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The happens-before orders have been widely adopted to model thread interleaving behaviors of concurrent

programs. A dedicated ordering theory solver, usually composed of theory propagation, consistency checking,

and conflict clause generation, plays a central role in concurrent program verification. We propose a novel

preventive reasoning approach that automatically preserves the ordering consistency and makes consistency

checking and conflict clause generation omissible. We implement our approach in a prototype tool and conduct

experiments on credible benchmarks; results reveal a significant improvement over existing state-of-the-art

concurrent program verifiers.
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1 INTRODUCTION

Concurrent programs have been widely adopted to improve computing efficiency. They enable

parallel computing by allowing multiple threads to run simultaneously. However, interleaving

between threads causes numerous possible execution paths, placing a tremendous burden on

verification. Therefore, it is highly desired to develop efficient techniques to alleviate the path

explosion problem and improve the efficiency of concurrent program verification.

A common technique in concurrent program verification is to use partial orders (called happens-

before orders) to represent the happens-before relation over shared memory access events [Alglave

et al. 2013, 2012]. This technique classifies happens-before orders into several categories to express

different semantics. For example, a read-from order indicates that a read event copies the value a

write event wrote down; a write-serialization order indicates that a write event covers the value
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another write event wrote down. Happens-before axioms are developed to specify the rules that all

happens-before orders must obey.

Hardware memory models impose additional restrictions on happens-before orders. Sequential

consistency (SC) [Lamport 1979] is the strictest and most commonly-assumed memory model, which

requires a memory access to completely finish before the next access is issued.Weak memory models

allow reordering of memory accesses to some extent; therefore, they allow more execution paths

than SC. This paper focuses on SC and two widely adopted weak memory models: total store order

(TSO) [Owens et al. 2009] and partial store order (PSO) [Weaver and Gremond 1994].

Lots of techniques have been proposed for solving constraints on these happens-before orders

under the SAT/SMT framework. Earlier approaches (e.g., [Alglave et al. 2014, 2013, 2012; Sinha

and Wang 2011]) suggest attaching an integer-valued timestamp to each event and representing

the happens-before relation using the less-than relation over integer-valued timestamps. However,

these approaches are somewhat over-reacting – they evaluate the exact value of each timestamp,

while only their orders are necessary for solving. Moreover, these approaches need to apply happens-

before axioms exhaustively, encoding all of their instances as constraints, irrespective of whether

they actually take effect during verification, yielding a very large encoding formula.

He et al.’s Zord [He et al. 2021] overcomes these drawbacks by developing a dedicated theory

solver for order constraints. Zord embodies the from-read axiom (Axiom 3 in Section 4.1) in its

theory propagation module. Whenever the order constraint set is updated, Zord uses this axiom

to derive necessary from-read orders. Using this approach, Zord avoids explicit and exhaustive

encoding of from-read order constraints.

This paper proposes a new ordering theory solver (see Section 4). Compared to Zord [He et al.

2021], our solver also embodies the write-serialization axiom (Axiom 2 in Section 4.1). With this new

solver, not only from-read orders, but also write-serialization orders can be automatically derived.

Thanks to its reasoning ability, we no longer need to encode from-read and write-serialization

constraints in the SMT formula. The size of the encoding formula is thus significantly reduced.

A typical theory solver needs to implement three procedures [Barrett and Tinelli 2018]: theory

propagation, consistency checking, and conflict clause generation. This paper proposes a novel

preventive reasoning approach (see Section 5): an assignment (unassigned yet) is called fragile if this

assignment will directly lead to theory inconsistency; we find these fragile assignments and make

the opposite assignments to prevent fragile assignments from occurring. An interesting finding is

that by enforcing the opposite of these fragile assignments in propagation, ordering consistency is

automatically achieved (Section 5.4). Therefore, our solver no longer needs to perform consistency

checking and conflict clause generation; the workloads are thus significantly reduced.

We implement our approach in a prototype tool called Deagle1 (SV-COMP 2022 Concurren-

cySafety winner) and conduct experiments on 763 benchmarks collected from the SV-COMP 2022

ConcurrencySafety category. We compare our tool with state-of-the-art partial-order-based tools:

CBMC [Alglave et al. 2013] and Zord [He et al. 2021], as well as the latest SV-COMP Concurren-

cySafety winners: Lazy-CSeq [Inverso et al. 2014] and Yogar-CBMC [Yin et al. 2018b,a; Yin et al.

2020]. Experimental results show the effectiveness and efficiency of our approach: Deagle solves

34, 35, 42, and 12 more cases than CBMC, Zord, Lazy-CSeq, and Yogar-CBMC, respectively; on

both-solved cases, Deagle runs 8.36x, 4.23x, 25.61x, and 1.47x faster than CBMC, Zord, Lazy-

CSeq, and Yogar-CBMC, respectively. We also evaluate the effect of our consistency-preserving

propagation (the propagation method that integrates preventive reasoning). Results show that

consistency-preserving propagation achieves 1.30x speedup, with memory usage remaining almost

unchanged. We also compare Deagle against Yogar-CBMC under TSO and PSO to evaluate our

1https://github.com/thufv/Deagle
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performance under these weak memory models. Results show that Deagle solves 18 more cases

than Yogar-CBMC under both TSO and PSO; on both-solved cases, Deagle achieves 1.85x and

1.82x speedups compared to Yogar-CBMC under TSO and PSO, respectively.

In summary, our main technical contributions include:

• A novel preventive reasoning approach that preserves the ordering consistency and makes

the regularly required consistency checking and conflict clause generation omissible.

• A new ordering theory solver that has fewer encoding requirements and is more powerful in

reasoning.

• An implementation of the approach and experimental results on credible SV-COMP bench-

marks, demonstrating a significant improvement over state-of-the-art tools.

The rest of the paper is arranged as follows. Section 2 introduces basic notions and backgrounds;

Section 3 demonstrates our symbolic encoding of concurrent programs; Section 4 proposes a basic

ordering theory solver; Section 5 proposes consistency-preserving propagation. Implementation,

evaluation, and experimental analysis are detailed in Section 6. Finally, we discuss related work in

Section 7 and conclude the paper in Section 8.

2 PRELIMINARIES

In first-order logic, a term is a variable, a constant, or an 𝑛-ary function applied to 𝑛 terms; an atom

is ⊥, ⊤, or an 𝑛-ary predicate applied to 𝑛 terms; a literal is an atom or its negation. A first-order

formula is built from literals using Boolean connectives and quantifiers. A model 𝑀 consists of a

non-empty object set dom(𝑀) called the domain of𝑀 , an assignment that maps each variable to

an object in dom(𝑀), and an interpretation for each constant, function, and predicate, respectively.

A formula Φ is satisfiable if a model𝑀 exists so that𝑀 |= Φ.

A first-order theory T is defined by a signature and a set of axioms. The signature consists of

constant symbols, function symbols, and predicate symbols allowed in T ; the axioms prescribe

the intended meanings of these symbols. A T -model is a model that satisfies all axioms of T . A

formula Φ is T -satisfiable if a T -model𝑀 exists so that𝑀 |= Φ.

2.1 Satisfiability Modulo Theories

The satisfiability modulo theories (SMT ) problem [Barrett and Tinelli 2018; de Moura and Bjørner

2008; De Moura and Bjørner 2011] determines the satisfiability of formulas in some combination of

first-order background theories.

DPLL(T) is the standard algorithm for solving SMT problems. A typical DPLL(T) framework

consists of a core solver (SAT solver) and several integrated theory solvers. Let 𝜙 be the input SMT

formula, and B(𝜙) its Boolean abstraction obtained by replacing each atom in 𝜙 with a fresh Boolean

variable. Apparently, B(𝜙) is a propositional logic formula and can be solved by the core solver.

Moreover, B(𝜙) is an over-approximation of 𝜙 with respect to satisfiability: if B(𝜙) is unsatisfiable,

so is 𝜙 ; reversely, if B(𝜙) is satisfiable, 𝜙 may not be. Therefore, after generating a satisfiable model

𝑀 of B(𝜙), we need to check whether𝑀 also satisfies 𝜙 by evaluating its consistency under the

theory semantics.

Algorithm 1 shows how a DPLL(T) framework works. A model can be regarded as a set of

assignments to all variables in B(𝜙). Each assignment (assigning variable 𝑣 to true or false) is

represented as a literal (𝑣 or ¬𝑣). DPLL(T) is essentially a DFS algorithm, which starts with an

empty model and ends with a complete satisfiable model (or confirms that no satisfiable model

exists). In each iteration, DPLL(T) decides a literal (Line 2) and performs unit propagation based

on this decision (Line 4). Since some literals are Boolean abstracted from atoms belonging to some

background theories, the assigned literals (either by decision or by propagation) need to be passed
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Algorithm 1: DPLL(T) Algorithm

1 Procedure DPLL(T )
Data: A partial model𝑀

2 while 𝑙𝑑 = decide() do

3 𝑀 ← 𝑙𝑑 ; 𝑡ℎ𝑒𝑜𝑟𝑦_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 (𝑙𝑑 );

4 for 𝑙𝑝 in unit_propagation() do

5 𝑀 ← 𝑙𝑝 ; 𝑡ℎ𝑒𝑜𝑟𝑦_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 (𝑙𝑝 );

6 if 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 () then

7 if 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛() then

8 𝑏𝑎𝑐𝑘𝑡𝑟𝑎𝑐𝑘 ();

9 𝑏𝑟𝑒𝑎𝑘 ;

10 else

11 𝑟𝑒𝑡𝑢𝑟𝑛 unsat;

12 end

13 end

14 end

15 𝑟𝑒𝑡𝑢𝑟𝑛 sat;

16 end

to their corresponding theory solvers for theory propagation and consistency checking (Line 3

and Line 5). If the current assignment is consistent with both SAT and theory semantics, another

iteration starts to repeat the above process; if no more decisions can be made to expand the current

assignment (Line 15), i.e., the current assignment is complete, DPLL(T) returns sat. In case of

inconsistency, the corresponding theory solver generates one or several conflict clauses to prevent

the core solver from reentering similar inconsistency in the future, and DPLL(T) backtracks by

erasing several latest decisions (Line 7 - Line 8). In cases where no more decisions can be erased

(Line 11), DPLL(T) terminates and returns unsat.

There are several schemes of interactions between the core solver and theory solvers. Algorithm 1

shows an eager scheme: each time the currentmodel𝑀 is extendedwith a new assignment, nomatter

whether𝑀 is complete after extending, the core solver queries theory solvers for its consistency.

There is also an alternative lazy scheme, which queries theory solvers only after a complete model

𝑀 of B(𝜙) is generated.

2.2 Modeling of Concurrent Programs

We follow Alglave et al.’s framework [Alglave et al. 2013] that models concurrent behaviors using

happens-before orders. A memory event (event for short) 𝑒 represents a memory access, specified by

its address addr (𝑒), type type(𝑒) (either read or write), and enabling condition grd𝑒 (an event is

enabled if its enabling condition is true). Specifically, we write 𝑟 (resp.𝑤 ) for a read (resp. write)

event. Denote E the set of all events in the program.

The program order ≺po is a total order on events from the same thread. Intuitively, 𝑒1 ≺po 𝑒2
if they are issued by the same thread and 𝑒1 occurs earlier than 𝑒2. However, only a portion of

program orders are encoded w.r.t. the chosen memory model. The subrelation ≺po-loc (⊆ ≺po) is the

program order restricted to the same memory address. Under a certain memory model, some pairs

of events in the program order are relaxed. We call the program order after relaxations the preserved

program order ≺ppo (⊆ ≺po). This paper focuses on three memory models: sequential consistency

(SC) [Lamport 1979], total store order (TSO) [Owens et al. 2009], and partial store order (PSO) [Weaver
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y = 1;
if(y == 1)
x = 2;

n = x - y;
x = 1;
y = 2;
m = x + y;
assert(!(m = 2 && n = 0));
(a) the original program

y3= 1;
if(y4 == 1)
x3 = 2;

n = x4 - y5;
x1 = 1;
y1 = 2;
m = x2 + y2;
assert(!(m = 2 && n = 0));

(b) the CSSA form

Fig. 1. An example program

and Gremond 1994]. Among these models, SC relaxes nothing; TSO relaxes write-to-read program

orders; PSO relaxes write-to-read and write-to-write program orders. Finally, only ≺po-loc and ≺ppo

are encoded instead of the whole ≺po.

The read-from order ≺rf links write event𝑤 to read event 𝑟 , so that 𝑟 obtains its value from𝑤 . A

basic fact about the read-from order is that a read obtains its value from the latest write to the same

address. Let 𝑟 ,𝑤 and𝑤 ′ be three events accessing the same address. If𝑤 ≺rf 𝑟 ,𝑤
′ must not happen

between𝑤 and 𝑟 (otherwise,𝑤 ′ is the latest write before 𝑟 , and 𝑟 should read from𝑤 ′ instead of

𝑤 ). Therefore, by 𝑤 ≺rf 𝑟 and 𝑤
′ preceding 𝑟 , we can conclude that 𝑤 ′ also precedes 𝑤 (written

𝑤 ′ ≺ws 𝑤 , called a write-serialization order); by𝑤 ≺rf 𝑟 and𝑤 preceding𝑤 ′, we can conclude that

𝑟 also precedes𝑤 ′ (written 𝑟 ≺fr 𝑤
′, called a from-read order).

Let ≺ be the transitive closure of ≺po-loc ∪ ≺ppo∪ ≺rf ∪ ≺fr ∪ ≺ws, called the happens-before

order. Intuitively, 𝑒1 ≺ 𝑒2 indicates that the event 𝑒1 must happen before 𝑒2 in any execution of the

program.

Lemma 1 (Consistent Execution [Alglave et al. 2012]). An execution is consistent iff there is

no event 𝑒 so that 𝑒 ≺ 𝑒 , i.e., there exists a linearization of events on this execution.

An execution is correct if it satisfies the correctness property. A program is correct if it has no

execution that is both consistent and incorrect.

3 SYMBOLIC ENCODING

In this section, we use a two-threaded program (in Figure 1a) to demonstrate our approach to encod-

ing concurrent programs into SMT formulas. The encoding framework follows those in [Alglave

et al. 2012; He et al. 2021], and the differences will be discussed at the end of this section.

3.1 Assignment Encoding

The concurrent static single assignment (CSSA) form [Wang et al. 2009] of the example program is

depicted in Figure 1b, where each occurrence of each variable is replaced with a new copy of this

variable (called an SSA variable). With the CSSA form, we can easily encode value assignments of

the example program as:

𝜌va := (𝑥1 = 1) ∧ (𝑦1 = 2) ∧ (𝑚 = 𝑥2 + 𝑦2) ∧ (𝑦3 = 1) ∧ (grd𝑥3 → 𝑥3 = 2) ∧ (𝑛 = 𝑥4 − 𝑦5)

∧ (grd𝑥3 ↔ 𝑦4 = 1) (1)

Basically, each value assignment should be guarded by a conditional formula grd , representing its

enabling condition. In this simple example, except for grd𝑥3 , enabling conditions of other assignments

are equivalent to true and omitted.

The program’s correctness property is that𝑚 = 2 and 𝑛 = 0 should not hold simultaneously after

both threads join. Its negation, i.e., the error condition of the program, is encoded as:

𝜌err :=𝑚 = 2 ∧ 𝑛 = 0 (2)
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158:6 Zhihang Sun, Hongyu Fan, and Fei He

3.2 Ordering Encoding

Each SSA variable represents a memory access to that variable. Given an SSA variable 𝑥𝑖 , we use

𝑤𝑥𝑖 (resp. 𝑟𝑥𝑖 ) to represent the corresponding event if 𝑥𝑖 ’s type is write (resp. read).

Among the various happens-before orders of events (see Section 2.2), our approach only encodes

the program order per location, the preserved program order (collectively called program-related or-

ders) and the read-from order. Other orders (e.g., write-serialization and from-read) are automatically

derived during the SMT solving in an on-demand fashion (see Section 4.1).

Considering the left thread of the example program, its program order per location is

𝜌po-loc := (𝑤𝑥1 ≺ 𝑟𝑥2 ) ∧ (𝑤𝑦1 ≺ 𝑟𝑦2 )

its preserved program orders under SC, TSO and PSO are

𝜌ppo-sc :=
(𝑤𝑥1 ≺ 𝑤𝑦1 ) ∧ (𝑤𝑥1 ≺ 𝑟𝑥2 ) ∧ (𝑤𝑥1 ≺ 𝑟𝑦2 )∧

(𝑤𝑦1 ≺ 𝑟𝑥2 ) ∧ (𝑤𝑦1 ≺ 𝑟𝑦2 ) ∧ (𝑟𝑥2 ≺ 𝑟𝑦2 )

𝜌ppo-tso := (𝑤𝑥1 ≺ 𝑤𝑦1 ) ∧ (𝑟𝑥2 ≺ 𝑟𝑦2 )

𝜌ppo-pso := (𝑟𝑥2 ≺ 𝑟𝑦2 )

We abuse the ordering symbol ≺, making it also represent a predicate. A predicate 𝑒1 ≺ 𝑒2 is

called an order constraint. In this way, 𝜌po-loc and 𝜌ppo defined above are conjunctions of order

constraints.

We introduce a Boolean variable rf 𝑥𝑖, 𝑗 , called a read-from variable , to represent whether 𝑥 𝑗 reads

from 𝑥𝑖 . Therefore, if rf
𝑥
𝑖, 𝑗 is true, events𝑤𝑥𝑖 and 𝑟𝑥 𝑗

must both be enabled, and𝑤𝑥𝑖 happens before

𝑟𝑥 𝑗
. We have

rf 𝑥𝑖, 𝑗 → grd𝑥𝑖 ∧ grd𝑥 𝑗
∧ 𝑥𝑖 = 𝑥 𝑗 (3)

rf 𝑥𝑖, 𝑗↔𝑤𝑥𝑖 ≺rf 𝑟𝑥 𝑗
(4)

The former is called an RF-Val constraint and the latter is called an RF-Ord constraint [He et al.

2021]. Moreover, assuming𝑤𝑥𝑖1
,𝑤𝑥𝑖2

, · · · ,𝑤𝑥𝑖𝑘
are possible writes that 𝑟𝑥 𝑗

may read from, then 𝑟𝑥 𝑗

must read from one of them, i.e.,

grd𝑥 𝑗
→ rf 𝑥𝑖1, 𝑗 ∨ rf 𝑥𝑖2, 𝑗 ∨ · · · ∨ rf 𝑥𝑖𝑘 , 𝑗 (5)

called an RF-Some constraint.

Let 𝜌rf-val, 𝜌rf-ord, and 𝜌rf-some be the conjunctions of all RF-Val, RF-Ord, and RF-Some constraints

of the program, respectively.

Taking 𝑟𝑥2 in Figure 1b as an example, which may read from𝑤𝑥1 or𝑤𝑥3 , we have

rf 𝑥1,2 → 𝑥1 = 𝑥2

rf 𝑥1,2 ↔𝑤𝑥1 ≺rf 𝑟𝑥2

rf 𝑥3,2 → grd𝑥3 ∧ 𝑥3 = 𝑥2

rf 𝑥3,2 ↔𝑤𝑥3 ≺rf 𝑟𝑥2

rf 𝑥1,2 ∨ rf 𝑥3,2

3.3 The Whole Formula

The whole encoding formula is

Ψ := 𝜓ssa ∧𝜓ord (6)
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  𝑒2 

  𝑒3   𝑒1 

≺ ≺ 
derived 

(a) Transitivity

𝑤′
𝑟𝑤 ≺𝑟𝑓

≺
(b) Write-serialization

𝑤′
𝑟𝑤≺

≺𝑟𝑓

(c) From-read

Fig. 2. Theory axioms

where𝜓ssa and𝜓ord represent the SSA encoding and ordering encoding, respectively:

𝜓ssa := 𝜌va ∧ 𝜌err ∧ 𝜌rf-val ∧ 𝜌rf-some (7)

𝜓ord := 𝜌po-loc ∧ 𝜌ppo ∧ 𝜌rf-ord (8)

𝜓ssa is unrelated to the ordering, so that can be handled by classical SMT solvers;𝜓ord consists of

Boolean variables (read-from variables and guard variables) and order constraints (≺ and ≺rf), called

ordering formulas. We intend to devise a specific theory solver for handling ordering formulas.

3.4 Comparison with Existing Encoding Techniques

Alglave et al.’s modeling framework [Alglave et al. 2012] lays a foundation for modeling concurrent

programs via partial orders. In Alglave et al.’s framework, all happens-before orders, including

program orders, read-from orders, write-serialization orders, and from-read orders, need to be

explicitly encoded into formulas. Zord [He et al. 2021] improves this framework by omitting from-

read orders during encoding. In our approach, not only from-read orders but also write-serialization

orders are omitted – they are left for the theory solver to deduce automatically. Therefore, our

approach produces a significantly smaller formula than the existing approaches.

4 THE BASIC SOLVER

This section discusses our dedicated theory solver for order constraints.

4.1 Theory Axioms

Recall that our symbolic encoding formula contains only program and read-from orders. Some

axioms are thus necessary for deducing all other orders in ≺. First, by transitivity of ≺, we have

Axiom 1 (Transitivity Derivation). For any events 𝑒1, 𝑒2, and 𝑒3,

(𝑒1 ≺ 𝑒2) ∧ (𝑒2 ≺ 𝑒3) → (𝑒1 ≺ 𝑒3).

By the definition of the read-from orders, if𝑤 ≺rf 𝑟 , for any other enabled write𝑤 ′ to the same

address, either𝑤 ′ precedes𝑤 , or𝑤 ′ follows 𝑟 . Recall that in Section 2.2, a Boolean variable grd𝑤′

(called guard variable) is used to represent the enablement of𝑤 ′. Then we have the following two

axioms:

Axiom 2 (Write-serialization Derivation). For any write events𝑤 ,𝑤 ′ and read event 𝑟 with

𝑎𝑑𝑑𝑟 (𝑤) = 𝑎𝑑𝑑𝑟 (𝑤 ′) = 𝑎𝑑𝑑𝑟 (𝑟 ),

(𝑤 ≺rf 𝑟 ) ∧ (𝑤 ′
≺ 𝑟 ) ∧ grd𝑤′ → (𝑤 ′

≺ 𝑤).

Axiom 3 (From-read Derivation). For any write events𝑤 ,𝑤 ′ and read event 𝑟 with 𝑎𝑑𝑑𝑟 (𝑤) =

𝑎𝑑𝑑𝑟 (𝑤 ′) = 𝑎𝑑𝑑𝑟 (𝑟 ),

(𝑤 ≺rf 𝑟 ) ∧ (𝑤 ≺ 𝑤 ′) ∧ grd𝑤′ → (𝑟 ≺ 𝑤 ′).
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𝑤𝑥1𝑤𝑦1𝑟𝑥2𝑟𝑦2

𝑤𝑦3𝑟𝑦4𝑤𝑥3𝑟𝑥4𝑟𝑦5
(a) The initial state

𝑤𝑥1𝑤𝑦1𝑟𝑥2𝑟𝑦2

𝑤𝑦3𝑟𝑦4𝑤𝑥3𝑟𝑥4𝑟𝑦5
≺𝑟𝑓

(b) After decision rf 𝑥3,2

𝑤𝑥1𝑤𝑦1𝑟𝑥2𝑟𝑦2

𝑤𝑦3𝑟𝑦4𝑤𝑥3𝑟𝑥4𝑟𝑦5
≺𝑟𝑓
≺𝑟𝑓

(c) After decision rf 𝑥1,4

Fig. 3. Event graphs of the example

The enablement of𝑤 ′ is a necessary condition for Axiom 2 and Axiom 3 because otherwise, the

event𝑤 ′ does not happen and discussing the happens-before ordering of𝑤 ′ is meaningless. On the

other hand,𝑤 ≺rf 𝑟 implies𝑤 and 𝑟 being both enabled (see Equation (3)). Therefore, there is no

need to consider enablements of𝑤 and 𝑟 in the above axioms.

Figure 2 demonstrates the derivations in the above three axioms, where dark vertices represent

enabled write events and dashed lines represent derived orders.

4.2 Event Graph

Our solver maintains a graph structure (E, ≺), called event graph, where E is the event set and ≺

is the happens-before order set. Moreover, each event 𝑒 in E is associated with a guard variable

grd𝑒 , indicating the enabling condition of 𝑒 . A guard variable grd𝑒 is called trivial if the enabling

condition it represents is true. Considering the example program in Figure 1b, the only non-trivial

guard variable is grd𝑥3 , equivalent to 𝑦4 = 1.

Let 𝑉ord be the set of read-from and non-trivial guard variables, and 𝛼 be the set containing the

current assignments of variables in 𝑉ord. At the beginning of SMT solving, all variables in 𝑉ord are

unassigned, so that only the transitive closure of program-related orders presents in the graph.

Later, along with variable assignments, more and more orders are derived by applying theory

axioms and added to the graph.

Definition 1. An event graph is stable with respect to assignment set 𝛼 if no more orders can be

derived by applying theory axioms on 𝛼 .

Figure 3 shows three stable event graphs of the example program under SC on different stages

of the SMT solving (orders derived by transitivity are omitted for clarity), where dark vertices

represent enabled events and light vertices represent events whose enablements are undetermined

yet.

4.3 Solving Procedure

Our basic solver consists of three components: theory propagation, consistency checking, and conflict

clause generation. An overview of the solving procedure is illustrated in Figure 4.

4.3.1 Theory Propagation. On any assignment of literal 𝑙 , the theory solver attempts to derive

as many as possible orders by iteratively applying theory axioms. This procedure is called theory

propagation.

Algorithm 2 shows the theory propagation algorithm. Note that assigned literal 𝑙 is considered

only if it assigns true to a variable in 𝑉ord. Let var (𝑙) be the variable of 𝑙 . No matter var (𝑙) is a
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Theory Solver 

Theory 
Propagation 

Consistency 
Checking 

assignment 

Conflict Clause 
Generation 

Core Solver 

conflict  
clauses 

No 

Yes 

Fig. 4. Theory solver

read-from variable or a guard variable, the algorithm checks all possibilities for applying the write-

serialization and from-read derivations (Line 6 to Line 8, and Line 12 to Line 14); for a read-from

variable assignment, the algorithm also adds the corresponding order in ≺ and ≺rf (Line 4). During

propagation, as soon as an order is added to ≺ (Lines 4, 19 and 22), transitivity() is invoked to

derive orders by the transitivity axiom.

Theorem 1. When Algorithm 2 terminates, the event graph (E, ≺) is stable with respect to the

current assignment set 𝛼 .

Proof. Let 𝛼𝑘 and ≺𝑘 be respectively the assignment set and the happens-before order set after

the 𝑘-th assignment to 𝑉ord variables. We prove the stability of ≺𝑘 with respect to 𝛼𝑘 by induction

on 𝑘 :

(1) Initially, 𝛼0 = ∅, no WS or FR derivations can be performed. ≺0 is the transitive closure of

program-related orders, which is obviously stable with respect to 𝛼0.

(2) Assume ≺𝑖 is stable with respect to 𝛼𝑖 . Let 𝑙 be the (𝑖 + 1)-th assignment. According to

Algorithm 2, all possible deductions triggered by 𝑙 are fully considered. The resulting order

set ≺𝑖+1 is thus stable with respect to 𝛼𝑖 ∪ {𝑙}, i.e., 𝛼𝑖+1.

□

4.3.2 Consistency Checking. After theory propagation, all happens-before orders under the current

partial assignment present in the graph. The theory solver proceeds to check whether these happens-

before orders are consistent. According to Lemma 1, we only need to enumerate all events in the

event graph and check if any event contains a self-loop. Apparently, this check can be finished in

O(𝑛) time, where 𝑛 is the number of events.

4.3.3 Conflict Clause Generation. In case of inconsistency, the theory solver needs to find the

reasons for the inconsistency. To this end, the theory solver records a derivation reason (reason for

short) for each order in the graph. More specifically, each time we add an order to the graph, we

also summarize its derivation reason as follows:

• The reason for a program-related order is true, for this order always presents in the graph;

• The reason for a read-from order is the corresponding read-from variable;

• if an order is derived by Axiom 1, its reason (following the notations in Axiom 1) is

reason(𝑒1 ≺ 𝑒2) ∧ reason(𝑒2 ≺ 𝑒3);

• if an order is derived by Axiom 2, its reason (following the notations in Axiom 2) is

reason(𝑤 ≺rf 𝑟 ) ∧ reason(𝑤 ′
≺ 𝑟 ) ∧ grd𝑤′ ;

• if an order is derived by Axiom 3, its reason (following the notation in Axiom 3) is

reason(𝑤 ≺rf 𝑟 ) ∧ reason(𝑤 ≺ 𝑤 ′) ∧ grd𝑤′ .
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Algorithm 2: Theory Propagation

Data: the order sets ≺, ≺rf

1 Procedure theory_propagation(𝑙)
Input: a positive literal 𝑙

2 if var (𝑙) is a read-from variable then

3 let𝑤 and 𝑟 be the write and read events linked by var (𝑙) ;

4 ≺rf ← ≺rf ∪ {(𝑤 , 𝑟 )}, ≺ ← ≺ ∪ {(𝑤 , 𝑟 )} ;

5 transitivity(𝑤 , 𝑟 );

6 foreach𝑤 ′ s.t. 𝑎𝑑𝑑𝑟 (𝑤) = 𝑎𝑑𝑑𝑟 (𝑤 ′) = 𝑎𝑑𝑑𝑟 (𝑟 ) and grd𝑤′

7 derive(𝑤 ,𝑤 ′
, 𝑟 );

8 end

9 end

10 if var (𝑙) is a guard variable then

11 let𝑤 ′ be the write event guarded by var (𝑙) ;

12 foreach𝑤 and 𝑟 , s.t. 𝑎𝑑𝑑𝑟 (𝑤) = 𝑎𝑑𝑑𝑟 (𝑤 ′) = 𝑎𝑑𝑑𝑟 (𝑟 ) and𝑤 ≺rf 𝑟

13 derive(𝑤 ,𝑤 ′
, 𝑟 );

14 end

15 end

16 end

17 Procedure derive(𝑤 ,𝑤 ′
, 𝑟 )

Input: events𝑤 ,𝑤 ′ and 𝑟 , s.t. 𝑎𝑑𝑑𝑟 (𝑤) = 𝑎𝑑𝑑𝑟 (𝑤 ′) = 𝑎𝑑𝑑𝑟 (𝑟 ), (𝑤 , 𝑟 ) ∈ ≺rf and grd𝑤′

18 if 𝑤 ′ ≺ 𝑟 then /* WS derivation */

19 ≺ ← ≺ ∪ {(𝑤 ′
,𝑤)};

20 transitivity(𝑤 ′
,𝑤);

21 else if 𝑤 ≺ 𝑤 ′ then /* FR derivation */

22 ≺ ← ≺ ∪ {(𝑟 ,𝑤 ′)};

23 transitivity(𝑟 ,𝑤 ′);

24 end

25 end

26 Procedure transitivity(𝑒, 𝑒′)
Input: a pair of events (𝑒, 𝑒′) s.t. (𝑒, 𝑒′) ∈ ≺

27 foreach (𝑒′, 𝑒′′) ∈ ≺ s.t. (𝑒, 𝑒′′) ∉ ≺

28 ≺ ← ≺ ∪ {(𝑒, 𝑒′′)};

29 transitivity(𝑒, 𝑒′′);

30 end

31 foreach (𝑒′′, 𝑒) ∈ ≺ s.t. (𝑒′′, 𝑒) ∉ ≺

32 ≺ ← ≺ ∪ {(𝑒′′, 𝑒)};

33 transitivity(𝑒′′, 𝑒);

34 end

35 end

Let 𝑐𝑦𝑐 be the set of self-loops detected in consistency checking. For each self-loop in 𝑐𝑦𝑐 , we

return the negation of its derivation reason as a conflict clause. The core solver learns the reported

conflict clauses to prevent inconsistency with the same reasons from occurring in the future.

Finally, we prove that our proposed theory solver is correct w.r.t. our encoding:
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Theorem 2. When the theory solver returns a satisfiable model, this model represents a valid

execution of the program under the given memory model; when the theory solver returns unsatisfiable,

there is no valid execution of the program under the given memory model.

Proof. Since Zord [He et al. 2021] employs a similar method which has been proved correct, we

only need to prove that for each satisfiable model in our theory solver, a corresponding satisfiable

model also exists in Zord, and vice versa.

Note that Zord requires enabled write events to the same address to be totally ordered: for

both-enabled write-write pair (𝑤𝑥𝑖 ,𝑤𝑥 𝑗
), either 𝑤𝑥𝑖 ≺ 𝑤𝑥 𝑗

or 𝑤𝑥 𝑗
≺ 𝑤𝑥𝑖 . Compared to Zord, we

avoid such complicated requirement. Considering a satisfiable model in our solver, if there exists

an unordered pair (𝑤𝑥𝑖 ,𝑤𝑥 𝑗
), we can add an arbitrary order between them (note that if adding

𝑤𝑥𝑖 ≺ 𝑤𝑥 𝑗
leads to inconsistency,𝑤𝑥 𝑗

≺ 𝑤𝑥𝑖 must have been derived earlier). Therefore, for each

satisfiabled model in our solver, we can find the corresponding satisfiable models in Zord.

On the other hand, a satisfiable model in Zord can be directly transformed into a satisfiable

model of our solver by removing unnecessary WS orders (retaining only orders that can be derived

from the WS axiom).

Above proof shows the equi-satisfiability between our solver and Zord, which guarantees our

correctness based on Zord’s correctness.

□

4.4 Example

We take the program in Figure 1 under SC as an example to demonstrate how the basic solver works.

Figure 3a shows the program’s initial event graph, where only program-related orders present. For

readability, orders derived by transitivity (e.g.𝑤𝑥1 ≺ 𝑟𝑥2 ,𝑤𝑥1 ≺ 𝑟𝑦2 , etc) are not drawn in the figure.

• Assume rf 𝑥3,2 is decided to true first: the theory solver adds the corresponding read-from order

𝑤𝑥3 ≺rf 𝑟𝑥2 , and performs theory propagation. In addition to orders derived by transitivity

(not drawn in the figure), one WS order 𝑤𝑥1 ≺ 𝑤𝑥3 (the dashed line in Figure 3b) is also

derived from

(𝑤𝑥3 ≺rf 𝑟𝑥2 ) ∧ (𝑤𝑥1 ≺ 𝑟𝑥2 ) ∧ grd𝑥1 → (𝑤𝑥1 ≺ 𝑤𝑥3 ).

Now, the event graph becomes stable and is shown in Figure 3b.

• Assume rf 𝑥1,4 is decided to true second: the theory solver first adds𝑤𝑥1 ≺rf 𝑟𝑥4 and performs

theory propagation. Except for orders derived by transitivity, one FR order 𝑟𝑥4 ≺ 𝑤𝑥3 (the red

dashed line in Figure 3c) is derived from

(𝑤𝑥1 ≺rf 𝑟𝑥4 ) ∧ (𝑤𝑥1 ≺ 𝑤𝑥3 ) ∧ grd𝑥3 → (𝑟𝑥4 ≺ 𝑤𝑥3 ).

Finally, from the event graph in Figure 3c, a self-loop is derived using the transitivity derivation

(𝑤𝑥3 ≺ 𝑟𝑥4 ) ∧ (𝑟𝑥4 ≺ 𝑤𝑥3 ) → (𝑤𝑥3 ≺ 𝑤𝑥3 ),

and its derivation reason is:

reason(𝑤𝑥3 ≺ 𝑤𝑥3 ) = reason(𝑤𝑥3 ≺ 𝑟𝑥4 ) ∧ reason(𝑟𝑥4 ≺ 𝑤𝑥3 )

= true ∧ (reason(𝑤𝑥1 ≺rf 𝑟𝑥4 ) ∧ reason(𝑤𝑥1 ≺ 𝑤𝑥3 ) ∧ grd𝑥3 )

= true ∧ (rf 𝑥1,4 ∧ (reason(𝑤𝑥3 ≺rf 𝑟𝑥2 ) ∧ reason(𝑤𝑥1 ≺ 𝑟𝑥2 ) ∧ grd𝑥1 ) ∧ grd𝑥3 )

= rf 𝑥1,4 ∧ rf 𝑥3,2 ∧ grd𝑥1 ∧ grd𝑥3 .

The corresponding conflict clause is thus

¬rf 𝑥1,4 ∨ ¬rf 𝑥3,2 ∨ ¬grd𝑥1 ∨ ¬grd𝑥3 .
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The above example shows that the basic theory solver passively preserves consistency (backtracks

whenever inconsistency occurs) through consistency checking and conflict clause generation. In

most cases, many time-consuming decisions and propagations are erased during backtracking. To

avoid this drawback, we aim to enhance the theory solver with the ability to actively preserve

consistency during theory propagation, instead of using consistency checking and conflict clause

generation.

4.5 Comparison with Other Approaches

The first ordering theory for concurrent program verification was proposed in Zord [He et al. 2021].

The theory in Zord embodies only the from-read axiom. In comparison, our theory additionally

embodies the write-serialization axiom. In this way, we omit explicit encoding of write-serialization

constraints. Meanwhile, we also embody the transitivity axiom to construct the transitive closure

of orders. As a result, we obtain a complete order set, with which consistency checking is reduced

to trivial self-loop detection. In comparison, Zord relies on a cycle detection algorithm to perform

consistency checking.

5 CONSISTENCY-PRESERVING PROPAGATION

This section enhances the above basic solver using consistency-preserving propagation. With this

propagation, the ordering consistency is always preserved, so that the consistency checking and

conflict clause generation can be safely omitted.

5.1 Overview

The main idea of consistency-preserving propagation is employing preventive reasoning to identify

and disable the following fragile assignments. Recall that a positive literal 𝑣 (resp. negative literal

¬𝑣) denotes assigning variable 𝑣 to true (resp. false).

Definition 2. An assignment 𝑙 is said fragile if its corresponding variable var (𝑙) is currently

unassigned, and extending the current assignment set 𝛼 with 𝑙 leads to T -inconsistency, i.e.,

𝛼 ∪ {𝑙} |=T ⊥

In other words, we must prevent the fragile assignments from coming into truth. Therefore, once

the theory solver detects a fragile assignment 𝑙 , it makes the opposite assignment ¬𝑙 and add it

into 𝛼 . In this way, var (𝑙) becomes assigned, and the fragile assignment 𝑙 can never happen. This is

called preventive reasoning.

For example, the literal rf 𝑥1,4 is fragile for the event graph in Figure 3b (where 𝛼 = {rf 𝑥3,2}). If

preventive reasoning is enabled, we can immediately enforce the value of rf 𝑥1,4 to false. Then the

decision in Figure 3c will not happen (since rf 𝑥1,4 is already assigned), and so does the subsequent

inconsistency. This example shows the main insight of preventive reasoning: it prunes the decision

space to avoid decisions that lead to inconsistency. More formally, we prove that if we perform

preventive reasoning on each 𝑉ord variable assignment, no self-loops will occur in the event graph

during solving. In other words, consistency checking and conflict clause generation can be safely

skipped, which simplifies the structure of the theory solver and increases solving efficiency by

reducing the number of conflicts.

5.2 Preventive Reasoning

Let 𝛼 be the current assignment set and ≺𝛼 the order set stable with respect to 𝛼 . Let 𝑙 be a new

assignment. If 𝑙 conflicts with 𝛼 , a self-loop will be formed during the theory propagation after

several applications of theory axioms. Let us focus on how the self-loop is formed. First of all, we
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𝑤′
𝑟𝑤≺

≺𝑟𝑓
≺

(a) Pattern I

𝑟𝑤 ≺𝑟𝑓
≺

(b) Pattern II

Fig. 5. Patterns of inconsistency

know that: 1) the last applied axiom that directly forms self-loop must be a transitivity derivation,

because other two axioms, i.e., WS and FR, can only derive orders between two different events;

2) if two orders form a self-loop by transitivity, they must be reversed orders. Then we have the

following lemmas.

Lemma 2. Let 𝛼 be the current assignment set, ≺𝛼 the order set stable with respect to 𝛼 , and 𝑙 a new

assignment. If 𝑙 conflicts with 𝛼 , then a self-loop is formed with two derivations.

Proof. For simplicity, we denote in the following 𝑜 an order and 𝑜 its reversed order.

After each assignment, we repeatedly conduct derivations: upon deriving an order, we continue

applying axioms on this order to derive more orders. For example, from 𝑙 we derive 𝑜1, from 𝑜1
we derive 𝑜2, · · · , from 𝑜𝑛−1 we derive 𝑜𝑛 , which can be recorded as the derivation chain (chain for

short) of 𝑜𝑛 . Every derived order can be associated with such a chain. If 𝑜𝑛 already exists, we say

the chain of 𝑜𝑛 leads to a self-loop. By contradiction we prove that if any chain 𝑙,𝑜1, · · · ,𝑜𝑛 leads to

a self-loop, 𝑛 must be 1:

Let 𝑙,𝑜1, · · · ,𝑜𝑛 be the shortest chain (assuming 𝑛 > 1) that leads to a self-loop (so that 𝑜𝑛 already

exists in ≺𝛼 ). We focus on the derivation from 𝑜𝑛−1 to 𝑜𝑛 . We can prove that whatever axiom

is applied by this derivation (transitivity, WS, or FR), given that the consequence’s reverse (𝑜𝑛)

exists, we can derive the antecedent’s reverse (𝑜𝑛−1). Taking WS derivation as an example (where

𝑜𝑛−1 = 𝑤 ′ ≺ 𝑟 and 𝑜𝑛 = 𝑤 ′ ≺ 𝑤 ):

𝑜𝑛−1 ∧𝑤 ≺rf 𝑟 ∧ grd𝑤′ → 𝑜𝑛,

We find that FR derivation can be employed on 𝑜𝑛 to derive 𝑜𝑛−1:

𝑜𝑛 ∧𝑤 ≺rf 𝑟 ∧ grd𝑤′ → 𝑜𝑛−1 .

Since ≺𝛼 is stable, 𝑜𝑛−1 should also exist in ≺𝛼 .

As a result, we find a shorter chain 𝑙,𝑜1, · · · ,𝑜𝑛−1 that leads to the same self-loop (the reader can

refer to Section 4.3.3 to find that both self-loops share the same derivation reason, so we can treat

them as indistinguishable), which is a contradiction.

In conclusion, as long as 𝑙 conflicts with 𝛼 , any self-loop caused by 𝑙 is obtained in the following

manner: 𝑙 derives some order 𝑜1 while 𝑜1 exists, so that causes this self-loop by transitivity. □

Lemma 3. All self-loops formed in the theory propagation can be classified into the following two

patterns:

• (𝑤 ≺ 𝑤 ′) ∧ (𝑤 ′ ≺ 𝑟 ) ∧ (𝑤 ≺rf 𝑟 ) ∧ grd𝑤′ ⇒ ⊥;

• (𝑟 ≺ 𝑤) ∧ (𝑤 ≺rf 𝑟 ) ⇒ ⊥.

Proof. According to Lemma 2, each self-loop is formed with two derivations: the first derives an

order, and the second (must be transitivity) derives a self-loop from this order and its reversed order.
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Now we discuss what the first derivation is. If 𝑙 is the assignment to an RF variable (corresponding

to𝑤 ≺rf 𝑟 ), there are three cases:

• By the definition of RF:𝑤 ≺rf 𝑟 → 𝑤 ≺ 𝑟 ;

• WS derivation:𝑤 ≺rf 𝑟 ∧ grd𝑤′ ∧𝑤 ′ ≺ 𝑟 → 𝑤 ′ ≺ 𝑤 for some𝑤 ′;

• FR derivation:𝑤 ≺rf 𝑟 ∧ grd𝑤′ ∧𝑤 ≺ 𝑤 ′ → 𝑟 ≺ 𝑤 ′ for some𝑤 ′.

(Note that in the latter two cases,𝑤 ≺rf 𝑟 → 𝑤 ≺ 𝑟 is unrelated to the self-loop’s derivation.) The

former case can be classified into the second pattern and the latter two cases into the first pattern.

On the other hand, if 𝑙 is the assignment to a guard variable, only the WS and FR derivations are

possible, both classified into the first pattern.

□

As depicted in Figure 5, the first inconsistency pattern describes a situation where 𝑟 reads from

𝑤 while another write event𝑤 ′ happens between them. From the first pattern, after applying the

WS or FR derivation here comes to the inconsistency; from the second pattern, the inconsistency is

triggered after applying the transitivity derivation.

Negations of these patterns are called preventive clauses, which should always be satisfied to

preserve consistency:

• For write events𝑤 ,𝑤 ′ and read event 𝑟 with 𝑎𝑑𝑑𝑟 (𝑤) = 𝑎𝑑𝑑𝑟 (𝑤 ′) = 𝑎𝑑𝑑𝑟 (𝑟 ),

¬(𝑤 ≺ 𝑤 ′) ∨ ¬(𝑤 ′
≺ 𝑟 ) ∨ ¬(𝑤 ≺rf 𝑟 ) ∨ ¬grd𝑤′ ;

• For write event𝑤 and read event 𝑟 with 𝑎𝑑𝑑𝑟 (𝑤) = 𝑎𝑑𝑑𝑟 (𝑟 ),

¬(𝑟 ≺ 𝑤) ∨ ¬(𝑤 ≺rf 𝑟 ).

Preventive reasoning performs propagations on those preventive clauses, similar to the idea

of unit propagation: for each preventive clause, if only one of its literals is unassigned while all

others are assigned false, to satisfy this clause, the final unassigned literal must be assigned true.

For example, considering the event graph in Figure 3b, the preventive clause

¬(𝑤𝑥1 ≺ 𝑤𝑥3 ) ∨ ¬(𝑤𝑥3 ≺ 𝑟𝑥4 ) ∨ ¬(𝑤𝑥1 ≺rf 𝑟𝑥4 ) ∨ ¬grd𝑥3

is unit with ¬(𝑤𝑥1 ≺rf 𝑟𝑥4 ) being the only unassigned literal. Then, by preventive reasoning,

¬(𝑤𝑥1 ≺rf 𝑟𝑥4 ), i.e., ¬rf
𝑥
1,4, is enforced.

5.3 Algorithm

Algorithm 3 details the consistency-preserving propagation algorithm with preventive reasoning

integrated. On assigning positive literal 𝑙 where 𝑣𝑎𝑟 (𝑙) ∈ 𝑉ord, we still first employ theory axioms

(Line 2, see Algorithm 2) to derive a stable order set. Let Δ be the newly derived order set. Preventive

reasoning only considers orders between events with the same address, so we filter them into

Δ𝑝𝑒𝑟_𝑎𝑑𝑑𝑟 (Line 3). Then we identify preventive clauses related to these orders (Line 4 - Line 17)

and make propagations on preventive clauses (Line 19 - Line 29).

A data structure Σ records all preventive clauses discovered and not satisfied so far. Recall that

preventive reasoning is only responsible for unit propagation of read-from and guard variables.

Therefore, a preventive clause should be unit-propagated by preventive reasoning only if all general

≺ orders already present:

• When write-write order𝑤 ≺ 𝑤 ′ or write-read order𝑤 ′ ≺ 𝑟 is added, the former two cases

(Line 6 - Line 9 and Line 10 - Line 13) check if any happens-before chain 𝑤 ≺ 𝑤 ′ ≺ 𝑟 is

constructed. For each constructed chain, we add ¬(𝑤 ≺rf 𝑟 ) ∨ ¬grd𝑤′ as a preventive clause.

• When read-write order 𝑟 ≺ 𝑤 is added, the last case (Line 14 - Line 15) adds ¬(𝑤 ≺rf 𝑟 ) as a

preventive clause, which will be directly propagated.
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Algorithm 3: Consisteny Preserving Propagation

Data: the order set ≺, the preventive clause set Σ

1 Procedure consistency_preserving_propagation(𝑙)
Input: a literal 𝑙

2 Δ ← theory_propagation(𝑙);

3 Δ𝑝𝑒𝑟_𝑎𝑑𝑑𝑟 ← filter_per_addr(Δ);

4 foreach 𝑜𝑟𝑑 ∈ Δ𝑝𝑒𝑟_𝑎𝑑𝑑𝑟

5 switch type of 𝑜𝑟𝑑

6 case write-read order𝑤 ′ ≺ 𝑟

7 foreach write𝑤 so that𝑤 ≺ 𝑤 ′ ≺ 𝑟

8 Σ ← Σ ∪
�

¬(𝑤 ≺rf 𝑟 ) ∨ ¬grd𝑤′

	

;

9 end

10 case write-write order𝑤 ≺ 𝑤 ′

11 foreach write 𝑟 so that𝑤 ≺ 𝑤 ′ ≺ 𝑟

12 Σ ← Σ ∪
�

¬(𝑤 ≺rf 𝑟 ) ∨ ¬grd𝑤′

	

;

13 end

14 case read-write order 𝑟 ≺ 𝑤

15 Σ ← Σ ∪
�

¬(𝑤 ≺rf 𝑟 )
	

;

16 preventive_propagation();

17 end

18 end

19 Procedure preventive_propagation()

20 foreach unit clause 𝑐𝑙 ∈ Σ

21 switch the unassigned literal in 𝑐𝑙

22 case negated order ¬(𝑤 ≺rf 𝑟 )

23 Let 𝑣𝑟 𝑓 be RF variable of𝑤 ≺rf 𝑟 ;

24 𝑣𝑟 𝑓 ← false;

25 case negated guard variable ¬grd𝑤′

26 grd𝑤′ ← false;

27 Σ ← Σ/{𝑐𝑙};

28 end

29 end

Note that preventive clauses added to Σ are simplified: general happens-before orders ≺ that do

not correspond to Boolean variables are omitted; all remaining literals are Boolean or correspond

to Boolean variables. Therefore, we perform preventive_propagation() on clauses in Σ as common

unit propagation: if the unassigned literal in a unit clause is a negated read-from order, we assign

the corresponding read-from variable to false (Line 24); if the unassigned literal is a negated guard

variable, we assign the guard variable to false (Line 26).

5.4 Properties

We prove that our proposed consistency-preserving propagation (Algorithm 3) surely preserves

ordering consistency during solving. To prove this property, we need the following lemmas.

For preventive clause 𝑐𝑙 , we denote #unassigned-lits(𝑐𝑙) the number of unassigned literals in 𝑐𝑙 . Let

Σ𝑘 be the set of preventive clauses after the𝑘-th invocation of consistency_preserving_propagation().

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 158. Publication date: October 2022.



158:16 Zhihang Sun, Hongyu Fan, and Fei He

Lemma 4. For any preventive clause 𝑐𝑙 to be added to Σ, #unassigned-lits(𝑐𝑙) ≥ 1.

Lemma 5. If a preventive clause 𝑐𝑙 is kept in Σ on exit of the algorithm, #unassigned-lits(𝑐𝑙) ≥ 2.

Lemma 6. For any preventive clause 𝑐𝑙 ∈ Σ𝑘 , after the (𝑘 + 1)-th invocation of the algorithm,

#unassigned-lits(𝑐𝑙) decreases 0 or 1.

Now we prove the consistency-preserving property of Algorithm 3 in our theory solver:

Theorem 3 (Consistency-preserving property). While incrementally assigning read-from and

guard variables, if consistency-preserving propagation is conducted on each assignment as Algorithm 3

shows, the event graph is always consistent (self-loop free).

Proof. According to Lemma 3, this theorem is reduced to that no preventive clauses can be

unsatisfiable during solving. Let Σ𝑘 be the preventive clause set after the 𝑘-th invocation of

consistency_preserving_propagation(). We prove that no preventive clause in Σ𝑘 can be unsatisfiable

by induction on 𝑘 :

(1) Initially, no read-from variables are assigned to true, so that no preventive clause can become

unsatisfiable.

(2) Assuming the statement holds for 𝑘 = 𝑖 , now we prove the statement also holds for 𝑘 =

𝑖 + 1. By Lemma 5, Σ𝑖 contains no unit clauses. During the (𝑖 + 1)-th invocation, Lemma 6

guarantees that existing clauses in Σ𝑖 cannot be unsatisfiable, and Lemma 4 guarantees that

new clauses added to Σ𝑖+1 also cannot be unsatisfiable. Therefore, no preventive clause in

Σ𝑘+1 is unsatisfiable.

Therefore, after any number of invocations, no preventive clauses can be satisfiable, so the event

graph contains no self-loops. □

The following theorem shows the soundness and completeness of the consistency-preserving

propagation.

Theorem 4 (Correctness). Let 𝛼 be the current assignment set. If Algorithm 3 assigns literal ¬𝑙 ,

then 𝑙 must be ordering-fragile; For any ordering-fragile assignment 𝑙 , Algorithm 3 is able to find it

and assign its negation ¬𝑙 .

Proof. The former part is obvious, since derivations (Line 6 - Line 15) and unit propagations

(Line 24, Line 26) of preventive clauses are based on theory axioms.

Consider the latter part. According to Lemma 3, the inconsistency that 𝑙 will cause must corre-

spond to some preventive clause. Before assignment of 𝑙 , this preventive clause is unit with only ¬𝑙

unassigned, so that Algorithm 3 must have propagated ¬𝑙 in an earlier invocation. □

5.5 Example

After enhancing the theory solver with consistency-preserving propagation, the program shown in

Figure 1 can be solved even without any decision.

Based on the Boolean theory, the core solver finds out that 𝑥2 and 𝑦2 must both be assigned to 1

to guarantee𝑚 = 2 (for reaching error condition𝑚 = 2 ∧ 𝑛 = 0). Therefore, 𝑥2 reads from 𝑥1 (rf
𝑥
1,2)

and 𝑦2 reads from 𝑦3 (rf
𝑦
3,2), respectively. Assuming rf

𝑦
3,2 (𝑤𝑦3 ≺rf 𝑟𝑦2 ) is assigned first, we obtain

𝑤𝑦1 ≺ 𝑤𝑦3 through WS derivation.

Order 𝑤𝑦1 ≺ 𝑤𝑦3 composes chain 𝑤𝑦1 ≺ 𝑤𝑦3 ≺ 𝑟𝑦4 and 𝑤𝑦1 ≺ 𝑤𝑦3 ≺ 𝑟𝑦5 , so that ¬(𝑤𝑦1 ≺rf

𝑟𝑦4 ) ∨ ¬grd𝑦3 and ¬(𝑤𝑦1 ≺rf 𝑟𝑦5 ) ∨ ¬grd𝑦3 are added as preventive clauses. Given that grd𝑦3 is

trivial, we derive ¬(𝑤𝑦1 ≺rf 𝑟𝑦4 ) and ¬(𝑤𝑦1 ≺rf 𝑟𝑦5 ). That is, neither 𝑟𝑦4 nor 𝑟𝑦5 reads from 𝑤𝑦1 ,

then their only choice is to read from𝑤𝑦3 . Since 𝑦4 = 𝑦3 = 1, grd𝑥3 holds.
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Fig. 6. The event graph after preventive reasoning

On the other hand, from𝑤𝑦1 ≺ 𝑤𝑦3 , we also propagate𝑤𝑥1 ≺ 𝑤𝑥3 by transitivity, which composes

chain𝑤𝑥1 ≺ 𝑤𝑥3 ≺ 𝑟𝑥4 . Therefore, we add preventive clause ¬(𝑤𝑥1 ≺rf 𝑟𝑥4 ) ∨ ¬grd𝑥3 and propagate

¬(𝑤𝑥1 ≺rf 𝑟𝑥4 ). Finally, we confirm that 𝑥4 reads from 𝑥3. Updates on the event graph are shown in

Figure 6, where red arrows with crosses represent must-not-read-from orders ¬(𝑤 ≺rf 𝑟 ) derived

above.

The above propagation procedure has determined all values of read events, which yield 𝑛 =

𝑥4 − 𝑦5 = 𝑥3 − 𝑦3 = 1, contradicting 𝑛 = 0. Therefore, no counterexample satisfying𝑚 = 2 ∧ 𝑛 = 0

exists; correctness property ¬(𝑚 = 2 ∧ 𝑛 = 0) holds.

All theory axioms (Axiom 1 - Axiom 3) can only derive ≺ orders, but cannot derive negated read-

from orders as consistency-preserving propagation does. Therefore, without preventive reasoning,

DPLL(T) must decide which events 𝑟𝑥4 , 𝑟𝑦4 , and 𝑟𝑦5 read from, and backtrack after inconsistency.

Therefore, consistency-preserving propagation can derive more literals under the same partial

assignment, which helps the SMT solver finish the solving procedure faster.

6 EVALUATION

This section reports the experimental results of our consistency-preserving propagation and com-

parison with state-of-the-art concurrent verification tools.

6.1 Implementation and Setup

We implement our approach in a tool called Deagle on top of CBMC and MiniSAT. CBMC is a

powerful program verifier that uses partial orders to model concurrent programs, and MiniSAT is

a well-designed and widely-adopted SAT solver. We modify CBMC by disabling the generation of

WS and FR constraints, and use it as the front-end for generating encoding formulas. Meanwhile,

MiniSAT is employed as the back-end for solving the generated formulas. We develop an ordering

theory plug-in for MiniSAT, enabling MiniSAT to run DPLL(T) specified for our ordering theory

solver.

We collect all 763 benchmarks from the SV-COMP 20222 ConcurrencySafety category. It contains

15 sub-categories which can be classified into:

• Classical cases (492): cases that exist up to SV-COMP 2020 and the Nidhugg benchmark suite,

including pthread (44), pthread-atomic (11), pthread-ext (48), pthread-wmm (283), pthread-lit

(11), ldv-races (12), ldv-linux-3.14-races (7), pthread-complex (5), pthread-driver-races (21),

pthread-C-DAC (4), pthread-divine (16), pthread-nondet (6), and pthread-deagle (24). Most

concurrent verification tools work well on these classical tasks.

2https://sv-comp.sosy-lab.org/2022/
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Table 1. Results on consistency-preserving propagation

Category Strategy Solved CPU Time (s) Memory (GB) Decisions Propagations

ALL
Deagle 562 2714 50.18 40.6M 30.9G

Deagle− 562 3532 52.01 96.6M 31.8G

Classical
Deagle 461 835 45.53 33.5M 1.83G

Deagle− 461 1033 47.10 87.3M 2.89G

Latest
Deagle 101 1879 4.65 7.07M 29.0G

Deagle− 101 2499 4.91 9.32M 28.9G

• Latest cases (271): cases added in SV-COMP 2021 and SV-COMP 2022, including goblint-

regression (103) andweaver (168). These tasks contain large loops or complex library functions,

which are not suitable for most concurrent verification tools to solve.

Many cases in the benchmark set contain loops. All tools involved in our experiments employ

loop unwinding to transform the original program into a loop-free program. For a program with

loops whose iteration numbers can be predetermined by static analysis, its unwinding limit is set to

this predetermined number; otherwise, this limit is set to a constant number. In either case, all tools

use the same unwinding limit for the same benchmark. The constant number for the unwinding

limit is set to 2 in our experiments. The reported result false indicates a falsified benchmark, while

the result true only shows the bounded correctness of this benchmark. Among true cases, we report

proved if the program is fully expanded (no execution path exceeds the unwinding limit), and

report borderline otherwise. Proved, falsified, and borderline results are all considered solved in the

following analysis.

The first experiment evaluates the effectiveness of our consistency-preserving propagation. The

second experiment compares Deagle to state-of-the-art tools that also employ partial order-based

modeling and SAT/SMT-based solving, including:

• CBMC: a well-known tool that implemented the approach in [Alglave et al. 2013] by modeling

concurrent programs using partial orders and solving the encoding formula by SAT/SMT

solvers. CBMC is used as the base by Zord and Deagle.

• Zord: a recently proposed approach [He et al. 2021] that implemented a dedicated theory

solver for order constraints of concurrent program verification.

The third experiment compares Deagle to other state-of-the-art tools that achieved outstanding

results in SV-COMP ConcurrencySafety category:

• Lazy-CSeq: a concurrent program verifier based on lazy sequentialization [Inverso et al.

2014], the SV-COMP ConcurrencySafety category winner in 2020 and 2021.

• Yogar-CBMC: a tool based on the abstraction-refinement method [Yin et al. 2018b], the

SV-COMP ConcurrencySafety category winner in 2017, 2018, and 2019. Also, Yogar-CBMC

has been extended to weak memory models TSO and PSO [Yin et al. 2017]. Therefore, we

also make comparisons with Yogar-CBMC under TSO and PSO to evaluate our performance

on these weak memory models.

All experiments are conducted on a computer with an Intel(R) Core(TM) i5-10400 CPU and

16GB memory. The operating system is Archlinux-5.11.8. Following the experimental settings of

SV-COMP, each verification task’s time limit is set to 900 s and memory limit is set to 15GB.
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Fig. 7. Comparing Deagle with Deagle− on classical cases

6.2 Evaluation of Consistency-Preserving Propagation

Deagle implements the enhanced solving procedure with the consistency-preserving propagation.

Denote Deagle− as the configuration that implements only the basic solving procedure (Section 4).

We compare Deagle to Deagle− to evaluate the effectiveness and efficiency of the consistency-

preserving propagation.

Given that the front-ends (for generating SMT encoding formulas) of Deagle and Deagle−

are the same, this experiment compares the CPU time and peak memory of their back-ends (for

solving the SMT formulas) only. Experimental results are summarized in Table 1, where results

on classical cases and latest cases are also separately listed. Among all 763 benchmarks, both

strategies solve the same 562 cases, including 461 classical cases (out of 492) and 101 latest cases

(out of 271). Compared to Deagle− , Deagle achieves 1.30x speedup with the similar peak memory

usage. Note that latest cases are mostly unsolvable, and even those solvable by coincidence are not

representative w.r.t. their scales. Therefore, the following detailed evaluations between Deagle

and Deagle− are performed on classical cases.

We evaluate the performance of Deagle andDeagle− on each case to confirmwhether consistency-

preserving propagation is efficient on the majority of the benchmarks. The speedup ratio Deagle

achieves over Deagle− on each case is summarized in Figure 7a, whose 𝑋 -𝑎𝑥𝑖𝑠 shows the runtime

of Deagle− and 𝑌 -𝑎𝑥𝑖𝑠 shows the speedup ratio (runtime of Deagle−/ runtime of Deagle). Points

above the horizontal line𝑦 = 1 represent cases on which consistency-preserving propagation shows

efficiency. Since the runtimes of small cases are too unstable to exactly record, we only consider
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Table 2. Overall results with state-of-the-art tools under SC

Tool Solved (classical + latest)

Both-solved

Num.
CPU Time (s) Memory (GB)

(-/Deagle/Deagle−) (-/Deagle/Deagle−)

Deagle 562 (461 + 101) - - -

Deagle− 562 (461 + 101) - - -

CBMC 528 (437 + 91) 525 6681/799/987 48.68/35.35/36.58

Zord 527 (435 + 92) 525 3568/844/1063 44.96/36.18/37.70

Lazy-CSeq 520 (424 + 96) 487 13701/535/ - 63.20/21.84/-

Yogar-CBMC 550 (450 + 100) 550 3723/2532/ - 45.88/44.83/-

the speedup ratio of larger cases. Deagle runs faster on 65.5% of all large (>100ms) cases, and the

average speedup ratio (over all large cases) is 1.58x. Based on the above results, we conclude that

consistency-preserving propagation speeds up the SMT solving procedure in most benchmarks.

An obvious advantage of consistency-preserving propagation is that more intermediate results

are derived by applying preventive reasoning (Section 5.1); in contrast, obtaining these results in

the basic solver usually costs many decisions and backtracks. As Section 5.5 shows, the example

program can be solved without any decision using consistency-preserving propagation. We discuss

if consistency-preserving propagation’s effect on reducing decisions and shortening the solving

procedure is universal. The rightmost columns Decisions and Propagations in Table 1 sum up the

numbers of decisions and propagations made by each tool. Figure 7b and Figure 7c detail the

number of decisions and propagations these tools make on each classical case. Totally, consistency-

preserving propagation reduces decisions by 61.6% and reduces propagations by 36.7%. In summary,

consistency-preserving propagation successes in reducing decisions and shortening the solving

procedure as is expected.

Note that the amount of speedup on classical cases (1.24x) does not precisely match the amounts

of decision reduction (61.6%) and propagation reduction(36.7%). We want to discuss the overhead

of our method. The maximal number of preventive clauses that Deagle needs to maintain is O(𝑛3),

where 𝑛 is the number of events. But in actual, Deagle adds a preventive clause ¬(𝑤 ≺rf 𝑟 )∨¬grd𝑤′

only when a𝑤 ≺ 𝑤 ′ ≺ 𝑟 chain is constructed. Therefore, the number and size of preventive clauses

are reduced. The experimental results indicate that employing consistency-preserving propagation

is worthwhile in most cases.

6.3 Comparison with Partial-Order-Based Tools

The second experiment compares Deagle and Deagle− with other partial-order-based concurrent

program verifiers, namely CBMC and Zord. CBMC is an early and well-known bounded model

checker which verifies concurrent programs using the partial-order-based approach introduced in

[Alglave et al. 2012]. CBMC serves as a framework for partial-order-based approaches, based on

which some later tools, including Zord and Deagle, are developed.

The main technical differences between these tools are listed below:

• Based on CBMC, Zord proposes axiomatic FR derivation, so that Zord avoids exhaustive FR

encoding compared to CBMC.

• Compared to Zord, Deagle− proposes axiomatic WS derivation and implements the theory

solver into MiniSAT instead of Z3.

• Compared to Deagle− , Deagle proposes consistency-preserving propagation.
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Fig. 8. Comparing Deagle (Deagle−) with individual tools

Results. Experimental results are summarized in Table 2. Column Solved shows the number of

cases each tool successfully verifies within the time limit (we also respectively count classical and

latest cases); column Num shows the number of both-solved cases in comparison with Deagle

(the same as Deagle−); columns Time and Memory sum up the CPU time and memory usage

of the selected tool/Deagle/Deagle− on both-solved cases. Different from the first experiment

(Section 6.2), the following experiments (Section 6.3 and Section 6.4) compare the end-to-end

performance of tools (since these tools employ different front-ends), so the reported time and

memory usages in Table 2 include those spent by both back-ends and front-ends.
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As Table 2 shows, Deagle (also Deagle−) solves 34 more cases than CBMC and 35 more cases

than Zord. Considering both-solved cases, Deagle runs 8.36x faster and consumes 27.4% less

memory than CBMC, and 4.23x faster and 19.5% less memory than Zord. Deagle− also runs

6.77x faster and consumes 24.9% less memory than CBMC, and 3.36x faster and consumes 16.1%

less memory than Zord. In conclusion, both our proposed theory axioms and the consistency-

preserving propagation enable us to solve more cases and significantly accelerate the solving

efficiency compared to the previous partial-order-based approaches.

After each assignment of ordering variables, Deagle’s consistency-preserving propagation

applies axiomatic deduction to derive more orders and performs preventive reasoning to enforce

values of other ordering variables. Those deductions and enforcements help the constraint solver

reduce redundant search space and improve the time efficiency.

Figure 8a and Figure 8b compare Deagle (blue points) and Deagle− (orange dots) with CBMC

and Zord, respectively, on the CPU time of each both-solved case. Note that the speedup ratios for

some cases are so large (up to 100) that we cannot use the same diagram as Figure 7a. However,

if we still calculate the speedup ratio of each case to follow the style of Figure 7a (𝑋 -axis as the

baseline’s time and 𝑌 -axis as the speedup ratio), some ratios are too large (up to 100x) to show in

the figure. In these figures, the 𝑋 and 𝑌 axes show the runtime of baseline and Deagle/Deagle− ,

respectively. Points below (or above) the diagonal represent cases where Deagle/Deagle− is

superior (or inferior) to the compared tool. There are clusters of points at the bottom left in both

figures, which are trivial cases and can be quickly solved by both tools. Therefore, they distribute

irregularly around the diagonal. As verification tasks go complex, most cases are below the diagonal,

indicating that our tactic is superior to the baselines.

Deagle is inferior to the baselines in several complex cases (CPU time > 1s). Both baseline tools

learn conflict clauses from ordering inconsistency and use the learned conflict clauses to prohibit

the same inconsistency from occurring again. After each backtrack (or restart), a portion of the

preventive clauses (corresponding to the backtracked decisions) are abandoned in Deagle, while

the learned conflict clauses can all be kept in CBMC and Zord. These conflict clauses are still useful

in SAT solving of the core solver. Therefore, on benchmarks where backtracks/restarts are frequent,

Deagle is at a disadvantage.

Note that both Figure 8a and Figure 8b use a log scale for their 𝑥- and 𝑦-axes. The data points of

Deagle and Deagle− look very similar in these two figures. However, as reported in Section 6.2,

Deagle is 1.30x faster than Deagle− . Even though, the speedup of Deagle over Deagle− is not

as significant as that of Deagle− over Zord. There are two reasons for this. Firstly, Zord is built

on Z3, while Deagle− (and also Deagle) are built on MiniSAT. This engine change contributes

partially to the final performance improvement. Secondly, preventive reasoning suggests a new

framework of theory solving. This new framework is very different from the classical ones in that

the consistency checking and conflict clause generation can be safely omitted. Therefore, Deagle

and Deagle− employ actually two different theory solving frameworks when implemented. Our

implementation of Deagle is still experimental, and optimizations can be conducted to further

improve its efficiency. For example, we may borrow optimizations in SAT solvers (including better-

designed data structures for dynamically maintaining clauses, the two watched literals technique,

etc.) to facilitate preventive reasoning in the future.

6.4 Comparison with Other Verifiers

The third experiment compares Deagle with Lazy-CSeq and Yogar-CBMC, the champion tools

in the SV-COMP ConcurrencySafety category from 2017 to 2021. Experimental results are also

summarized in Table 2; detailed comparisons on each case are depicted in Figure 8c, Figure 8d,

Figure 8e, and Figure 8f.
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Comparison with Lazy-CSeq. Table 2 summarizes that Deagle solves 42 more cases than Lazy-

CSeq. Considering both-solved cases, Deagle runs 25.61x faster and consumes 65.4% less memory

than Lazy-CSeq. Figure 8c demonstrates that Deagle outperforms Lazy-CSeq in all but 1 complex

case.

Lazy-CSeq uses a different idea from the partial-order-based approaches. It transforms a concur-

rent program into a single-threaded one, which executes events from all threads in a round-robin

scheme. The transformed program can be solved by any single-threaded verification tool (e.g.,

CBMC). However, the size of the transformed program is usually very large. Compared to Lazy-

CSeq, our tool sees the essence of concurrent behaviors, i.e., their happens-before orderings, and

yields better performance.

Compared to other tools that only set an unwinding limit as the parameter, Lazy-CSeq also

sets a round-robin limit (the maximal number of thread switches). This parameter greatly affects

Lazy-CSeq’s performance: a larger round-robin limit yields a larger transformed program; however,

a smaller round-robin limit risks missing counterexamples. In this experiment, we follow the default

strategy of Lazy-CSeq in SV-COMP: Lazy-CSeq attempts three settings of the round-robin limit: 2, 4,

and 20. For each case, Lazy-CSeq tries these settings from small to large, until a counterexample is

generated. If all settings cannot find a counterexample, Lazy-CSeq proves the bounded correctness

of the program within 20 thread switches.

The bounded switching strategy is a limitation of Lazy-CSeq, but it can give Lazy-CSeq a

superior status on rare occasions. There are two cases on which Lazy-CSeq outperforms Deagle.

Both of them are trivial in the round-robin scheme: their property can be violated within one or two

thread switches. Therefore, Lazy-CSeq can find a counterexample with the smallest setting of the

round-robin limit. Deagle is more complete than Lazy-CSeq, in that we need not limit the number

of thread switches.

Comparison with Yogar-CBMC under SC. As Table 2 summarizes, Deagle solves 12 more

cases than Yogar-CBMC. Considering both-solved cases, Deagle runs 1.47x faster and consumes

2.3% less memory than Yogar-CBMC. According to Figure 8d, Deagle outperforms Yogar-CBMC

in all but 3 complex cases.

Though also derived from CBMC, Yogar-CBMC features a CEGAR (counterexample-guided

abstract refinement) method, which applies a lazy scheme to invoke the ordering theory. It does

not check ordering consistency until a complete model is generated. When a self-loop is detected,

it learns conflict clauses and completely restarts the solving procedure. In this method, a self-loop,

which could have been detected or avoided, is postponed until the model becomes complete. In

contrast, our Deagle is constantly adjusting the decision space to avoid self-loops.

Comparison with Yogar-CBMC under Weak Memory Models. Since Yogar-CBMC has also

been adapted to TSO and PSO, we evaluate Deagle against Yogar-CBMC under these memory

models. Experimental results are summarized in Table 3 and detailed CPU time comparisons on

each case are depicted in Figure 8e (TSO) and Figure 8f (PSO), respectively.

Table 3 summarizes that Deagle solves 18 more cases than Yogar-CBMC under both TSO

and PSO. Considering both-solved cases, Deagle runs 1.85x and 1.82x faster under TSO and PSO,

respectively, while memory usage remains almost the same. In conclusion, compared to Yogar-

CBMC, under memory model TSO and PSO, we achieve an even better efficiency improvement

than the improvement under SC (1.47x).

Note that both Deagle and Yogar-CBMC spend less time under TSO/PSO than SC. Especially,

Deagle solves 6 more cases (568 under TSO/PSO; 562 under SC). This is because weak memory

models allow more executions of programs, making some cases sat though originally unsat under
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Table 3. Results compared with Yogar-CBMC under weak memory models

Model Tool
Yogar-CBMC/Deagle

Solved (classical + latest) Both-Solved CPU Time (s) Memory (GB)

TSO
Deagle 568 (462 + 106) - - -

Yogar-CBMC 550 (449 + 101) 550 1319/714 44.01/43.08

PSO
Deagle 568 (462 + 106) - - -

Yogar-CBMC 550 (449 + 101) 550 1310/720 44.01/43.09

SC. On these cases, verification tools (under SC) need to prove that no models are satisfiable by

pruning all possibilities; but (under weak memory models) find a satisfiable model halfway.

6.5 Threats to Validity

The main threats to validity are whether our implementation and evaluation are credible.

Firstly, Deagle is built on top of CBMC and MiniSAT. At the front-end, our implementation

is simpler than CBMC since both write-serialization and from-read orders are omitted; moreover,

our implementation is straightforward and well inherited. At the back-end, we implement the

consistency-preserving theory solver as a plug-in for MiniSAT. Our implementation is loosely-

coupled with MiniSAT. Additionally, the above two aspects also show that the performance

improvements are mainly due to our approach.

Secondly, all benchmarks are collected from the ConcurrencySafety category of SV-COMP 2022.

These benchmarks are representative, comprehensive, credible, and have been widely accepted

by the program verification community. Additionally, most of these benchmarks contain loops.

Bounded model checking [Clarke et al. 2001] is a popular technique for handling programs with

loops – by unwinding loops to a predefined limit, the program can be transformed into a loop-free

version. The competitor tools in our experiments are all based on bounded model checking, but

they possess different strategies for determining the unwinding limit. With different unwinding

limits, the transformed loop-free programs are different. For a fair comparison, we design a unified

unwinding strategy to ensure that all tools run on the same loop-free programs. According to the

detailed experimental results and analysis, we are confident about the effectiveness of Deagle.

7 RELATED WORK

Concurrent program verification is complicated due to nondeterminism caused by thread inter-

leaving. There are many studies on improving the ability and efficiency of concurrent program

verification, including bounded model checking [Alglave et al. 2013, 2012; Cordeiro and Fischer

2011; Kroening and Tautschnig 2014; Ponce-de León et al. 2020], abstraction refinement [Günther

et al. 2016; Gupta et al. 2015; Jhala et al. 2018; Yin et al. 2020], stateless model checking [Abdulla et al.

2019, 2017; Godefroid 1997; Godefroid et al. 1996; Kokologiannakis et al. 2017; Kokologiannakis

and Vafeiadis 2021; Oberhauser et al. 2021], sequentialization [Inverso et al. 2014; Tomasco et al.

2016], etc.

The popular partial-order-based framework [Alglave et al. 2013, 2012] encodes the happens-

before relation over memory access events using integer-valued clocks, and order constraints over

events are represented as differences among clock variables. then encodes these order constraints

into a formula and employs a constraint solver to check their total ordering. Fan et al. [Fan et al.

2022] proposes an idea to utilize the domain knowledge of multi-threaded program in constraint

solving. They assign ordring variables higher priority during SMT solving and achieve higher

efficiency.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 158. Publication date: October 2022.



Consistency-Preserving Propagation for SMT Solving of Concurrent Program Verification 158:25

However, encoding the deductions of all possible order constraints into the formula is expensive

and unnecessary since lots of order constraints cannot exist simultaneously; only a small portion

of deductions take effect while the solver always considers all. Our symbolic encoding is simpler.

We only encode program-related orders and read-from order constraints into the verification

condition formula. As a complement, we propose several axiomatic rules to deduce necessary order

constraints during constraint solving.

Moreover, the happens-before relation is partially ordered, but representing it with a less-than

relation on integer-valued clocks unnecessarily lifts it to the total order. To avoid this verbosity,

many previous works [He et al. 2021; Yin et al. 2018b,a; Yin et al. 2020] reduce consistency checking

of a concurrent program’s execution to cycle detection on an event order graph (EOG). He et al. [He

et al. 2021] propose a new ordering SMT theory and develop a dedicated theory solver (Zord based

on Z3 [de Moura and Bjørner 2008]) for consistency checking with incremental cycle detection.

They also employ from-read propagation and unit-edge propagation to achieve higher efficiency.

Compared to those studies, we also maintain a graph (event graph) but employ preventive reasoning

to prevent cycles from occurring in the graph. In this way, we bypass consistency checking and

achieve higher efficiency.

Yin et al. [Yin et al. 2018b,a; Yin et al. 2020] propose SCAR (scheduling constraints-based abstraction

refinement), an efficient SAT-based framework for verifying concurrent programs. They completely

ignore the happens-before relation initially. Instead, in each iteration, after the SAT solver returns

a counterexample, SCAR builds EOG from the counterexample, finds cycles in the EOG (if a cycle

is found, this counterexample is impossible in practice), and adds conflict clauses to enhance the

formula. They maintain the transitive closure of edges to accelerate cycle detection. A partial

assignment that causes ordering inconsistency may occur during SAT solving. However, only after

the SAT solver completes the assignment can SCAR discover the inconsistency. Moreover, the SAT

solver runs from scratch in each refinement round, so assignments unrelated to the consistency

may be performed repeatedly. In comparison, the online strategy our method employs avoids these

drawbacks. Once a variable related to happens-before orders is assigned true, the consistency-

preserving propagation conducts exhaustive axiomatic deduction and preventive reasoning to

update the event graph while preserving consistency.

Loops (and recursive functions) are the main hurdle for program verification. Bounded model

checking (BMC) sets an upper execution bound for loops and unwinds the input program to a

loop-free bounded program. Using BMC, a verification tool can only find counterexamples within

the upper bound or confirm that correctness properties hold within the upper bound. Though

incomplete, BMC is practical in finding bugs within certain iterations of loops, therefore adopted

by most verification tools. CBMC and tools derived from it (Zord, Deagle, Yogar-CBMC) all

employ BMC when input programs contain loops or recursions. Based on the BMC and the round-

robin schedule mechanic, which simulates the thread interleaving process, Inverso et al. [Inverso

et al. 2014] propose lazy sequentialization to transform a multi-threaded program into a set of

single-threaded programs with the same correctness property. Their method is implemented in

Lazy-CSeq [Inverso et al. 2015], the ConcurrencySafety category winner of SV-COMP 2020 and

SV-COMP 2021. Unlike Lazy-CSeq, we focus on a lightweight and essential perspective to model

concurrent programs, i.e., the happens-before relation. We model the interleaving semantic into

order constraints onmemory access events and develop a dedicated solver with preventive reasoning

mechanics to solve these constraints. We also perform extensive experiments with Lazy-CSeq.

Stateless model checking (SMC) [Godefroid 1997] verifies each possible execution trace of a concur-

rent program iteratively. Since thread interleaving results in numerous traces, SMC utilizes partial

order reduction (POR) techniques [Abdulla et al. 2014; Huang 2015] to classify traces into equivalent

classes and visit each equivalent class once. Many kinds of equivalent classes have been developed,
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including Mazurkiewicz equivalence [Mazurkiewicz 1986], observation equivalence [Chalupa et al.

2017], reads-value-from equivalence [Agarwal et al. 2021], etc. Since partial order reduction is also

dynamically conducted on the event graph, combining preventive reasoning with partial order

reduction could provide further pruning the search space and achieving higher efficiency.

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a theory solver that preserves ordering consistency for partial-order-based

concurrent program verification. The underlying idea is preventive reasoning, which detects and

disables fragile assignments in advance to prevent them from causing ordering inconsistency. We

prove that the theory propagation procedure with preventive reasoning can preserve ordering

consistency of the theory solver. This means the regularly-required consistency checking and

conflict clause generation can be safely skipped. We implement this approach in a prototype tool

called Deagle and compare it with several state-of-the-art concurrent program verifiers on credible

benchmarks. The experimental results indicate that Deagle is effective and efficient in most cases.

Event graph records the set of happens-before orders with respect to the current assignment

mapping. It conveys important information about the ordering variables. So far, we only utilize

this information in our theory solver. Actually, the conveyed information may also be utilized by

the core solver. We are planning to optimize the core solver by utilizing this information.

ACKNOWLEDGMENTS

This work was supported in part by the National Key Research and Development Program of China

(No. 2018YFB1308601) and the National Natural Science Foundation of China (No. 62072267 and

No. 62021002).

REFERENCES

Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. 2014. Optimal Dynamic Partial Order Reduction.

SIGPLAN Not. 49, 1 (Jan 2014), 373–384. https://doi.org/10.1145/2578855.2535845

Parosh Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Phong Ngo, and Konstantinos Sagonas. 2019. Optimal

statelessmodel checking for reads-from equivalence under sequential consistency. Proceedings of the ACM on Programming

Languages 3 (10 2019), 1–29. https://doi.org/10.1145/3360576

Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.

2017. Stateless Model Checking for TSO and PSO. Acta Inf. 54, 8 (Dec 2017), 789–818. https://doi.org/10.1007/s00236-

016-0275-0

Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlogiannis, and Viktor Toman. 2021. Stateless

Model Checking Under a Reads-Value-From Equivalence. In Computer Aided Verification: 33rd International Conference,

CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I. Springer-Verlag, Berlin, Heidelberg, 341–366. https:

//doi.org/10.1007/978-3-030-81685-8_16

Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2014. Don’t Sit on the Fence. In Computer Aided Verification,

Armin Biere and Roderick Bloem (Eds.). Springer International Publishing, Cham, 508–524. https://doi.org/10.1007/978-

3-319-08867-9_33

Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial Orders for Efficient Bounded Model Checking Of

Concurrent Software. In Proceedings of the 25th International Conference on Computer Aided Verification - Volume 8044

(Saint Petersburg, Russia) (CAV 2013). Springer-Verlag, Berlin, Heidelberg, 141–157. https://doi.org/10.1007/978-3-642-

39799-8_9

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. Fences in Weak Memory Models (Extended Version).

Form. Methods Syst. Des. 40, 2 (Apr 2012), 170–205. https://doi.org/10.1007/s10703-011-0135-z

Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories. Springer International Publishing, Cham, 305–343.

https://doi.org/10.1007/978-3-319-10575-8_11

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2017. Data-Centric Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec 2017), 30 pages. https://doi.org/10.1145/

3158119

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 158. Publication date: October 2022.



Consistency-Preserving Propagation for SMT Solving of Concurrent Program Verification 158:27

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded Model Checking Using Satisfiability Solving.

Form. Methods Syst. Des. 19, 1 (July 2001), 7–34. https://doi.org/10.1023/A:1011276507260

Lucas Cordeiro and Bernd Fischer. 2011. Verifying Multi-Threaded Software Using Smt-Based Context-Bounded Model

Checking. In Proceedings of the 33rd International Conference on Software Engineering (Waikiki, Honolulu, HI, USA) (ICSE

’11). Association for Computing Machinery, New York, NY, USA, 331–340. https://doi.org/10.1145/1985793.1985839

Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: an efficient SMT solver. Tools and Algorithms for the Construction and

Analysis of Systems 4963, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo Theories: Introduction and Applications. Commun.

ACM 54, 9 (Sept. 2011), 69–77. https://doi.org/10.1145/1995376.1995394

Hongyu Fan, Weiting Liu, and Fei He. 2022. Interference Relation-Guided SMT Solving for Multi-Threaded Program

Verification. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(Seoul, Republic of Korea) (PPoPP ’22). Association for Computing Machinery, New York, NY, USA, 163–176. https:

//doi.org/10.1145/3503221.3508424

Patrice Godefroid. 1997. Model Checking for Programming Languages Using VeriSoft. In Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Paris, France) (POPL ’97). Association for Com-

puting Machinery, New York, NY, USA, 174–186. https://doi.org/10.1145/263699.263717

Patrice Godefroid, Jan van Leeuwen, Juris Hartmanis, Gerhard Goos, and Pierre Wolper. 1996. Partial-order methods for the

verification of concurrent systems: an approach to the state-explosion problem. Vol. 1032. Citeseer.

Henning Günther, Alfons Laarman, and Georg Weissenbacher. 2016. Vienna Verification Tool: IC3 for Parallel Software. In

Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems -

Volume 9636. Springer-Verlag, Berlin, Heidelberg, 954–957. https://doi.org/10.1007/978-3-662-49674-9_69

Ashutosh Gupta, Thomas A. Henzinger, Arjun Radhakrishna, Roopsha Samanta, and Thorsten Tarrach. 2015. Succinct

Representation of Concurrent Trace Sets. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David

Walker (Eds.). ACM, 433–444. https://doi.org/10.1145/2676726.2677008

Fei He, Zhihang Sun, and Hongyu Fan. 2021. Satisfiability modulo Ordering Consistency Theory for Multi-Threaded

Program Verification. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language

Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York, NY, USA,

1264–1279. https://doi.org/10.1145/3453483.3454108

Jeff Huang. 2015. Stateless Model Checking Concurrent Programs with Maximal Causality Reduction. SIGPLAN Not. 50, 6

(Jun 2015), 165–174. https://doi.org/10.1145/2813885.2737975

Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato. 2015. Lazy-CSeq: A Context-Bounded

Model Checking Tool for Multi-Threaded C-Programs. In Proceedings of the 30th IEEE/ACM International Conference on

Automated Software Engineering (Lincoln, Nebraska) (ASE ’15). IEEE Press, 807–812. https://doi.org/10.1109/ASE.2015.108

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato. 2014. Bounded Model

Checking of Multi-Threaded C Programs via Lazy Sequentialization. In Proceedings of the 16th International Conference

on Computer Aided Verification - Volume 8559. Springer-Verlag, Berlin, Heidelberg, 585–602. https://doi.org/10.1007/978-

3-319-08867-9_39

Ranjit Jhala, Andreas Podelski, and Andrey Rybalchenko. 2018. Predicate Abstraction for Program Verification. Springer

International Publishing, Cham, 447–491. https://doi.org/10.1007/978-3-319-10575-8_15

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. Effective Stateless Model Checking

for C/C++ Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec 2017), 32 pages. https://doi.org/10.1145/

3158105

Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker for Weak Memory Models. 427–440.

https://doi.org/10.1007/978-3-030-81685-8_20

Daniel Kroening and Michael Tautschnig. 2014. CBMC–C bounded model checker. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 389–391. https://doi.org/10.1007/978-3-642-54862-8_26

Leslie Lamport. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE

transactions on computers 28, 09 (1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Antoni Mazurkiewicz. 1986. Trace theory. In Advanced course on Petri nets. Springer, 278–324. https://doi.org/10.1007/3-

540-17906-2_30

Jonas Oberhauser, Rafael Chehab, Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat, Yuzhong

Wen, Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: push-button verification and optimization for synchro-

nization primitives on weak memory models. 530–545. https://doi.org/10.1145/3445814.3446748

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better X86 Memory Model: X86-TSO. In Proceedings of the 22nd

International Conference on Theorem Proving in Higher Order Logics (Munich, Germany) (TPHOLs ’09). Springer-Verlag,

Berlin, Heidelberg, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 158. Publication date: October 2022.



158:28 Zhihang Sun, Hongyu Fan, and Fei He

Hernán Ponce-de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. 2020. Dartagnan: Bounded Model Checking

for Weak Memory Models (Competition Contribution). In Tools and Algorithms for the Construction and Analysis of

Systems: 26th International Conference, TACAS 2020, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, Part II (Dublin, Ireland). Springer-Verlag, Berlin,

Heidelberg, 378–382. https://doi.org/10.1007/978-3-030-45237-7_24

Nishant Sinha and Chao Wang. 2011. On Interference Abstractions. In Proceedings of the 38th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11). Association for Computing

Machinery, New York, NY, USA, 423–434. https://doi.org/10.1145/1926385.1926433

Ermenegildo Tomasco, Truc L Nguyen, Omar Inverso, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato. 2016. Lazy

sequentialization for TSO and PSO via shared memory abstractions. In 2016 Formal Methods in Computer-Aided Design

(FMCAD). IEEE, 193–200. https://doi.org/10.1109/FMCAD.2016.7886679

Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. 2009. Symbolic Predictive Analysis for Concurrent Programs,

Vol. 5850. 256–272. https://doi.org/10.1007/978-3-642-05089-3_17

D. Weaver and Tom Gremond. 1994. The SPARC architecture manual : version 9. Prentice-Hall.

Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. 2018b. YOGAR-CBMC: CBMC with Scheduling Constraint

Based Abstraction Refinement. In Tools and Algorithms for the Construction and Analysis of Systems, Dirk Beyer and

Marieke Huisman (Eds.). Springer International Publishing, Cham, 422–426. https://doi.org/10.1007/978-3-319-89963-

3_25

Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2017. Scheduling Constraint Based Abstraction Refinement for Multi-

Threaded Program Verification. IEEE Transactions on Software Engineering PP (08 2017). https://doi.org/10.1109/TSE.

2018.2864122

Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2018a. Scheduling Constraint Based Abstraction Refinement for Weak

Memory Models. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering

(Montpellier, France) (ASE 2018). Association for Computing Machinery, New York, NY, USA, 645–655. https://doi.org/

10.1145/3238147.3238223

L. Yin, W. Dong, W. Liu, and J. Wang. 2020. On Scheduling Constraint Abstraction for Multi-Threaded Program Verification.

IEEE Transactions on Software Engineering 46, 5 (may 2020), 549–565. https://doi.org/10.1109/TSE.2018.2864122

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 158. Publication date: October 2022.


