){

6 a=i+j;

7 if(w==a)

8 return 0;

9 }

10 ...

On average, Baseline requires 8.84 iterations and 13.60 seconds to complete an analysis task.
In contrast, Reuse needs 2.94 iterations and 4.41 seconds. Our approach achieves an overall x3.08
speedup over Baseline , reusing 5.68 out of 7.99 certified modules.

6.2.1 Degree of Program Changes. To further analyze the results in Table 3, we use DiffRate to
measure the degree of program changes, and then analyze the impact of DiffRate to the efficiency
of our approach. The DiffRate, i.e., the rate of different lines of codes, is calculated by

DiffRate =
#deleted_lines +#added_lines

#LoC1 +#LoC2

,

where #LoC1 and #LoC2 are lines of codes of the two comparative programs, respectively.
We first divided DiffRate into 10 ranges: 0%ś10%, 10%ś20%, . . . , 90%ś100%. Then, we counted the

number of programs in each range, and summarized the average speedup of our approach among
the programs in each region. The statistics results are depicted in Figure 6. The first two histograms
indicate there are 183 programs with DiffRate less than 10%, and 41 programs with DiffRate between
10% and 20%. These programs have relatively small changes; the speedup of our approach on these
programs is significant. It is worth noting that the cases with DiffRate between 50% and 60% also
show significant speedup, which suggest the capability of our approach on large changes. However,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:20 Fei He and Jitao Han

Table 4. Comparison on loop-relevant and loop-irrelevant changes

Baseline Reuse #CertModule

Relevant? #Prog. Time #Iter. Time #Iter. Avai. Reuse Speedup

No 66 449.64 558 95.77 64 495 459 4.69
Yes 269 4105.61 2404 1380.99 920 2182 1443 2.97

Sum 335 4555.25 2962 1476.76 984 2677 1902 3.08

from Figure 6, we did not observe a clear relation between the degree of program changes and the
efficiency of our approach. This explains that our approach is not very sensitive to the degree of
program changes (also witnessed in Section 5).

Example 9. Consider the following two revisions of 94A-usr005. Although the right version changes
a lot against the left version (even altering the number of loops), our approach can still reuse 25 out of
26 certified modules, reduces 24 iterations and achieves x14.33 acceleration.

1 int i,j,t[8];

2 char x[8][11] ,y [10][11];

3 for(i=0;i <8;i++){

4 for(j=0;j <10;j++)

5 scanf ("%c " ,&x[i][j]);

6 x[i][10]= '\0 ';

7 }

8 for(i=0;i <10;i++)

9 gets(y[i]);

10 for(i=0;i <8;i++)

11 for(j=0;j <10;j++)

12 if(strcmp (x[i],y[j]) ==0)

13 t[i]=j;

14

15 for(i=0;i <8;i++){

16 printf ("%d",t[i]);

17 }

1 int i,j,o;

2 char str [8][11] , str2 [10][11];

3 for(j=0;j <8;j++)

4 for(i=0;i <10;i++)

5 scanf ("%c" ,&str[j][i]);

6

7 gets(str2 [0]);

8 for(i=0;i <10;i++)

9 gets(str2[i]);

10 for(i=0;i <8;i++)

11 for(j=0;j <10;j++){

12 for(o=0;o <10;o++)

13 if(str[i][o]!= str2[j][o])

14 break ;

15 if(o ==10)

16 printf ("%d",j);

17 }

6.2.2 Loop-Relevant vs. Loop-Irrelevant Changes. To further analyze the results in Table 3, we
applied Frama-C [Cuoq et al. 2012] (more specifically, its engine of change impact analysis) to
distinguish loop-relevant and loop-irrelevant changes. A loop-relevant change has impact to loops
(either loop conditions or loop bodies) of the program. We then compared the efficiency of our
approach with these two kinds of changes.
The statistics results are listed in Table 4, where the first column (łRelevant?ž) indicates if the

change is loop-relevant or not. The second column (ł# Prog.ž) presents the number of programs in
each type of changes. All other columns have the same meanings as in Table 1.
From Table 4, we observed that our approach get a significant acceleration (x4.69) for 66 loop-

irrelevant changes. This is consistent with our intuition. Program termination is closely related to
the loops. If a change has no impact to loops, we have much bigger chance (93% in the table) to keep
all previously-constructed certified modules. We also observed that our approach gets considerable
acceleration (x2.97) for 269 loop-relevant changes. This result is more meaningful, witnessing the
wide applicability of our approach for various program changes.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:21

Example 10. The following two revisions of 12A-usr172 show a Type II change. The left version is
obviously non-terminating. The right version deletes the innermost while loop and becomes terminat-
ing. Although the terminating results of these two programs are different, our approach still benefits
from the certified modules generated by the left program, and gets a 4.91x speedup.

1 char x [3][3];

2 int i,j;

3 for(i=0;i <3;i++){

4 for(j=0;j <3;j++){

5 do{

6 scanf ("%c" ,&x[i][j]);

7 } while (x[i][j]== '\n');

8 }

9 }

1 char x [3][3];

2 int i,j;

3 for(i=0;i <3;i++){

4 for(j=0;j <3;j++){

5 scanf ("%c" ,&x[i][j]);

6 if(x[i][j]== '\n')

7 scanf ("%c" ,&x[i][j]);

8 }

9 }

Example 11. The following two revisions of 96A-usr208 show a Mixed change. The right version
deletes a statement at line 4 and adds a statement at line 9. Among the 7 certified modules generated
by the left version, only 2 can be reused, due to the impact of program changes to the termination
arguments. Nevertheless, our method still achieves a non-trivial acceleration of x1.79.

1 char a [150];

2 int i,j,flag =0;

3 scanf ("%s",a);

4 for(i=0;a[i]!= '\0 ';i++){

5 for(j=0;j <7;j++){

6 if(a[i] != a[i+j])

7 break ;

8 }

9

10 if(j==7){

11 flag =1; break ;

12 }

13 }

1 char a [150];

2 int i,j,flag =0;

3 scanf ("%s",a);

4 for(i=0;a[i]!= '\0 ';){

5 for(j=0;j <7;j++){

6 if(a[i] != a[i+j])

7 break ;

8 }

9 i+=j;

10 if(j==7){

11 flag =1; break ;

12 }

13 }

In summary, by reusing the previously-constructed certified modules, our incremental approach
can significantly reduce the time consumption for termination verification, and has good applica-
bility to various types of real-world program changes.

7 RELATED WORK

7.1 Termination Analysis

Termination analysis was investigated mainly in two directions, proving termination and prov-
ing non-termination. Our paper was focused on termination proving only. But For the sake of
completeness, we give a brief overview on both directions.

Proving Termination. A wide range of methods utilize iterative reasoning and counterexample
driven method for proving termination [Brockschmidt et al. 2013; Cook et al. 2006a,b, 2013; Gulwani
et al. 2008; Harris et al. 2010; Heizmann et al. 2014; Kroening et al. 2008, 2010; Larraz et al. 2013;
Podelski and Rybalchenko 2004; Podelski and Rybalchenko 2005, 2011; Ströder et al. 2017]. These
methods usually rely on termination arguments (e.g., ranking function) to show that their transition
models cannot be executed forever. Most methods find termination arguments using constraint-
based synthesis, among which techniques [Bagnara et al. 2012; Ben-Amram and Genaim 2013;
Colóon and Sipma 2001; Cook et al. 2010; Podelski and Rybalchenko 2004] are based on linear

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:22 Fei He and Jitao Han

arithmetic constraint solving, and techniques [Bradley et al. 2005a,b] are based on non-linear
arithmetic constraint solving. In some methods [Brockschmidt et al. 2013; Cook et al. 2006a; Urban
et al. 2016], the termination proving is reduced to a safety verification problem. For example,
Urban et al. [Urban et al. 2016] used a safety verifier to build the termination arguments. Bound
analysis [Gulwani et al. 2009; Nori and Sharma 2013] goes another direction by computing a
symbolic upper bound on the number of iterations for each loop. It often works in the infer-and-
validate framework ś first infers a candidate bound and then validate it. If we get a valid bound for
each loop, we prove the termination of the program.

Termination arguments are usually harder to solve for the general programs with branches and
nesting. Consequently, many methods were focused on the lasso programs, that is a simpler type
of programs containing only one infinite path. The termination argument for this type of programs
can be solved rather efficiently [Ben-Amram and Genaim 2013, 2014, 2015, 2017; Bradley et al. 2005a;
Cook et al. 2010; Heizmann et al. 2013b; Kroening et al. 2008; Podelski and Rybalchenko 2004]. In
particular, Leike et al. [Leike and Heizmann 2014] use linear ranking templates for the constraint-
based synthesis of termination arguments for linear loop programs. For the general program, some
methods[Borralleras et al. 2017; Heizmann et al. 2014; Le et al. 2015; Urban et al. 2016] proposed
to decompose the original program into components such that termination arguments for each
component are quite simple. For example, HipTNT [Le et al. 2015] and SeaHorn [Urban et al.
2016] decomposed the state space of the program and infer ranking functions for each component
separately. Ultimate Automizer found lasso traces in the control flow automaton iteratively, and
converts them to lasso programs and finds termination arguments only for lasso-shaped programs.
All these research works were focused on a single program version. In this paper, we address

the termination proving for evolving programs. We proposed an incremental termination proving
approach. Experimental results show very promising performance of our approach.

Proving Non-termination. Most techniques for proving non-termination [Bakhirkin and Piterman
2016; Brockschmidt et al. 2012; Cook et al. 2014; Gupta et al. 2008; Leike and Heizmann 2018]
are based on the searching for lasso-shaped traces or the discovering of recurrence sets. For
example, TNT [Gupta et al. 2008] first enumerates lasso-shaped candidate paths for counterexamples
dynamically, and then proves their feasibility statically. Leike et al. [Leike and Heizmann 2018]
proved the non-terminating linear lasso programs by deciding the existence of a geometric non-
termination argument, using a nonlinear algebraic ∃-constraint. Ultimate Automizer proved
non-termination of programs by deciding if the selected lasso trace is non-terminating or not. If it
is non-terminating, this lasso trace is returned as a counterexample. A minor range of tools reduce
termination analysis to safety attracts significant attention. In particular, Velroyen et al. [Velroyen
and Rümmer 2008] showed that terminating states of a program are unreachable from certain initial
states via invariant generation. Gulwani et al. [Gulwani et al. 2008] used weakest precondition
inference to discover the most-general characterization of the inputs under which the original
program is non-terminating. Chen et al. [Chen et al. 2014] iteratively eliminated terminating traces
through a loop by adding extra assumptions. Ultimate Automizer eliminates terminating lasso
traces via the language-theoretic difference (complementation and intersection) of Büchi automata.

7.2 Incremental Verification

Incremental verification was also investigated mainly in two directions, the verification of differ-
ences and the reuse of intermediate results.

Verification of Differences. In this line of research, one attempts to establish the correctness of
the new program by proving its (conditional) equivalence to an old and verified program. Many
techniques [Backes et al. 2013; Beyer et al. 2012; Böhme et al. 2013; Chaki et al. 2012; Fedyukovich

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:23

et al. 2016; Felsing et al. 2014; Godlin and Strichman 2009; Mora et al. 2018; Rungta et al. 2012;
Trostanetski et al. 2017; Yang et al. 2014] have been proposed in this area of research. For instance,
Golden et al. [Godlin and Strichman 2009] proposed a technique for proving conditional equivalence
of two programs by abstraction and decomposition of procedures. Backes et al. [Backes et al. 2013]
proposed to distinguish the program behaviors that are impacted by the changes. Only the impacted
program behaviors needed to be considered during the regression verification. Beyer et al. [Beyer
et al. 2012] proposed the conditional model checking, which outputs a condition such that the
program satisfies the specification under this condition. Felsing et al. [Felsing et al. 2014] reduced
the equivalence proving of two related imperative integer programs to Horn constraints over
uninterpreted predicates, and then solved the constraints using an SMT solver. Moreover, Rungta
et al. [Rungta et al. 2012] presented a technique for interprocedural change impact analysis. Yang
et al. [Yang et al. 2014] introduced an incremental approach for checking the conformance of code
against different properties. Trostanetski et al. [Trostanetski et al. 2017] analyzed the semantic
difference between successive revisions. Fedyukovich et al. [Fedyukovich et al. 2016] established
the property directed equivalence of two programs by discovering a fresh property that actually
holds using simulation.

Reuse of Intermediate Results. This area studies the reuse of previously-generated results to the
current verification. A variety of information has been proposed for reuse.
Some researchers[Alt et al. 2017; Conway et al. 2005; Henzinger et al. 2003; Lauterburg et al.

2008; Sery et al. 2012; Yang et al. 2009] proposed to keep the reached state space and reuse them in
the further verification runs. The rationale of these techniques is that state spaces of consecutive
versions tend to be similar. For instance, Visser et al.[Visser et al. 2012] noticed the importance
of constraint solving for symbolic execution. They proposed to cache and reuse the results of
constraint solving. This approach was further improved in [Aquino et al. 2015; Jia et al. 2015]
from different aspects. Beyer et al.[Beyer et al. 2013] proposed to use abstract precision as the
intermediate result. [Fedyukovich et al. 2013; Sery et al. 2012] proposed a regression verification
technique by means of interpolation-based procedure summaries. Pastore et al. [Pastore et al. 2014]
proposed a method to validate that an already tested code has not been broken by an upgrade, It
maintains a test suite that can be used to revalidate the software as it evolves.
Rothenberg et al. [Rothenberg et al. 2018] proposed to reuse the sequence of Floyd-Hoare

automata computed in the trace abstraction. Their approach differs from ours in the following
aspects. Firstly, the targeted problems are different. Their approach mainly considers the safety
verification, while our paper is focused on the termination proving. To the best of our knowledge, our
approach is the first attempt to incremental termination analysis. Secondly, the reused intermediate
results are different. The Floyd-Hoare automatonwas applied in [Rothenberg et al. 2018] to recognize
a set of finite traces, while in our paper, we use certificate module to recognize a set of infinite traces.
Last but not least, a so-called lazy reuse was proposed in [Rothenberg et al. 2018], which looks
similar but is indeed different to our on-demand construction ś the former is a scheme of module
reuse, while the latter is a scheme of module construction. More specifically, considering the basic
scheme of our approach in Figure 4, the on-demand construction will lead the full construction
of reuse modules be deferred to the language inclusion checking phase, while the lazy reuse
in [Rothenberg et al. 2018] will add a new łreusež phase after the language inclusion checking and
defer the subtraction of reuse modules to this new phase.

8 CONCLUSION

We proposed in this paper an incremental technique for termination analysis of evolving programs.
A transformation procedure was developed to reuse certified modules across different program

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

199:24 Fei He and Jitao Han

versions. The proposed approach is applicable to various types of program changes. Its soundness
and relative completeness were formally proved. We implemented the approach in Ultimate

Automizer. Experimental results show dramatic improvement of our approach.

ACKNOWLEDGMENTS

This work was partially funded by the National Key R&D Program of China (No. 2018YFB1308601),
the NSF of China (No. 61672310 and No. 62072267), the CDZ project CAP (No. GZ 1023) and the
Guangdong Science and Technology Department (No. 2018B010107004).

REFERENCES

Leonardo Alt, Sepideh Asadi, Hana Chockler, Karine Even Mendoza, Grigory Fedyukovich, Antti E. J. Hyvärinen, and
Natasha Sharygina. 2017. HiFrog: SMT-based Function Summarization for Software Verification. In Tools and Algorithms

for the Construction and Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 207ś213. https://doi.org/10.1007/978-3-662-54580-5_12

Andrea Aquino, Francesco A. Bianchi, Meixian Chen, Giovanni Denaro, and Mauro Pezzè. 2015. Reusing Constraint
Proofs in Program Analysis. In Proceedings of the 2015 International Symposium on Software Testing and Analysis

(Baltimore, MD, USA) (ISSTA 2015). Association for Computing Machinery, New York, NY, USA, 305ś315. https:
//doi.org/10.1145/2771783.2771802

John Backes, Suzette Person, Neha Rungta, and Oksana Tkachuk. 2013. Regression Verification Using Impact Summaries. In
Model Checking Software, Ezio Bartocci and C. R. Ramakrishnan (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
99ś116. https://doi.org/10.1007/978-3-642-39176-7_7

Roberto Bagnara, Fred Mesnard, Andrea Pescetti, and Enea Zaffanella. 2012. A new look at the automatic synthesis of linear
ranking functions. Information and Computation 215 (2012), 47 ś 67. https://doi.org/10.1016/j.ic.2012.03.003

Alexey Bakhirkin and Nir Piterman. 2016. Finding Recurrent Sets with Backward Analysis and Trace Partitioning. In Tools

and Algorithms for the Construction and Analysis of Systems, Marsha Chechik and Jean-François Raskin (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 17ś35. https://doi.org/10.1007/978-3-662-49674-9_2

Amir M. Ben-Amram and Samir Genaim. 2013. On the Linear Ranking Problem for Integer Linear-Constraint Loops. In
Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy)
(POPL ’13). Association for Computing Machinery, New York, NY, USA, 51ś62. https://doi.org/10.1145/2429069.2429078

Amir M. Ben-Amram and Samir Genaim. 2014. Ranking Functions for Linear-Constraint Loops. J. ACM 61, 4, Article 26
(July 2014), 55 pages. https://doi.org/10.1145/2629488

Amir M. Ben-Amram and Samir Genaim. 2015. Complexity of Bradley-Manna-Sipma Lexicographic Ranking Functions. In
Computer Aided Verification, Daniel Kroening and Corina S. Păsăreanu (Eds.). Springer International Publishing, Cham,
304ś321. https://doi.org/10.1007/978-3-319-21668-3_18

Amir M. Ben-Amram and Samir Genaim. 2017. On Multiphase-Linear Ranking Functions. In Computer Aided Verification,
Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham, 601ś620. https://doi.org/10.1007/
978-3-319-63390-9_32

Dirk Beyer, Thomas A Henzinger, M Erkan Keremoglu, and Philipp Wendler. 2012. Conditional model checking: a technique
to pass information between verifiers. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering (Austin, TX, USA). ACM, 57.
Dirk Beyer, Stefan Löwe, Evgeny Novikov, Andreas Stahlbauer, and Philipp Wendler. 2013. Precision Reuse for Efficient

Regression Verification. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering (Saint
Petersburg, Russia) (ESEC/FSE 2013). Association for Computing Machinery, New York, NY, USA, 389ś399. https:
//doi.org/10.1145/2491411.2491429

Marcel Böhme, Bruno C d S Oliveira, and Abhik Roychoudhury. 2013. Partition-based regression verification. In Proceedings

of the 2013 International Conference on Software Engineering (San Francisco, CA, USA). IEEE Press, 302ś311. https:
//doi.org/10.1109/ICSE.2013.6606576

Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio.
2017. Proving Termination Through Conditional Termination. In Tools and Algorithms for the Construction and Analysis

of Systems, Axel Legay and Tiziana Margaria (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 99ś117. https:
//doi.org/10.1007/978-3-662-54577-5_6

Aaron R Bradley and Zohar Manna. 2007. The calculus of computation: decision procedures with applications to verification.
Springer Science & Business Media.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005a. Linear Ranking with Reachability. In Computer Aided

Verification, Kousha Etessami and Sriram K. Rajamani (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 491ś504.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

https://doi.org/10.1007/978-3-662-54580-5_12
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1145/2771783.2771802
https://doi.org/10.1007/978-3-642-39176-7_7
https://doi.org/10.1016/j.ic.2012.03.003
https://doi.org/10.1007/978-3-662-49674-9_2
https://doi.org/10.1145/2429069.2429078
https://doi.org/10.1145/2629488
https://doi.org/10.1007/978-3-319-21668-3_18
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1145/2491411.2491429
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1109/ICSE.2013.6606576
https://doi.org/10.1007/978-3-662-54577-5_6
https://doi.org/10.1007/978-3-662-54577-5_6

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:25

https://doi.org/10.1007/11513988_48
Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005b. Termination Analysis of Integer Linear Loops. In CONCUR

2005 ś Concurrency Theory, Martín Abadi and Luca de Alfaro (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
488ś502. https://doi.org/10.1007/11539452_37

Marc Brockschmidt, Byron Cook, and Carsten Fuhs. 2013. Better Termination Proving through Cooperation. In Computer

Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 413ś429.
https://doi.org/10.1007/978-3-642-39799-8_28

Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl. 2012. Automated Detection of Non-termination and
NullPointerExceptions for Java Bytecode. In Formal Verification of Object-Oriented Software, Bernhard Beckert, Ferruccio
Damiani, and Dilian Gurov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 123ś141. https://doi.org/10.1007/978-
3-642-31762-0_9

Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. 2012. Regression Verification for Multi-threaded Programs. In Verification,

Model Checking, and Abstract Interpretation, Viktor Kuncak and Andrey Rybalchenko (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 119ś135. https://doi.org/10.1007/978-3-642-27940-9_9

Hong-Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter O’Hearn. 2014. Proving Nontermination via Safety.
In Tools and Algorithms for the Construction and Analysis of Systems, Erika Ábrahám and Klaus Havelund (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 156ś171. https://doi.org/10.1007/978-3-642-54862-8_11

Michael A. Colóon and Henny B. Sipma. 2001. Synthesis of Linear Ranking Functions. In Tools and Algorithms for the

Construction and Analysis of Systems, Tiziana Margaria andWang Yi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
67ś81. https://doi.org/10.1007/3-540-45319-9_6

Christopher L. Conway, Kedar S. Namjoshi, Dennis Dams, and Stephen A. Edwards. 2005. Incremental Algorithms for
Inter-procedural Analysis of Safety Properties. In Computer Aided Verification, Kousha Etessami and Sriram K. Rajamani
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 449ś461. https://doi.org/10.1007/11513988_45

Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter O’Hearn. 2014. Disproving termination with overapproximation. In
2014 Formal Methods in Computer-Aided Design (FMCAD). IEEE, 67ś74. https://doi.org/10.1109/FMCAD.2014.6987597

Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger. 2010. Ranking Function Synthesis for
Bit-Vector Relations. In Tools and Algorithms for the Construction and Analysis of Systems, Javier Esparza and Rupak
Majumdar (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 236ś250. https://doi.org/10.1007/978-3-642-12002-2_19

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006a. Termination Proofs for Systems Code. In Proceedings of the

27th ACM SIGPLAN Conference on Programming Language Design and Implementation (Ottawa, Ontario, Canada) (PLDI
’06). Association for Computing Machinery, New York, NY, USA, 415ś426. https://doi.org/10.1145/1133981.1134029

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006b. Terminator: Beyond Safety. In Computer Aided Verification,
Thomas Ball and Robert B. Jones (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 415ś418. https://doi.org/10.
1007/11817963_37

Byron Cook, Abigail See, and Florian Zuleger. 2013. Ramsey vs. Lexicographic Termination Proving. In Tools and Algorithms

for the Construction and Analysis of Systems, Nir Piterman and Scott A. Smolka (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 47ś61. https://doi.org/10.1007/978-3-642-36742-7_4

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2012. Frama-C.
In Software Engineering and Formal Methods, George Eleftherakis, Mike Hinchey, and Mike Holcombe (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 233ś247. https://doi.org/10.1007/978-3-642-33826-7_16

Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. 2016. Property Directed Equivalence via Abstract Simulation.
In Computer Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham,
433ś453. https://doi.org/10.1007/978-3-319-41540-6_24

Grigory Fedyukovich, Ondrej Sery, and Natasha Sharygina. 2013. eVolCheck: Incremental Upgrade Checker for C. In Tools

and Algorithms for the Construction and Analysis of Systems, Nir Piterman and Scott A. Smolka (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 292ś307. https://doi.org/10.1007/978-3-642-36742-7_21

Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rümmer, and Mattias Ulbrich. 2014. Automating Regression
Verification. In Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (Vasteras,
Sweden) (ASE ’14). Association for Computing Machinery, New York, NY, USA, 349ś360. https://doi.org/10.1145/2642937.
2642987

Benny Godlin and Ofer Strichman. 2009. Regression Verification. In Proceedings of the 46th Annual Design Automation

Conference (San Francisco, California) (DAC ’09). Association for Computing Machinery, New York, NY, USA, 466ś471.
https://doi.org/10.1145/1629911.1630034

Sumit Gulwani, Krishna K. Mehra, and Trishul Chilimbi. 2009. SPEED: Precise and Efficient Static Estimation of Program
Computational Complexity. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (Savannah, GA, USA) (POPL ’09). Association for Computing Machinery, New York, NY, USA,
127ś139. https://doi.org/10.1145/1480881.1480898

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

https://doi.org/10.1007/11513988_48
https://doi.org/10.1007/11539452_37
https://doi.org/10.1007/978-3-642-39799-8_28
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-642-31762-0_9
https://doi.org/10.1007/978-3-642-27940-9_9
https://doi.org/10.1007/978-3-642-54862-8_11
https://doi.org/10.1007/3-540-45319-9_6
https://doi.org/10.1007/11513988_45
https://doi.org/10.1109/FMCAD.2014.6987597
https://doi.org/10.1007/978-3-642-12002-2_19
https://doi.org/10.1145/1133981.1134029
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/11817963_37
https://doi.org/10.1007/978-3-642-36742-7_4
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-319-41540-6_24
https://doi.org/10.1007/978-3-642-36742-7_21
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/1629911.1630034
https://doi.org/10.1145/1480881.1480898

199:26 Fei He and Jitao Han

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2008. Program Analysis as Constraint Solving. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ, USA)
(PLDI ’08). Association for Computing Machinery, New York, NY, USA, 281ś292. https://doi.org/10.1145/1375581.1375616

Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Rybalchenko, and Ru-Gang Xu. 2008. Proving Non-
Termination. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(San Francisco, California, USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA, 147ś158.
https://doi.org/10.1145/1328438.1328459

William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. 2010. Alternation for Termination. In Static

Analysis, Radhia Cousot and Matthieu Martel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 304ś319. https:
//doi.org/10.1007/978-3-642-15769-1_19

Fei He, Shu Mao, and Bow-Yaw Wang. 2016. Learning-Based Assume-Guarantee Regression Verification. In Computer

Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer International Publishing, Cham, 310ś328.
https://doi.org/10.1007/978-3-319-41528-4_17

Matthias Heizmann, Jochen Hoenicke, Jan Leike, and Andreas Podelski. 2013b. Linear Ranking for Linear Lasso Programs. In
Automated Technology for Verification and Analysis, Dang Van Hung and Mizuhito Ogawa (Eds.). Springer International
Publishing, Cham, 365ś380. https://doi.org/10.1007/978-3-319-02444-8_26

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2013a. Software Model Checking for People Who Love
Automata. In Computer Aided Verification, Natasha Sharygina and Helmut Veith (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 36ś52. https://doi.org/10.1007/978-3-642-39799-8_2

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2014. Termination Analysis by Learning Terminating Programs.
In Computer Aided Verification, Armin Biere and Roderick Bloem (Eds.). Springer International Publishing, Cham, 797ś813.
https://doi.org/10.1007/978-3-319-08867-9_53

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Marco A. A. Sanvido. 2003. Extreme Model Checking. Springer
Berlin Heidelberg, Berlin, Heidelberg, 332ś358. https://doi.org/10.1007/978-3-540-39910-0_16

Xiangyang Jia, Carlo Ghezzi, and Shi Ying. 2015. Enhancing Reuse of Constraint Solutions to Improve Symbolic Execution.
In Proceedings of the 2015 International Symposium on Software Testing and Analysis (Baltimore, MD, USA) (ISSTA 2015).
Association for Computing Machinery, New York, NY, USA, 177ś187. https://doi.org/10.1145/2771783.2771806

Daniel Kroening, Natasha Sharygina, Stefano Tonetta, Aliaksei Tsitovich, and Christoph M. Wintersteiger. 2008. Loop
Summarization Using Abstract Transformers. In Automated Technology for Verification and Analysis, Sungdeok (Steve)
Cha, Jin-Young Choi, Moonzoo Kim, Insup Lee, and Mahesh Viswanathan (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 111ś125. https://doi.org/10.1007/978-3-540-88387-6_10

Daniel Kroening, Natasha Sharygina, Aliaksei Tsitovich, and Christoph M. Wintersteiger. 2010. Termination Analysis with
Compositional Transition Invariants. In Computer Aided Verification, Tayssir Touili, Byron Cook, and Paul Jackson (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 89ś103. https://doi.org/10.1007/978-3-642-14295-6_9

D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. 2013. Proving termination of imperative programs using
Max-SMT. In 2013 Formal Methods in Computer-Aided Design (Portland, OR, USA). IEEE, 218ś225. https://doi.org/10.
1109/FMCAD.2013.6679413

Steven Lauterburg, Ahmed Sobeih, Darko Marinov, and Mahesh Viswanathan. 2008. Incremental state-space exploration for
programs with dynamically allocated data. In Proceedings of the 30th international conference on Software engineering

(Leipzig, Germany). ACM, 291ś300. https://doi.org/10.1145/1368088.1368128
Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. 2015. Termination and Non-Termination Specification Inference. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (Portland, OR,
USA) (PLDI ’15). Association for Computing Machinery, New York, NY, USA, 489ś498. https://doi.org/10.1145/2737924.
2737993

Jan Leike and Matthias Heizmann. 2014. Ranking Templates for Linear Loops. In Tools and Algorithms for the Construction

and Analysis of Systems, Erika Ábrahám and Klaus Havelund (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
172ś186. https://doi.org/10.1007/978-3-642-54862-8_12

Jan Leike and Matthias Heizmann. 2018. Geometric Nontermination Arguments. In Tools and Algorithms for the Construction

and Analysis of Systems, Dirk Beyer and Marieke Huisman (Eds.). Springer International Publishing, Cham, 266ś283.
https://doi.org/10.1007/978-3-319-89963-3_16

Federico Mora, Yi Li, Julia Rubin, and Marsha Chechik. 2018. Client-specific equivalence checking. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France, France). ACM, 441ś451.
https://doi.org/10.1145/3238147.3238178

Aditya V. Nori and Rahul Sharma. 2013. Termination Proofs from Tests. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering (Saint Petersburg, Russia) (ESEC/FSE 2013). Association for Computing Machinery,
New York, NY, USA, 246ś256. https://doi.org/10.1145/2491411.2491413

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

https://doi.org/10.1145/1375581.1375616
https://doi.org/10.1145/1328438.1328459
https://doi.org/10.1007/978-3-642-15769-1_19
https://doi.org/10.1007/978-3-642-15769-1_19
https://doi.org/10.1007/978-3-319-41528-4_17
https://doi.org/10.1007/978-3-319-02444-8_26
https://doi.org/10.1007/978-3-642-39799-8_2
https://doi.org/10.1007/978-3-319-08867-9_53
https://doi.org/10.1007/978-3-540-39910-0_16
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1007/978-3-540-88387-6_10
https://doi.org/10.1007/978-3-642-14295-6_9
https://doi.org/10.1109/FMCAD.2013.6679413
https://doi.org/10.1109/FMCAD.2013.6679413
https://doi.org/10.1145/1368088.1368128
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1145/2737924.2737993
https://doi.org/10.1007/978-3-642-54862-8_12
https://doi.org/10.1007/978-3-319-89963-3_16
https://doi.org/10.1145/3238147.3238178
https://doi.org/10.1145/2491411.2491413

Termination Analysis for Evolving Programs: An Incremental Approach by Reusing Certified Modules 199:27

Fabrizio Pastore, Leonardo Mariani, Antti E. J. Hyvärinen, Grigory Fedyukovich, Natasha Sharygina, Stephan Sehestedt,
and Ali Muhammad. 2014. Verification-Aided Regression Testing. In Proceedings of the 2014 International Symposium on

Software Testing and Analysis (San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New York, NY,
USA, 37ś48. https://doi.org/10.1145/2610384.2610387

Andreas Podelski and Andrey Rybalchenko. 2004. A Complete Method for the Synthesis of Linear Ranking Functions.
In Verification, Model Checking, and Abstract Interpretation, Bernhard Steffen and Giorgio Levi (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 239ś251. https://doi.org/10.1007/978-3-540-24622-0_20

A. Podelski and A. Rybalchenko. 2004. Transition invariants. In Proceedings of the 19th Annual IEEE Symposium on Logic in

Computer Science, 2004. (Turku, Finland, Finland). IEEE, 32ś41. https://doi.org/10.1109/LICS.2004.1319598
Andreas Podelski and Andrey Rybalchenko. 2005. Transition Predicate Abstraction and Fair Termination. In Proceedings of

the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Long Beach, California, USA) (POPL
’05). Association for Computing Machinery, New York, NY, USA, 132ś144. https://doi.org/10.1145/1040305.1040317

Andreas Podelski and Andrey Rybalchenko. 2011. Transition Invariants and Transition Predicate Abstraction for Program
Termination. In Tools and Algorithms for the Construction and Analysis of Systems, Parosh Aziz Abdulla and K. Rustan M.
Leino (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 3ś10. https://doi.org/10.1007/978-3-642-19835-9_2

Bat-Chen Rothenberg, Daniel Dietsch, and Matthias Heizmann. 2018. Incremental Verification Using Trace Abstraction. In
Static Analysis, Andreas Podelski (Ed.). Springer International Publishing, Cham, 364ś382. https://doi.org/10.1007/978-
3-319-99725-4_22

Neha Rungta, Suzette Person, and Joshua Branchaud. 2012. A change impact analysis to characterize evolving program
behaviors. In 2012 28th IEEE International Conference on Software Maintenance (ICSM) (Trento, Italy). IEEE, 109ś118.
https://doi.org/10.1109/ICSM.2012.6405261

Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. 2012. Incremental upgrade checking by means of interpolation-
based function summaries. In Formal Methods in Computer-Aided Design (FMCAD), 2012 (Cambridge, UK). IEEE, 114ś121.

Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and
Cornelius Aschermann. 2017. Automatically proving termination andmemory safety for programswith pointer arithmetic.
Journal of Automated Reasoning 58, 1 (2017), 33ś65. https://doi.org/10.1007/s10817-016-9389-x

Anna Trostanetski, Orna Grumberg, and Daniel Kroening. 2017. Modular Demand-Driven Analysis of Semantic Difference
for Program Versions. In Static Analysis, Francesco Ranzato (Ed.). Springer International Publishing, Cham, 405ś427.
https://doi.org/10.1007/978-3-319-66706-5_20

Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai. 2016. Synthesizing Ranking Functions from Bits and Pieces. In Tools

and Algorithms for the Construction and Analysis of Systems, Marsha Chechik and Jean-François Raskin (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 54ś70. https://doi.org/10.1007/978-3-662-49674-9_4

Helga Velroyen and Philipp Rümmer. 2008. Non-termination Checking for Imperative Programs. In Tests and Proofs, Bernhard
Beckert and Reiner Hähnle (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 154ś170. https://doi.org/10.1007/978-
3-540-79124-9_11

Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: Reducing, Reusing and Recycling Constraints in
Program Analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering (Cary, North Carolina) (FSE ’12). Association for Computing Machinery, New York, NY, USA, Article 58,
11 pages. https://doi.org/10.1145/2393596.2393665

Guowei Yang, Matthew B Dwyer, and Gregg Rothermel. 2009. Regression model checking. In Software Maintenance, 2009.

ICSM 2009. IEEE International Conference on (Edmonton, AB, Canada). IEEE, 115ś124. https://doi.org/10.1109/ICSM.2009.
5306334

Guowei Yang, Sarfraz Khurshid, Suzette Person, and Neha Rungta. 2014. Property Differencing for Incremental Checking.
In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE 2014). Association
for Computing Machinery, New York, NY, USA, 1059ś1070. https://doi.org/10.1145/2568225.2568319

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 199. Publication date: November 2020.

https://doi.org/10.1145/2610384.2610387
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1109/LICS.2004.1319598
https://doi.org/10.1145/1040305.1040317
https://doi.org/10.1007/978-3-642-19835-9_2
https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1007/978-3-319-99725-4_22
https://doi.org/10.1109/ICSM.2012.6405261
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1007/978-3-319-66706-5_20
https://doi.org/10.1007/978-3-662-49674-9_4
https://doi.org/10.1007/978-3-540-79124-9_11
https://doi.org/10.1007/978-3-540-79124-9_11
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1109/ICSM.2009.5306334
https://doi.org/10.1109/ICSM.2009.5306334
https://doi.org/10.1145/2568225.2568319

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Program, Alphabet and Trace
	2.2 Infeasible Trace
	2.3 Module
	2.4 Ranking Function and Certified Module
	2.5 Termination Analysis Using Certified Modules

	3 A Motivating Example
	3.1 Termination Analysis of loop0
	3.2 Termination Analysis of loop1

	4 Incremental Termination Analysis
	4.1 The Whole Procedure
	4.2 The Reuse Procedure
	4.3 On-Demand Construction
	4.4 Correctness

	5 Applicability to Various Program Changes
	5.1 Type I Changes
	5.2 Type II Changes
	5.3 Mixed Changes
	5.4 More Reuse Possibilities

	6 Evaluation
	6.1 Experiment on Artificial Benchmark
	6.2 Experiment on Real-World Benchmark

	7 Related Work
	7.1 Termination Analysis
	7.2 Incremental Verification

	8 Conclusion
	References

