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In this paper, we present structural abstraction refinement, a novel framework for verifying the threshold

problem of probabilistic programs. Our approach represents the structure of a Probabilistic Control-Flow

Automaton (PCFA) as a Markov Decision Process (MDP) by abstracting away statement semantics. The maxi-
mum reachability of the MDP naturally provides a proper upper bound of the violation probability, termed the

structural upper bound. This introduces a fresh “structural” characterization of the relationship between PCFA

and MDP, contrasting with the traditional “semantical” view, where the MDP reflects semantics. The method

uniquely features a clean separation of concerns between probability and computational semantics that the

abstraction focuses solely on probabilistic computation and the refinement handles only the semantics aspect,

where the latter allows non-random program verification techniques to be employed without modification.

Building upon this feature, we propose a general counterexample-guided abstraction refinement (CEGAR)

framework, capable of leveraging established non-probabilistic techniques for probabilistic verification. We

explore its instantiations using trace abstraction. Our method was evaluated on a diverse set of examples

against state-of-the-art tools, and the experimental results highlight its versatility and ability to handle more

flexible structures swiftly.
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1 Introduction
Since the early days of computer science, formalisms for reasoning about probability have been

widely studied. As an extension to classical imperative programs, probabilistic programs enable
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efficient solutions to many algorithmic problems [42, 44, 48]. It has also led to new models which

play key roles in cryptography [21], linguistics [36], and especially machine learning where generic

models [9, 22, 53] are expressed by them.

In this paper, we revisit the probabilistic threshold problem. Specifically, given a probabilistic

program 𝑃 , a pre-condition 𝜑𝑒 , and a post-condition 𝜑 𝑓 , the violation probability is defined as the

probability that an input satisfying 𝜑𝑒 leads to a final result violating 𝜑 𝑓 after the execution of 𝑃 .

This probability, represented as P
[
⊬ {𝜑𝑒 } 𝑃

{
𝜑 𝑓

}]
in the form of a Hoare triple [34, 47], raises the

question of whether it is bounded by a given threshold. Such a problem is commonly encountered

in practical scenarios. For example, the accuracy of differential privacy mechanisms [18] can be

analysed as threshold problems where we bound the probability that the randomly-perturbed

output deviates largely from the actual value. The target of approximate computing [52, 57] can

be described as the assertion violation that the faulty hardware runs into erroneous status, and

the tail bounds of randomized algorithms [54] can be described as the assertion violation that the

runtime exceeds a given threshold. In fact, the threshold problem has been extensively researched,

with numerous approaches proposed to address the issue. These include predicate abstraction [33],

fixed-point computation [5, 54], and concentration inequalities [10], etc.

We tackle the problem by proposing a novel abstraction refinement [14, 28] framework tailored

specifically for probabilistic programs, named structural abstraction refinement. A distinctive feature

of our approach is the separation of concerns between probability and semantics, thus enabling

the direct application of existing non-probabilistic program analysis and verification techniques to

probabilistic programs.

As an overview, our method exploits a distinctive yet intuitive connection between the Probabilis-
tic Control-Flow Automaton (PCFA) and theMarkov Decision Process (MDP). The formalisms of MDP

and Markov Chain (MC) are widely adopted mathematical tools in the analysis of probabilistic pro-

grams, and their relationship with program verification has also been extensively researched [1, 33].

However, in existing literature, the relation between the automaton and MDP is typically semantical,
where the latter functions as the semantic representation of the PCFA by (potentially infinitely)

unrolling the concrete state space of the automaton [25, 33, 35, 39]. In contrast, our work seeks to

establish a connection between these two formalisms in a syntactical, or rather a structural, manner.

Unlike the semantical connection, the main insight of our work is that the structure of a PCFA 𝐴

can be viewed as an MDP by abstracting away the computational semantics of statements in the

automaton. Following this abstraction, one obtains precisely the structure of an MDP, where the

program statements serve as the action labels. This underlying MDP of the PCFA 𝐴 provides an

appropriate abstraction of the program in the sense that the violation probability is bounded by the

maximum reachability probability of the MDP from its initial to ending location, which is termed

the structural upper bound of 𝐴. In summary, we have:

Structural Upper Bound := Maximum MDP Probability ≥ Violation Probability (1)

This intuition is visualised in Section 2 and formalised in Section 4.1.

As the structural abstraction disregards semantics, enabling us to focus solely on the probabilistic

aspect, the refinement process focuses solely on the semantic aspect, independent of probabilities.

Specifically, we establish Theorem 4.7, a key theoretical result allowing refinement by constructing

a refinement automaton 𝑉 that over-approximates the violating traces of the original PCFA 𝐴. Here,

a trace refers to a sequence of statements accepted by an automaton, indicating that the construction

focuses on execution sequences, as in the non-probabilistic case, without handling probabilities. A

rough visualisation of this procedure is provided in Section 2 with principles detailed in Section 4.3.

These theoretical foundations thus offer a clean separation between probabilities and semantics.

Aligning with this feature, we employ a modular way of introducing the automation algorithms.
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Firstly, building upon this feature, we propose a generalised probabilistic counterexample-guided
abstraction refinement (CEGAR) framework. This framework is uniquely capable of directly au-

tomating various non-random analysis and verification methodologies for probabilistic program

verification. Second, we instantiate the framework with trace abstraction [28, 49]. Thanks to the

clean separation between probabilities and semantics — with the probabilistic aspect handled en-

tirely by our framework — the non-probabilistic refinement technique can be applied directly to the

semantic component exactly as in the deterministic case, without requiring any modifications. This
serves as an example of how non-random refinement techniques can be utilised to verify probabilis-

tic threshold problems, empowered by our framework. Further, beyond such a direct instantiation,

we observed that the integration could be further optimised, allowing it to retain the refutational
completeness characteristic of the original trace abstraction technique, which is a property rarely

seen in probabilistic verification beyond the finite-state (incl. bounded) techniques [30, 35, 37].

Finally, we implemented our framework and conducted a comparative evaluation with state-of-

the-art verification tools on a diverse and arguably fair set of benchmark examples collected from a

wide range of literature. Our method shows evident advantages in better handling a broader range

of examples as compared to the existing tools, including those with a large or even unbounded

state space and more tricky control-flow structures. It successfully handles over 2× more examples

than the state-of-the-art tools for the benchmarks, and demonstrates better efficiency in more than

73% of the examples.

Contributions. In summary, our contributions are as follows:

(1) We introduced structural abstraction and its refinement principle for probabilistic program

verification, leveraging a novel structural link between PCFA andMDP. This method distinctly

separates probability from semantics.

(2) To automate the theories developed in (1), we developed a generalised CEGAR framework

that can integrate directly with non-random techniques. We instantiated this framework

with trace abstraction and optimise it to retain refutational completeness.

(3) We implemented the optimised algorithm in (2) and benchmarked it against state-of-the-

art tools across a diverse set of examples from the literature, demonstrating the method’s

versatility. The experimental result strongly backs our claim on the strength of our method.

Outline. The remainder of this paper is organised as follows. We begin with a motivating example

to illustrate our approach in more detail in Section 2. We then formally define the relevant concepts

and the problem we aim to address in Section 3. Next, we explore the theoretical foundations of

our framework in Section 4, establishing the validity of structural abstraction and principles of

refinement (i.e., Theorem 4.7). To automate this theoretical principle, we discuss a general CEGAR

framework utilising structural abstraction and refinement, and the instantiations of the framework

in Section 5. Finally, we present our experimental results in Section 6 and conclude with a discussion

of related work in Section 7.

2 Motivating Example
To better present the key idea of our approach from a high-level perspective, we illustrate it through

a motivating example.

Example 2.1 (Limit). Consider the Hoare-style program [34, 47] shown in Fig. 1, where 𝑋 and 𝐶

are of integer value and the operator ⊕ is a fair binary probabilistic choice.

The program can be interpreted as a coin-flipping game between two players, say, Alice and Bob.

They make an initial toss (line 3); if heads-down, Alice wins immediately. Otherwise, Bob chooses

a number of rounds (variable 𝐶) to continue. Alice then guesses that no heads-up will occur during
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1 {True}
2 𝑋 ::= 0;

3 𝐶 ::= 0 ⊕ skip;

4 while 𝐶 > 0 do
5 𝑋 ::= 𝑋 + 1 ⊕ skip;
6 𝐶 ::= 𝐶 − 1
7 done
8 {𝑋 = 0}

Fig. 1. Program of Example 2.1

𝑋 ::= 0

Pb(0,R)Pb(0,L)

skip𝐶 ::= 0

assume𝐶 > 0

Pb(1,L) Pb(1,R)

𝑋 ::= 𝑋 + 1 skip

𝐶 ::= 𝐶 − 1

assume ¬(𝐶 > 0)

Fig. 2. PCFA 𝑃 of Example 2.1

⟨𝑋 ::= 0⟩
1

⟨0⟩
1/21/2

⟨skip⟩
1

⟨𝐶 ::= 0⟩
1

⟨assume𝐶 > 0⟩
1

⟨1⟩
1/2 1/2

⟨𝑋 ::= 𝑋 + 1⟩
1

⟨skip⟩
1

⟨𝐶 ::= 𝐶 − 1⟩

⟨assume ¬(𝐶 > 0) ⟩

1

1

𝑎dmy

1

Fig. 3. The MDP D (𝑃) Underlying 𝑃

these rounds. The variable 𝑋 (line 5) tracks heads-up events, and Alice wins if the postcondition

𝑋 = 0 is met. Notably, the probability of Bob winning, i.e., violating the postcondition, increases as

𝐶 grows. However, this probability is capped at 0.5 as 𝐶 →∞.
We proceed to demonstrate how our approach can establish the exact bound of 0.5 on the

violation probability. First, the program is transformed into a Probabilistic Control-Flow Automaton

(PCFA), shown in Fig. 2. In this transformation, each binary probabilistic choice is assigned a unique

distribution tag (0 and 1 here). Additionally, each choice is tagged as left (L) or right (R) for clarity.
Thus, probabilistic statements appear in the form Pb(𝑖,𝑑 ) , where 𝑖 is the distribution tag, and 𝑑 is

either L or R. The resulting PCFA 𝑃 will serve as the primary focus of our analysis.

Structural Abstraction. Given the PCFA, one may observe that the formalism’s structure

resembles a Markov decision process (MDP), where Fig. 3 visualised this intuition, in which

distributions are marked by hyper-edges with a central • to indicate branching points. This MDP is

called the underlying MDP of 𝑃 , denoted by D (𝑃). In the MDP, statements are treated purely as

labels without semantic functions, noted in ⟨−⟩. Tags 0 and 1 appear as action names, ⟨0⟩ and ⟨1⟩,
representing fair Bernoulli distributions, while other actions denote Dirac distributions. Finally, to

match the definition of MDP, we add a dummy action 𝑎dmy inducing a self-looping Dirac distribution

at the ending location.

Notably, unlike the usual semantic approach seen in the literature [33, 35], the MDP is not an
unrolling of the state space of the program. In our method, structural abstraction, the semantics of

the statements are completely omitted, so that disjoint assumptions like ⟨assume ¬(𝐶 > 0)⟩ and
⟨assume (𝐶 > 0)⟩ now become simply the usual non-deterministic choices (actions) in the MDP.

With this MDP, the probability of violating the property (i.e., Bob winning) is surely bounded

by the maximum reachability probability from the start to the end location. Namely, the violation

probability P [⊬ {True} 𝑃 {𝑋 = 0}] is bounded by the maximum reachability probability in D (𝑃),
termed the structural upper bound, PU [𝑃].
However, D (𝑃) over-approximates 𝑃 , yielding PU [𝑃] = 1, a trivial upper bound. Thus, this

abstraction necessitates refinement. Examining the trivial bound reveals that both violating and

non-violating traces contribute to this over-estimation. For example, trace 1 shows a safe trace that

is not violating, while trace 2 illustrates an infeasible trace that is impossible to occur in actual

execution. In trace 2, the small ∗ marks the starting location of the loop in Fig. 2.

Structural Refinement. The refinement process reduces the structural probability of the MDP

derived from the PCFA by eliminating non-violating traces. To make this process operational, we

show (in Theorem 4.7) that it suffices to construct a refinement automaton𝑉 that over-approximates

the violating traces of 𝑃 . With this condition, the following equality holds: P
[
⊬ {𝜑𝑒 } 𝑃

{
𝜑 𝑓

}]
=
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𝑋 ::= 0

Pb(0,L)

𝐶 ::= 0

assume ¬(𝐶 > 0)

Trace 1. Safe

∗

∗

𝑋 ::= 0

Pb(0,L)

𝐶 ::= 0

assume𝐶 > 0

Pb(1,R)

skip

𝐶 ::= 𝐶 − 1

assume ¬(𝐶 > 0)

Trace 2. Infeasible

𝑋 ::= 0

Pb(0,R)

skip

assume𝐶 > 0

Pb(1,R) skip

𝐶 ::= 𝐶 − 1

Pb(1,L)𝑋 ::= 𝑋 + 1

𝐶 ::= 𝐶 − 1

assume ¬(𝐶 > 0)
𝐶 ::= 𝐶 − 1

assume𝐶 > 0

Pb(1,R)Pb(1,L)

skip𝑋 ::= 𝑋 + 1

Fig. 4. The Refined PCFA 𝑃 ′

1/2

𝑎dmy

1

⟨𝑋 ::= 0⟩
1

⟨0⟩
1/2

⟨skip⟩
1

⟨assume𝐶 > 0⟩
1

⟨1⟩ 1/2

1/2

⟨skip⟩

1

⟨𝑋 ::= 𝑋 + 1⟩

1

⟨𝐶 ::= 𝐶 − 1⟩

1

⟨𝐶 ::= 𝐶 − 1⟩

1

⟨assume𝐶 > 0⟩
1

⟨assume ¬(𝐶 > 0) ⟩

1

⟨1⟩
1/21/2

⟨skip⟩
1

⟨𝑋 ::= 𝑋 + 1⟩
1

⟨𝐶 ::= 𝐶 − 1⟩

1

𝑎dmy

1

Fig. 5. The Refined MDP 𝑃 ′

P
[
⊬ {𝜑𝑒 } min(𝑃 ∩𝑉 )

{
𝜑 𝑓

}]
, where min and ∩ represent the standard deterministic minimisation

and intersection operations [1] for finite automata. This implies that PU [min(𝑃 ∩𝑉 )] remains an

upper bound for P
[
⊬ {𝜑𝑒 } 𝑃

{
𝜑 𝑓

}]
, referred to as the refined (structural) upper bound.

Notably, constructing 𝑉 depends solely on the computational semantics of statements, without

involving any probabilistic considerations. Specifically, as shown in traces like traces 1 and 2,

the probabilistic statements (Pb(𝑖,𝑑 ) ) do not affect whether a trace is violating. In essence, these

statements act as neutral skip statements in computation. This enables the use of traditional

non-probabilistic program verification and analysis techniques for constructing 𝑉 . We illustrate

this approach through trace abstraction [28, 49], the renowned technique in non-probabilistic

verification, for this example.

Refinement with Trace Abstraction. Using trace abstraction, we first generalise the two iden-

tified non-violating traces into automata 𝑄1 and 𝑄2, shown in Fig. 6 and Fig. 7. The generalisation

intuitively yields automata that encompass non-violating traces for the “same reasons”
1
as the

provided traces. For instance, Figure 6 generalises Trace 1 by including all traces where 𝑋 does not

increase after being assigned to 0, which must be safe as they always satisfy 𝑋 = 0. The complete

rationale for this construction and more details on the techniques of trace abstraction are elaborated

subsequently in Section 5.2. Following the principles of trace abstraction, the refinement automaton

𝑉 is defined as 𝑉 := 𝑄1 ∪𝑄2, where the overline denotes the standard complement operation for

finite automata; since 𝑄1 and 𝑄2 contain only non-violating traces, the complement of their union,

𝑉 , over-approximates the violating traces in 𝑃 .

The refined PCFA 𝑃 ′ is then constructed as: 𝑃 ′ := min(𝑃 ∩𝑉 ), as illustrated in Fig. 4, with its

underlying MDP depicted in Fig. 5. Intuitively, this PCFA includes only traces that could lead to

violation. Specifically, it avoids the Pb(0,L) branch, which resets 𝐶 and prevents loop entry. To

align with the definition of MDP, when reflected in the underlying MDP in Figure 5, this becomes

a transition with probability 1/2 to go to a dummy, self-absorbing MDP node, as to be detailed

in Section 4.1. Further, for a trace to be accepted, the loop must iterate at least once through the

Pb(1,L) branch before termination. The refined upper bound PU [min(𝑃 ∩𝑉 )] is then 0.5, implying

that the probability of Bob winning is also bounded by 0.5, as expected. It is straightforward to

observe that the refinement process, including the generation of 𝑉 and the computation of the

refined PCFA min(𝑃 ∩𝑉 ), does not entail any probabilistic computation. Further, as will be further

1
Usually captured by the technique of “interpolation” [28, 41, 52], to be detailed in Section 5.2.
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True 𝑋 = 0

𝑋 ::= 0

Σ

Σ
Σ \ {𝑋 ::= 𝑋 + 1}

Fig. 6. Generalised Automaton 𝑄1 of trace 1

True False𝐶 ≤ 0

Σ

Σ

{
assume ¬(𝐶 > 0),

𝐶 ::= 0

}

Σ

assume𝐶 > 0

Σ

Σ Σ

Fig. 7. Generalised Automaton 𝑄2 of trace 2

elaborated below, the refinement above amounts to applying well-established non-probabilistic

techniques. This demonstrates the clear separation between probability and semantics in our

approach.

3 Preliminaries
Following functional conventions, we assume the data structure of lists to be linked lists with

constructor “::”. We use the function init to take the whole list except the last element. We denote

the update of a function 𝑓 with a new mapping 𝑋 ↦→ 𝑉 by 𝑓 [𝑋 ↦→ 𝑉 ]. By slightly abusing symbols,

we will use ∈ and ∉ for lists.

Probabilistic Theory. A distribution over a countable set 𝑆 , P ∈ Dist (𝑆), is a function that

assigns to each subset
2
of 𝑆 a number between 0 and 1 such that: P [∅] = 0, P [𝑆] = 1 and for any

countable sequence of pairwise disjoint subsets of 𝑆 , 𝑆1, 𝑆2, . . . , P
[
⊎∞𝑖=1𝑆𝑖

]
=
∑∞

𝑖=1 P [𝑆𝑖 ]. For single
element 𝑠 , if it is clear from the context, we denote P [{𝑠}] by just P [𝑠]. We use Supp(P) to denote

exactly all the non-0 elements of 𝑆 , that: Supp(P) =
{
𝑠 ∈ 𝑆 | P [𝑠] ≠ 0

}
. A sub-distribution P over

set 𝑆 is almost the same as a distribution except that 0 ≤ P [𝑆] ≤ 1.

A Markov chain (MC)M is a pair (𝑄,P), where 𝑄 is a set of nodes
3
, and P : 𝑄 ⇀ Dist (𝑄) is

a partial function that assigns nodes a distribution. A trajectory 𝜁 of an MCM(𝑄,P) is a finite
sequence of nodes 𝑞1, . . . , 𝑞𝑛 , where for each 𝑖 ∈ {1, . . . , 𝑛 − 1}, 𝑞𝑖+1 ∈ Supp(P(𝑞𝑖 )). The set of

trajectories starting from a nodes 𝑞 is denoted by TrajM (𝑞). Then, the reachability probability from

a node 𝑞 to a node 𝑞′ is ReachM (𝑞, 𝑞′) := P
[{
𝜁 ∈ TrajM (𝑞)

�� last(𝜁 ) = 𝑞′, 𝑞′ ∉ init(𝜁 )
}]
, where

last denotes the final element of the sequence and init denotes the sequence with the last element

removed.

A Markov decision process (MDP) D is a tuple (𝑄,Act,P), where 𝑄 is a set of nodes; Act is
a set of actions; P : 𝑄 × Act ⇀ Dist (𝑄) is a partial function that assigns a node-action pair a

distribution on nodes, where for a given node 𝑞, an action 𝑎 is said to be enabled by the node, if

(𝑞, 𝑎) ∈ dom(P). Here dom means the domain of a (partial) function. A (deterministic) policy𝜓 of

an MDP is a tuple (𝑆, 𝛿, 𝑠0), where 𝑆 is a (possibly infinite) set of policy states; 𝛿 : 𝑄 × 𝑆 ⇀ Act × 𝑆
selects an enabled action and returns the next policy state given a policy state and MDP node;

𝑠0 is the initial policy state. The policy set of an MDP D is denoted by S(D). A policy with

|𝑆 | = 1 is a simple policy. Applying a policy 𝜓 (𝑆, 𝛿, 𝑠0) to an MDP D(𝑄,Act,P), denoted by D𝜓
,

produces an MC, (𝑄 × 𝑆,P𝜓 ), where 𝛿 (𝑞, 𝑠) = (𝑎, 𝑠′) implies P𝜓 (𝑞, 𝑠) (𝑞′, 𝑠′) = P(𝑞, 𝑎) (𝑞′), with
P𝜓 (𝑞, 𝑠) (𝑞′, 𝑠′′) = 0 for 𝑠′′ ≠ 𝑠′. The maximum reachability probability from 𝑞 to 𝑞′ in D is:

MaxReachD (𝑞, 𝑞′) := sup𝜓 ∈S(D) ReachD𝜓 (𝑞, 𝑞′).
Statements and PCFA. Throughout this paper, we fix a finite set of variablesV and define E
and B as the sets of arithmetic and Boolean expressions overV , respectively. We denote variables

by upper case letters 𝑋,𝑌, . . . . For simplicity, we assume each variable in V takes values in N,
the natural numbers. A valuation 𝑣 is a functionV → N ⊎ {⊥}, where ⊥ intuitively represents a

2
A simplified version of 𝜎-algebra from [40].

3
We use the name MDP nodes to distinguish from program states below.
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“non-sense” value; the set of all valuations is denoted V. We write J𝐸K𝑣 and J𝐵K𝑣 for the evaluation
of expressions 𝐸 and 𝐵 under valuation 𝑣 , yielding values other than ⊥. A predicate 𝜑 is simply a

Boolean expression, and we use Φ to denote the set of all predicates. We write 𝑣 |= 𝜑 to represent

J𝜑K𝑣 = True. Notably, J𝜑K⊥ = False for any predicate 𝜑 . The satisfiability and unsatisfiability of

predicates follow standard definitions. The program 𝑃 studied in our paper is essentially standard,

which is recursively given by the following production rules:

𝑃 := 𝑋 ::= 𝐸 | 𝑃1 ⊕ 𝑃2 | 𝑃1 ⊛ 𝑃2 | skip | 𝑃1; 𝑃2 | if 𝐵 then 𝑃1 else 𝑃2 | while 𝐵 do 𝑃 ′ done

Here, 𝐸 ∈ E and 𝐵 ∈ B, the operator ⊕ denotes the fair binary probabilistic choice
4
and ⊛

represents the non-deterministic choice. As in the rest of this work, programs are represented as

probabilistic control-flow automata (PCFA) in the standard way [54, 55], for which, the details are

presented in the extended version
5
.

We then delve into the introduction of PCFA and its related concepts. A statement (to appear in

a PCFA) 𝜎 overV is given by:

𝜎 := skip | 𝑋 ::= 𝐸 | assume 𝐵 | Pb(𝑖,L) | Pb(𝑖,R) | ∗𝑖
where, again, 𝐸 ∈ E and 𝐵 ∈ B range over arithmetic and Boolean expressions respectively; the

statements Pb(𝑖,L) and Pb(𝑖,R) are the (fair) probabilistic statements, and ∗𝑖 is the non-deterministic

statement, where 𝑖 ranges over identifiers 6
, which is called a distribution tag when appearing in

a probabilistic statement and non-deterministic tag when in a non-deterministic statement. The

set of all statements is denoted ST. The evaluation of a statement 𝜎 over a valuation 𝑣 , denoted

by J𝜎K𝑣 , is defined in the standard way, that Jassume 𝐵K𝑣 := ⊥ if J𝐵K𝑣 = False, J𝜎K⊥ := ⊥, and
J𝑋 ::= 𝐸K𝑣 := 𝑣 [𝑋 ↦→ J𝐸K𝑣], with all other cases having J𝜎K𝑣 := 𝑣 .

Definition 3.1 (Probabilistic Control-Flow Automaton). A probabilistic control-flow automaton

(PCFA) 𝐴 is a tuple (𝐿, Σ,Δ, ℓ0, ℓ𝑒 ), where 𝐿 is a finite set of locations; Σ ⊆ ST is a finite set of
statements; Δ : 𝐿 × Σ ⇀ 𝐿 is a partial transition function, and we write ℓ

𝜎−→ ℓ ′ to denote that

(ℓ, 𝜎) ∈ dom(Δ) and Δ(ℓ, 𝜎) = ℓ ′; ℓ0 ∈ 𝐿 is the initial; and, ℓ𝑒 ∈ 𝐿 is the ending location. Specifically,

no transition starts from the ending location ℓ𝑒 , that is: ∀𝜎.(ℓ𝑒 , 𝜎) ∉ dom(Δ).

Notably, from an automata-theoretic perspective, PCFA is inherently restricted: it is essentially a

Deterministic Finite Automaton (DFA) [1] with a single ending location, which has no out-transitions.
These restrictions are removed later in the concept of general PCFA in Section 4.3.

A program state 𝐶 of a PCFA 𝐴 is a pair (ℓ, 𝑣), where ℓ is a location of 𝐴 and 𝑣 is a valuation.

A transition ℓ
𝜎−→ ℓ ′ is said to be enabled by program state (ℓ, 𝑣) if either: 𝜎 = assume 𝐵 is an

assumption statement with J𝐵K𝑣 = True, or 𝜎 is another type of statement. A program state

(ℓ ′, 𝑣 ′) is the successor program state of 𝐶 = (ℓ, 𝑣) under transition 𝑟 := ℓ
𝜎−→ ℓ ′ if: 𝑟 is an enabled

transition by 𝐶 , and either 𝑣 ′ = 𝑣 [𝑋 ↦→ J𝐸K𝑣] for an assignment 𝜎 = 𝑋 ::= 𝐸; or 𝑣 ′ = 𝑣 otherwise.

A computation 𝜋 is a finite sequence of program states with transitions: (ℓ0, 𝑣0)
𝜎1−→ (ℓ1, 𝑣1) · · ·

𝜎𝑛−−→
(ℓ𝑛, 𝑣𝑛), where: ℓ0 is the initial location of 𝐴; each ℓ𝑖 for 𝑖 ∈ {0, . . . , 𝑛} is a location of 𝐴; and, for

each (ℓ𝑖 , 𝑣𝑖 )
𝜎𝑖+1−−−→ (ℓ𝑖+1, 𝑣𝑖+1), the program state (ℓ𝑖+1, 𝑣𝑖+1) is a successor of (ℓ𝑖 , 𝑣𝑖 ) under transition

ℓ𝑖
𝜎𝑖+1−−−→ ℓ𝑖+1. A computation with the final program state at location ℓ𝑒 is termed a terminating

computation. The weight of a computation 𝜋 is given by𝑤𝑡 (𝜋) = (1/2)𝑛 , where 𝑛 is the count of

probabilistic transitions in 𝜋 . Given a finite-length computation 𝜋 starting from the initial location,

4
For simplicity, we introduce only the fair binary choice, but it can be easily generalised to work with any number. And fair

binary choice itself does not hinder theoretical generality [51].

5
See https://arxiv.org/abs/2508.12344 for the extended version of this paper.

6
The identifiers can be any set of symbols, e.g., natural numbers in the motivating example.
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𝑋 ::= 0

Pb(0,R)

Pb(0,L)

skip

𝐶 ::= 0

assume ¬(𝐶 > 0)

Fig. 8. Example of a Run in Example 2.1

a trace 𝜏 induced by it, denoted ind(𝜋), refers to the sequence of labels involved. It is termed

accepting if 𝜋 ends in ℓ𝑒 (i.e., is terminating). Additionally, we require traces to be non-empty. The

set of accepting traces of a PCFA 𝐴 is denoted L(𝐴). Notably, a trace 𝜏 uniquely determines a

computation and the definition of the weight of 𝜏 , follows naturally.
Multiple non-probabilistic transitions may be enabled by a given program state simultaneously,

introducing non-determinism. To address this, we define an automaton scheduler. An automaton

scheduler 𝜉 for a PCFA 𝐴 is a function that assigns each non-terminating computation 𝜋 of 𝐴 a

unique (sub-)probabilistic distribution over the transitions enabled by the final program state of

𝜋 . Specifically, 𝜉 (𝜋) is: (a) a Dirac distribution on a transition with a non-probabilistic statement;

(b) a fair Bernoulli distribution over two probabilistic transitions, Pb(𝑖,L) and Pb(𝑖,R) , sharing a

distribution tag 𝑖; or, (c) a sub-distribution on a single probabilistic transition, Pb(𝑖,L) or Pb(𝑖,R) ,
tagged by 𝑖 , with probability 1/2. The set of schedulers for 𝐴 is denoted by Ξ𝐴. A computation

𝜋 := 𝐶0

𝜎1−→ 𝐶1 · · ·
𝜎𝑛−−→ 𝐶𝑛 is guided by an automaton scheduler 𝜉 if, for every prefix 𝐶0

𝜎1−→ · · · 𝜎𝑖−→
(ℓ𝑖 , 𝑣𝑖 )

𝜎𝑖+1−−−→ (ℓ𝑖+1, 𝑣𝑖+1) of 𝜋 , the transition ℓ𝑖
𝜎𝑖+1−−−→ ℓ𝑖+1 belongs to Supp(𝜉 (𝐶0

𝜎1−→ · · · 𝜎𝑖−→ 𝐶𝑖 )).
Given an initial valuation 𝑣init and a scheduler 𝜉 , a PCFA 𝐴 defines a probabilistic distribution

over the final valuation at the ending location. Formally, let the set of terminating computations

starting from (ℓ0, 𝑣init) and being guided by 𝜉 to be Π
𝜉
𝑣init , which is also called a run of 𝐴, the

(sub)distribution
7
over a set of valuations at the ending location is:

P
(𝑣init ,𝜉 )
𝐴

[𝑉 ] :=
∑︁

{
𝜋∈Π𝜉

𝑣init

��� last(𝜋) = (ℓ𝑒 , 𝑣), 𝑣 ∈ 𝑉 }𝑤𝑡 (𝜋)

Intuitively, given a fixed initial value and a scheduler, a run of a PCFA represents the Markov

chain that encompasses all the computations that may be executed due to probabilistic choices.

See, e.g., Figure 8 for an example.

Problem Statement. Hence, quantifying both the initial valuation and the scheduler, violation
probability of a PCFA 𝐴 against a pre-condition 𝜑𝑒 and a post-condition 𝜑 𝑓 is:

P
[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
:= sup

𝑣init |=𝜑𝑒

sup

𝜉∈Ξ𝐴

P
(𝑣init ,𝜉 )
𝐴

[{
𝑣 ∈ V | 𝑣 |= ¬𝜑 𝑓

}]
(2)

The pair of pre- and post-conditions (𝜑𝑒 , 𝜑 𝑓 ) is called the specification or property of the program.

Further, given a threshold 𝛽 , the verification problem is then to answerwhether P
[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
≤

𝛽 . In the rest of the paper, we fix a PCFA 𝐴 and a specification (𝜑𝑒 , 𝜑 𝑓 ).

4 Structural Abstraction and Refinement
In this section, we present the theoretical foundations of our method, namely, structural abstraction

and its refinement. These established principles form the theoretical basis for the algorithms to

be introduced in the subsequent section. In Section 4.1, we present a formal treatment of PCFA

as an MDP, which lays down a solid foundation for the central concept of this paper: structural
abstraction, introduced in Section 4.2. We complement the abstraction with its corresponding

refinement principle in Section 5.

7
Depending on whether the program is almost surely terminating (AST).
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4.1 PCFA as MDP
This part delves into the key insights of our method – “structurally viewing PCFA as MDP”.

Formalising this insight necessitates a new definition of the violation probability. As a result,

an equality between it and the standard definition will be established in Theorem 4.2. As briefly

overviewed in Figure 2 and Figure 3, a PCFA𝐴 can be viewed as anMDP. This is achieved bymapping

automata locations to MDP nodes, statements (or distribution tags) to actions, and transitions to

probabilistic distributions. Notably, our method differs significantly from the semantical approaches
established in the literature [14, 33]. In our approach, the nodes in the MDP correspond to locations,
rather than to program states of the original PCFA. More specifically:

Definition 4.1 (Underlying MDP). For PCFA 𝐴(𝐿, Σ,Δ, ℓ0, ℓ𝑒 ), its underlying MDP D (𝐴) is (𝐿 ∪
{𝑞dmy},Act(𝐴),P) where:
• Nodes: 𝐴’s locations plus dummy state 𝑞dmy
• Actions Act(𝐴) contains: (1) ⟨𝜎⟩ for non-probabilistic 𝜎 ∈ Σ; (2) ⟨𝑖⟩ for each Pb(𝑖,𝑑 ) ∈ Σ; and,
(3) 𝑎dmy the dummy action for 𝑞dmy and the ending location ℓ𝑒 .

• MDP Transitions P:
(1) Every transition ℓ

𝜎−→ ℓ ′ ∈ Δ with non-probabilistic 𝜎 triggers a Dirac distribution on ℓ ′,
namely, P(ℓ, ⟨𝜎⟩)(ℓ ′) = 1.

(2) For probabilistic transitions ℓ
Pb(𝑖,𝑑 )−−−−−→ ℓ1, 𝑃 := P(ℓ, ⟨𝑖⟩) depends on whether the complemen-

tary transition ℓ
Pb(𝑖,𝑑 )−−−−−→ ℓ2 exists (where L = R and R = L): (1) if it exists, 𝑃 is a fair Bernoulli

distribution on ℓ1 and ℓ2 if ℓ1 ≠ ℓ2; (2) if it exists with ℓ1 = ℓ2 then 𝑃 (ℓ1) = 1 is Dirac again;

and, (3) if it does not exist, 𝑃 is a fair Bernoulli distribution on ℓ1 and 𝑞dmy .

(3) To match the definition of MDP, 𝑞dmy and the ending location ℓ𝑒 have a unique dummy

action 𝑎dmy , which yield Dirac self-loop for both of them.

Similar to MDP and Markov Chains (MC), a PCFA𝐴 where each location has at most one enabled

action is effectively an MC. Thus, we define policies for PCFA, also denoted𝜓 , analogous to MDP [1],

as a triple (𝑆, 𝛿, 𝑠0), where 𝑆 is a set of policy nodes; 𝛿 : 𝐿 × 𝑆 ⇀ Act(𝐴) × 𝑆 selects an action from

the current node and PCFA location; 𝑠0 is the initial policy node.

Inheriting from MDP, a policy with only one node, |𝑆 | = 1, is called a simple policy. The set of
PCFA policies is denoted by S(𝐴). Clearly, each policy𝜓 ∈ S(𝐴) corresponds uniquely to a policy

in S(D (𝐴)). Applying a policy𝜓 = (𝑆, 𝛿, 𝑠0) to a PCFA 𝐴 = (𝐿, Σ,Δ, ℓ0, ℓ𝑒 ) induces another PCFA,
denoted𝐴𝜓 = (𝐿𝜓 , Σ,Δ𝜓 , (ℓ0, 𝑠0), ℓ𝑒 ), where: the new location set 𝐿𝜓 := ((𝐿\{ℓ𝑒 })×𝑆)⊎{ℓ𝑒 } isolates
the ending location ℓ𝑒 , making other locations the product with 𝑆 ; the new transition function

Δ𝜓
selects transitions per the policy, so (ℓ, 𝑠) 𝜎−→ (ℓ ′, 𝑠′) in Δ𝜓

iff: there exists ℓ
𝜎−→ ℓ ′ in Δ, and

either (1) 𝜎 is not probabilistic and 𝛿 (ℓ, 𝑠) = (𝜎, 𝑠′), or (2) 𝜎 is probabilistic with distribution tag 𝑖 ,

and 𝛿 (ℓ, 𝑠) = (𝑖, 𝑠′); also, (ℓ, 𝑠) 𝜎−→ ℓ𝑒 exists in Δ𝜓
iff the above holds for some 𝑠′. This application

induces a PCFA interpretable as an MC.

Each run Π of a PCFA corresponds to a specific policy. Intuitively, policy states correspond to

program states, and actions to the scheduler’s resolution of non-determinism. Applying a policy

produces a PCFAwhere the set of accepting tracesmatches the run’s induced traces

{
ind(𝜋)

��𝜋 ∈ Π}.
Conversely, not every policy represents a PCFA run. Some policies produce “non-sense” traces

not induced by computations. For instance, in trace 2, assigning 𝐶 = 0 followed by assume 𝐶 > 0

creates a contradiction. Such traces are infeasible; others are feasible.
We define the evaluation of a trace, J𝜏K, as chaining its elements’ computations: J[𝜎]K(𝑣) := J𝜎K𝑣

for a singleton trace, and J𝜎 :: 𝜏K(𝑣) := J𝜏K(J𝜎K𝑣). Given an initial valuation 𝑣init and a post-condition
𝜑 𝑓 , a trace 𝜏 is a violating trace if J𝜏K(𝑣init) |= ¬𝜑 𝑓 ; otherwise, it is non-violating. These concepts
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generalise to a pre-condition 𝜑𝑒 by existential quantification: ∃𝑣init |= 𝜑𝑒 .J𝜏K(𝑣init) |= ¬𝜑 𝑓 . The path
condition of a trace 𝜏 , denoted PathCond(𝜏), is the weakest predicate indicating 𝜑𝑒 and satisfying

∀𝑣 |= PathCond(𝜏).J𝜏K(𝑣) |= ¬𝜑 𝑓 . For a trace set Θ, PathCond(Θ) :=
∧

𝜏∈Θ PathCond(𝜏).
Thus, we observe: the probability of a PCFA 𝐴 violating the pre- and post-condition 𝜑𝑒 and 𝜑 𝑓 is

derived by traversing all possible policies and, for each, accumulating all violating traces, formally

expressed as:

PD
[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
:= sup

𝑣 |=𝜑𝑒

sup

𝜓 ∈S(𝐴)

∑︁
𝜏∈L(𝐴𝜓 )

wt (𝜏) · 1[J𝜏K(𝑣) |=¬𝜑𝑓 ] (3)

where 1[−] is the indicator function that returns 1 if the given value equals to True and 0 otherwise.
We call the formula 1[J𝜏K(𝑣) |=¬𝜑𝑓 ] the semantic check of trace 𝜏 . Comparing this definition with the

standard definition in Equation (2), although both policies and schedulers resolve non-determinism,

schedulers account for the concrete valuation, whereas policies can be arbitrary and do not consider

semantics. This definition hence intuitively “delays” the step-wise valuation transition within a

computation to the final semantic check, allowing the selection of the next transition to be arbitrary.
More specifically, in the standard definition, for any computation (ℓ0, 𝑣0)

𝜎1−→ · · · 𝜎𝑛−−→ (ℓ𝑛, 𝑣𝑛), one
must ensure the transition between each 𝑣𝑖 and 𝑣𝑖+1 is valid. The new definition, however, delays

all step-wise obligations to an overall semantic check, i.e., 1[J𝜎1 ...𝜎𝑛K(𝑣0 ) |=¬𝜑𝑓 ] . This new definition

(Equation (3)) thus distinguishes itself by separating semantic checks from probability computation,

enabling a potential division between semantic verification and policy selection.

This approach, however, inevitably introduces nonsensical traces, which lack corresponding

computations and are evaluated to ⊥. Nevertheless, we argue that by considering all possible
policies, the overall probabilities are the same as the standard definition. Formally, we have the

following theorem, with a detailed proof provided in the extended version of this paper.

Theorem 4.2. The two definitions in Equations (2) and (3) are equivalent for any 𝐴, 𝜑𝑒 and 𝜑 𝑓 :

PD
[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
= P

[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
(4)

The theorem then concludes the validity of viewing a PCFA as an MDP, laying down a solid

foundation for the structural abstraction below.

As a brief recapitulation, to introduce our new definition, we defined several key concepts, e.g.,

the policies, especially the simple ones, the evaluation of traces, feasibility and the path conditions.

They all play significant roles in the below introduction as we will focus on the new definition.

4.2 Structural Abstraction
Based on the aforementioned definition, the concept of structural abstraction emerges naturally;

this approach disregards computational semantics and utilises the underlying MDP of the PCFA to

abstract the probabilistic program. Formally, in Eq. (3), the semantic check 1[J𝜏K(𝑣) |=¬𝜑𝑓 ] is ignored,
and is consistently treated as 1. This therefore yields an upper bound of the violation probability:

Definition 4.3 (Structural Upper Bound). The structural upper bound of a PCFA 𝐴 with initial and

ending locations ℓ0 and ℓ𝑒 is given by:

PU [𝐴] := MaxReachD(𝐴) (ℓ0, ℓ𝑒 ) = sup

𝜓 ∈S(𝐴)

∑︁
𝜏∈L(𝐴𝜓 )

wt (𝜏) (5)

By definition and Equation (4), we instantly have:

P
[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
= PD

[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
≤ PU [𝐴] (6)
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Thus, while calculating the exact value in (3) is challenging, the structural upper bound can

be efficiently computed with standard algorithms [1] commonly used to determine maximum

reachability probabilities in MDP.

Besides the principles of abstraction above, we also developed the following result for the new

definition as the principle behind refinement, which essentially exclude non-violating traces while

retaining the violating ones. A proof is provided using the new definition in the extended paper.

Lemma 4.4. For two PCFA 𝐴1 and 𝐴2, when they have the same set of violating traces against the
given pre- and post-conditions 𝜑𝑒 and 𝜑 𝑓 , then, we have:

P
[
⊬ {𝜑𝑒 } 𝐴1

{
𝜑 𝑓

}]
= PD

[
⊬ {𝜑𝑒 } 𝐴1

{
𝜑 𝑓

}]
= PD

[
⊬ {𝜑𝑒 } 𝐴2

{
𝜑 𝑓

}]
= P

[
⊬ {𝜑𝑒 } 𝐴2

{
𝜑 𝑓

}]
Notably, the lemma only requires the two PCFA to have the same set of violating traces, and has

no requirement on the non-violating traces: 𝐴1 and 𝐴2 are even allowed to have different sets of

statements Σ.
As the refinement procedure involves removal of the non-violating traces from 𝐴, which essen-

tially yields another PCFA 𝐴′, the result essentially enables the cross-structural comparison of the

violating probability between different PCFA.

4.3 The Refinement of Structural Abstraction

General PCFA. Prior to exploring the details of refinement, let us first introduce the concept

of general PCFA. As discussed in Section 3, the notion of PCFA is essentially restricted. We then

introduce the concept of a general PCFA by easing these restrictions, so that in such a notion: (1)

the transition function Δ is now a transition relation Δ : 𝐿 × Σ × 𝐿, hence ℓ 𝜎−→ ℓ ′ then denotes

(ℓ, 𝜎, ℓ ′) ∈ Δ; (2) the ending location is not unique, and now there is a set 𝐿𝑒 ⊆ 𝐿 called the ending

location set; (3) transitions are allowed to start from an ending location. The terminologies for

general PCFA are inherited directly from PCFA. This definition essentially renders general PCFA

simply any Non-deterministic Finite Automata (NFA) without restriction.

Example 4.5 (General PCFA). The generalised automata in Figs. 6 and 7 for traces 1 and 2 are

general PCFA but NOT PCFA, as they are non-deterministic, also, there are transitions starting

from the ending location. □

Building on Lemma 4.4, consider a PCFA 𝐴 and a general PCFA 𝑉 that over-approximates the

violating traces of 𝐴 against the given pre- and post-conditions 𝜑𝑒 and 𝜑 𝑓 . One might naturally

attempt to derive a refined bound as PU [𝐴 ∩𝑉 ] by directly applying Lemma 4.4. However, a

technical obstacle arises: to apply Lemma 4.4, both automata 𝐴1 and 𝐴2 must be PCFA conforming

to Definition 3.1. Recall that a PCFA imposes three structural constraints: (a) determinism, (b) a

unique ending location, and (c) no out-transitions from the ending location. Since 𝑉 is a general

PCFA, the intersection 𝐴 ∩𝑉 may violate these constraints and thus fail to be a PCFA.

To resolve this issue, we apply the deterministic minimisation operation min(−) to 𝐴 ∩𝑉 , which

restores the PCFA structure. The following lemma formalises this transformation:

Lemma 4.6. For any PCFA 𝐴 and general PCFA 𝑉 , min(𝐴 ∩𝑉 ) is a PCFA.

Proof. To show this, observe the following straightforward properties
8
: (1) all PCFA (hence

𝐴) satisfy the property that: (**) every accepting trace of the automaton is not a prefix of another
accepting trace; (2) any deterministically minimal automaton satisfies Property (b) and (c) (i.e., a

single ending location without out-edge) iff it satisfies (**); (3) as L(𝐴 ∩𝑉 ) is a subset of L(𝐴),
𝐴∩𝑉 also satisfies (**). So that, by (2), we can conclude thatmin(𝐴∩𝑉 ) is a PCFA, as deterministic

8
Detailed proof is provided in the extended version of this paper.
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minimisation already guarantees determinism (i.e., Property (a)). Notably, pure determinisation is

not sufficient here, as it cannot guarantee (b) uniqueness of the ending location. □

By the rationale above, we can now apply Lemma 4.4 to conclude the following theorem:

Theorem 4.7. Consider a PCFA 𝐴 and a (general) PCFA 𝑉 that over-approximates the violation
traces of 𝐴 against the given pre- and post-conditions 𝜑𝑒 and 𝜑 𝑓 . Let the deterministic automata
minimisation operation be denoted by min(−). The following equality holds:

P
[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
= P

[
⊬ {𝜑𝑒 } min(𝐴 ∩𝑉 )

{
𝜑 𝑓

}]
Proof. Let𝐴1 = 𝐴 and𝐴2 = min(𝐴∩𝑉 ). By Lemma 4.6,𝐴2 is a PCFA. Since𝑉 over-approximates

the violating traces of 𝐴, 𝐴1 and 𝐴2 have the same set of violating traces. The equality follows

from Lemma 4.4. □

With the theorem established, refining structural abstraction fundamentally thus entails identi-

fying an appropriate general PCFA, termed the refinement automaton 𝑉 . The new structural upper

bound PU [min(𝐴 ∩𝑉 )] serves as a refined structural upper bound for the violating probability

P
[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
.

Separating Probability from Semantics. Notably, Theorem 4.7 facilitates a clear separation

between probability and semantics. Since the construction of 𝑉 must exclusively include violating

traces, and given the definition of the evaluation of probabilistic statements as

q
Pb(𝑖,𝑑 )

y
𝑣
= 𝑣 —

identical to skip and ∗𝑖 statements — probabilistic statements do not influence whether a trace is

violating. This implies that non-random techniques are directly applicable in constructing 𝑉 . This

principle will be fully leveraged and demonstrated in the subsequent section.

5 Automating Refinement of Structural Abstraction
This section introduces algorithms for automatically verifying the thresholds problem, building on

the introduced structural abstraction (Equation (6)), and the principles of the refinement (Theo-

rem 4.7). In the following, we first propose a general CEGAR framework capable of integrating

non-random techniques, as detailed in Section 5.1, exploiting the separation of probability and

semantics afforded by these foundations. Within the general framework, we present concrete instan-

tiations through trace abstraction in Sections 5.2 and 5.3. The former provides a direct instantiation,

while the latter introduces a further optimisation to achieve refutational completeness. We argue

that this demonstration offers a modular and well-structured description, where our framework

handles the probabilistic aspects of verification, while leaving the semantic aspects to be addressed

by established non-random techniques.

5.1 A General CEGAR Framework
This part presents a general CEGAR-based automatic verification framework for probabilistic

programs, compatible with non-probabilistic verification and analysis techniques. We begin by

introducing the concept of counterexamples, followed by a formal presentation of the key frame-

work. This then leads to two subtle technical challenges: first, verifying whether a counterexample

has indeed been identified, and second, resolving the incompatibility of path conditions between

violating traces. The two points arise to complement the overall framework and present unique

challenges as compared to the non-random verification.

Counterexamples. Following common CEGAR principles [14, 28, 33], our procedure either

verifies the threshold or identifies a counterexample (CE) disproving it. Drawing inspiration from [25,

33], a counterexample in this framework is a finite set of compatible violating traces, certifying the

existence of a run exceeding the violation probability threshold. Formally, a set of violating traces
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𝑋 ::= 0; Pb(0,R) ; skip; assume𝐶 > 0
Pb(1,L)

Pb(1,R)

𝑋 ::= 𝑋 + 1;𝐶 ::= 𝐶 − 1; assume𝐶 > 0

skip;𝐶 ::= 𝐶 − 1; assume𝐶 > 0

Pb(1,R)

Pb(1,L)

Pb(1,L)
skip

𝑋 ::= 𝑋 + 1

𝐶 ::= 𝐶 − 1; assume𝐶 ≤ 0

Fig. 9. Example of A Counterexample of Example 2.1 when 𝛽 = 0.3

Fig. 10. General CEGAR Framework

Θ is compatible if: (1) the path condition of Θ is satisfiable; and (2) any two distinct traces 𝜏1 and 𝜏2
share a prefix (possibly 𝜀) after which they diverge with probabilistic statements Pb(𝑖,L) and Pb(𝑖,R)
sharing the same distribution tag 𝑖 . The latter ensures that the traces form a PCFA that is effectively

an MC, and hence the overall set Θ forms a subset of violating computations of a potential violating

run. Finally, a lemma affirms the validity of these counterexamples
9
.

Lemma 5.1. Consider a PCFA 𝐴 with pre- and post-conditions 𝜑𝑒 and 𝜑 𝑓 , and a threshold 𝛽 ∈ [0, 1].
The violation probability P

[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
exceeds 𝛽 , iff there is a violating run of 𝐴, iff there is a

finite set of compatible and violating traces of 𝐴.

Example 5.2 (Counterexample). Referring to Example 2.1, consider the threshold 𝛽 = 0.3 (instead

of 0.5 in Section 2). A counterexample with three traces is shown in Fig. 9. Some trivial locations are

abbreviated using semicolons “;” for brevity. All three traces are violating with a total probability

of 0.375 when the initial valuation is 𝐶 = 2, indicating that the violating probability of Example 2.1

exceeds the threshold 𝛽 = 0.3. Notably, this set is compatible as they have a path condition 𝐶 = 2.

Framework Overview. With the concept of counterexample established, we are ready to present

our framework, as shown in Fig. 10. Initially, the process is provided with a PCFA 𝐴 and an

initial refinement automaton 𝑉 , which over-approximates the violating traces of 𝐴. Then, the

process computes the refined structural bound based on the current 𝑉 . Should the bound be

≤ 𝛽 , the process deems it safe, for which the soundness is indicated by Eq. (6). Otherwise, in

accordance with well-established conclusions for MDP [1], there must be a simple policy𝜓 such

that

∑
𝜏∈L(min(𝐴∩𝑉 )𝜓 ) wt (𝜏) = PU [min(𝐴 ∩𝑉 )] > 𝛽 . We call such a policy 𝜓 a reason policy

(that induces the bound). Referring to the previous discussion on counterexamples, the traces of

min(𝐴 ∩𝑉 )𝜓 that are accepted already meet the second condition. Hence, we call the automaton

and the accepting traces ofmin(𝐴 ∩𝑉 )𝜓 a candidate counterexample. With such a reason policy, the

process proceeds to ascertain whether there indeed exists a counterexample within min(𝐴 ∩𝑉 )𝜓 –

that a finite set of traces satisfying the first condition of counterexamples. Should such a set exist,

by Lemma 5.1, it is justifiable to report a violation with the discovered counterexample. Otherwise,

this intuitively suggests that the current 𝑉 remains too coarse and necessitates refinement of 𝑉

with the knowledge that the current candidate counterexample, i.e., min(𝐴 ∩𝑉 )𝜓 , is spurious.
9
More details are in the extended version of this paper.
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Example 5.3 (Reason Policy and Candidate Counterexample). Casting our minds back to Exam-

ple 2.1, suppose the initial refinement automaton 𝑉 is the trivial automaton that permits all traces.

As a consequence, the initial PCFA min(𝑃 ∩𝑉 ) retains its original structure 𝑃 (Fig. 2).

Within this figure, the majority of the locations are elementary in that they permit at most one

action, with the exception of the loop’s starting location, which possesses two actions. In this

scenario, the sole reason policy𝜓 is determined by opting for the action ⟨assume ¬(𝐶 > 0)⟩ at this
particular location and defaulting to the only action available for the remainder of the locations.

By applying this reason policy𝜓 to 𝑃 , the resulting PCFA 𝑃𝜓 (the candidate counterexample) is

exactly the structure portrayed in Fig. 8. □

Verify Candidate Counterexample by Enumeration. To verify the candidate counterexample,

inspired by [25, 33], we enumerate traces from L(min(𝐴 ∩𝑉 )𝜓 ) to find a finite subset of violating

traces with satisfiable path conditions. During the process, we maintain and enlarge a set Θ of

violating traces in an on-the-fly manner.

The enumeration proceeds in two phases:

• Explicit enumeration:We iteratively enumerate traces from the (potentially infinite) candidate

counterexample min(𝐴 ∩𝑉 )𝜓 in descending order wrt. the weights of the traces. For each

trace, we verify its violation status using SMT solvers [13, 15]; only violating traces are

retained in the accumulating set Θ.
• Symbolic subset search: For the current finite set Θ of enumerated violating traces, we search

for the maximum-weight compatible subset. This constitutes a combinatorial optimisation

problem: given Θ’s weighted path conditions, find the subset with satisfiable conjunction

and maximum total weight. Formally, we are to solve the following formula (let I[𝑃] denotes
the Iverson bracket that if 𝑃 is true, it returns 1, otherwise 0):

MaxArgΘ′⊆Θ (I[PathCond(Θ′) is satisfiable] · wt (Θ′))
This problem can be solved using the MAX-SMT approach [7].

The enumeration terminates when either: (1) The maximum compatible subset weight exceeds

threshold 𝛽 , yielding a valid counterexample; or (2) The sum of the current maximum and remaining

unenumerated weights cannot exceed 𝛽 , confirming spuriousness.

Example 5.4 (Trace Enumeration). Continuing the story in Example 5.3, let us assume again 𝛽 = 0.3.

By employing the enumeration algorithm as delineated in [25] to the candidate counterexample

depicted in Fig. 8, both traces have an equal weight of 0.5, and thus, either could be enumerated

first. When both traces are enumerated, since both of them are safe, the process terminates upon

enumerating the two traces, as the residual probability becomes 0 ≤ 𝛽 = 0.3, confirming the

spuriousness of the counterexample. □

Before introducing the customisable refinement procedure, there is one more subtlety to address:

the instant divergence that may occur from incompatible path conditions of violating traces. We

address this by pre-condition splitting.
Splitting the Pre-conditions. Notice that the existence of violating yet incompatible traces

potentially leads to instant divergence of the CEGAR process. Consider the following example:

Example 5.5 (Divergence from Incompatibility). Consider the following Hoare style program

whose PCFA is depicted in Fig. 11, let the threshold 𝛽 be 0.75.

{True} (if 𝑋 > 0 then 𝑌 ::= 0 else 𝑌 ::= 1) ⊕ (if 𝑋 > 0 then 𝑌 ::= 1 else 𝑌 ::= 0) {𝑌 = 0}
In this example, consider the candidate counterexample comprising the two blue traces with total

weights 1. After enumeration, both traces are found violating but incompatible. However, standard
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Pb(0,L)

Pb(0,R)

assume 𝑋 > 0

assume ¬(𝑋 > 0)

assume 𝑋 > 0

assume ¬(𝑋 > 0)

𝑌 ::= 0

𝑌 ::= 0

𝑌 ::= 1

𝑌 ::= 1

Fig. 11. PCFA of Example 5.5

assume 𝑋 > 0

assume ¬(𝑋 > 0)

Pb(0,L)

Pb(0,R)

assume 𝑋 > 0

assume ¬(𝑋 > 0)

assume 𝑋 > 0

assume ¬(𝑋 > 0)

𝑌 ::= 0

𝑌 ::= 0

𝑌 ::= 1

𝑌 ::= 1

Fig. 12. PCFA of Example 5.5 with Split Conditions

assume 𝑋 > 0

assume ¬(𝑋 > 0)
Pb(0,L)

Pb(0,R)

assume ¬(𝑋 > 0)

assume 𝑋 > 0

𝑌 ::= 1

𝑌 ::= 1

Fig. 13. Refined PCFA of Example 5.5 with Split Conditions

refinement cannot distinguish them: since 𝑉 must contain all violating traces, no refinement

automaton can separate these two traces. Hence, the CEGAR process diverges by repeatedly

picking the blue candidate counterexample as it has structural upper bound 1 > 0.75 = 𝛽 . This

issue also occurs when distinguishing traces with different values of 𝐶 in Example 2.1. □

To resolve the kind of divergence as illustrated in the previous example, we propose “pre-condition

splitting” to ensure traces with incompatible path conditions cannot appear in the same candidate

counterexample again. Specifically, consider the previous example, we append the conflicting path

conditions assume 𝑋 > 0 and assume ¬(𝑋 > 0) before the traces in Figure 11, yielding Figure 12.

Consequently, both the red and orange traces now contain contradictory assumption conditions

assume 𝑋 > 0 and assume ¬(𝑋 > 0), rendering them infeasible rather than violating. We call the

above prepended conditions split conditions. These infeasible traces are subsequently eliminated

during refinement, eventually producing the refined PCFA as shown in Figure 13. The resulting

PCFA contains only two traces under different reason policies, yielding an exact structural upper

bound of 0.5 ≤ 0.75 = 𝛽 and confirming safety. We generalise the above idea as follows.

PCFA with Split Conditions. Formally, a set of split conditions {𝜑1

𝑒 , . . . , 𝜑
𝑛
𝑒 } partitions the pre-

condition 𝜑𝑒 such that

∨𝑛
𝑖=1 𝜑

𝑖
𝑒 = 𝜑𝑒 and 𝜑𝑖

𝑒 ∧ 𝜑
𝑗
𝑒 is unsatisfiable for 𝑖 ≠ 𝑗 . A PCFA with split

conditions enforces that edges from the initial location ℓ0 are labeled by assume 𝜑𝑖
𝑒 for all split

conditions 𝜑𝑖
𝑒 and do not return to ℓ0. This structure is used for the refinement automaton 𝑉 in our

framework, with the set of split conditions maintained on-the-fly during CEGAR. Initially, the set

is the singleton {𝜑𝑒 }. Specifically, when instantiating the framework with an initial refinement

automaton 𝑉 , we construct the actual automaton 𝑉 ′ by introducing a fresh initial location ℓ ′
0
with

edge assume 𝜑𝑒 leading to the original initial location.

This resembles introducing a fresh initial location with split condition edges as shown in Figure 12

versus Figure 11. By further refinement, the original location may be partitioned as in Figure 13,

where green locations correspond to the original initial location in Figures 11 and 12.

Modified Intersection Operation. Incorporating split conditions into the refinement automaton 𝑉

necessitates modifications to the intersection operation. Since𝑉 now contains split conditions while

the original PCFA 𝐴 does not, we adapt the intersection 𝐴 ∩𝑉 as follows: First, we synchronise
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𝐴 with the split conditions by constructing 𝐴′ := (𝐿 ⊎ {ℓ ′
0
}, Σ,Δ′, ℓ ′

0
, ℓ𝑒 ) where ℓ ′0 is a fresh initial

location and Δ′ is additionally enlarged with the transitions ℓ ′
0

assume 𝜑𝑖
𝑒−−−−−−−−→ ℓ0, where ℓ0 is the original

initial location of 𝐴, for each split condition 𝜑𝑖
𝑒 currently in 𝑉 . The intersection is then computed

as 𝐴′ ∩𝑉 . This renewed method is employed in computing the refined upper bound as in the left

blue box of Figure 10.

Deriving Split Conditions. Split conditions are derived on-the-fly during the CEGAR process,

tightly integrated with the MAX-SMT and enumeration procedures. Notably, as shown above, now

with the split conditions, every candidate counterexample must have a unique split condition — by

the definition of policies (in Section 4.1), and every assume statement must be an independent action.

When a candidate counterexample is deemed spurious, let its current split condition be 𝜑𝑖
𝑒 and the

enumerated set of violating traces be Θ, we extract the path condition 𝐸 of the maximum-weight

compatible trace set of Θ from the MAX-SMT analysis. We then replace the original split condition

𝜑𝑖
𝑒 with two refined conditions: 𝜑𝑖

𝑒 ∧ 𝐸 and 𝜑𝑖
𝑒 ∧ ¬𝐸.

The above ideas are integrated into the refinement procedure below.

Refinement Procedure. With split condition derivation established, the refinement procedure

in Figure 10 proceeds through three phases. Below let 𝐸 denote the identified path condition from

the MAX-SMT analysis as mentioned previously.

(1) Split condition update: Replace the transition ℓ0
assume 𝜑𝑖

𝑒−−−−−−−−→ ℓ in both the current𝑉 and the spuri-

ous candidate counterexamplewith two transitions: ℓ0
assume (𝜑𝑖

𝑒∧𝐸 )−−−−−−−−−−−→ ℓ and ℓ0
assume (𝜑𝑖

𝑒∧¬𝐸 )−−−−−−−−−−−−−→ ℓ ,

where ℓ0 is the initial location and ℓ is the destination location (intuitively representing the

potentially partitioned original initial location).

(2) Trace relabeling: For refinement techniques requiring enumerated traces Θ, we update trace
labels accordingly: traces in the maximum-weight set have their first statement assume 𝜑𝑖

𝑒

replaced by assume (𝜑𝑖
𝑒 ∧ 𝐸), while the remaining traces are updated with assume (𝜑𝑖

𝑒 ∧¬𝐸).
(3) Refinement: The updated objects — including 𝑉 , the candidate counterexample, and Θ — are

processed by the customisable refinement method to be introduced below to compute a new

general PCFA 𝑉 with split conditions.

Crucially, split conditions do not alter behaviors of refinement techniques adopted. Specifi-

cally, the refinement procedure can be intuitively described as: given a control-flow automaton

(𝑉 in our case) and its subset of identified non-violating traces (from the candidate coun-

terexample), refine the automaton to eliminate as much as possible more non-violating traces

from 𝑉 . This intuition is generally shared among standard non-probabilistic refinement

techniques, e.g., predicate abstraction [14] and trace abstraction [28] to be exemplified below

in Section 5.2. By substituting new split conditions (assume (𝜑𝑖
𝑒 ∧ 𝐸) and assume (𝜑𝑖

𝑒 ∧ ¬𝐸))
for assume 𝜑𝑖

𝑒 , both the modified candidate counterexample and Θ remain subsets of L(𝑉 ),
allowing refinement methods to proceed unaware of split conditions.

Split conditions prevent re-enumeration of identical candidate counterexamples, as traces with

path conditions contradicting the split condition become infeasible rather than violating, hence

effectively reducing divergence. For finite-state programs like Example 5.5, since the number of

potential split conditions is finite, this approach guarantees convergence of the CEGAR process.

Remark 1 (Methodology of Adapting the Framework). Within the framework, most compo-
nents are predetermined, leaving only two customisable elements: the construction of the initial 𝑉 and
the refinement method. As demonstrated in the principle of refinement in Theorem 4.7, the construction
and refinement of 𝑉 does not require handling probabilities as the probabilistic statements will not
affect whether a trace is violating or not. This renders typically straightforward instantiations.
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To show our claim of the straightforwardness of the adaptation, in the following, we exemplify

the instantiation of our framework with trace abstraction. We begin by a direct instantiation with

the non-random technique briefly introduced and straightforwardly applied to adapt to the above

methodology. Further, we explore a potential optimisation based on the direct instantiation, which

further retains the refutational completeness property of trace abstraction, which is a guarantee

hardly seen in probabilistic verification beyond finite-state (incl. bounded) techniques. In fact, we

also investigated more instances of the instantiations, e.g., predicate abstraction and value analysis.

As they are all direct applications of the well-established techniques, in the interests of space, the

demonstration is within the extended version of this paper.

5.2 Direct Instantiation with Trace Abstraction
Next, we shall adapt the framework by trace abstraction [28], a successful non-probabilistic verifica-

tion technique. In this part, again, we first present a brief account of the approach of trace abstraction

and then shift to a discussion on the direct instantiation of the general CEGAR framework with the

renowned technique.

Trace Abstraction. In the non-probabilistic context, trace abstraction over-approximates the

non-violating traces of the original control-flow automaton (CFA)
10 𝐴 by a series of certified CFA

𝑄1, . . . , 𝑄𝑛 with L(𝐴) ⊆ ⋃𝑛
𝑖=1 L(𝑄𝑖 ), where a certified CFA contains only the non-violating traces.

The CEGAR-driven refinement algorithm for trace abstraction entails constructing a series

of Floyd-Hoare automata, which serve as the certified CFA that contains no violating trace. A

Floyd-Hoare automaton is a (general) CFA (𝐿, Σ,Δ, ℓ0, 𝐿𝑒 ), augmented with a predicate assignment

function 𝜆 : 𝐿 → Φ. For each transition ℓ
𝜎−→ ℓ ′, the condition represented by a Hoare triple [47]

{𝜆(ℓ)} 𝜎 {𝜆(ℓ ′)} must hold. Although previously mentioned, we here formally present an account

for this concept. The validity of a Hoare triple {𝜑1} 𝜎 {𝜑2} is given by that for all valuations 𝑣 |= 𝜑1,

the valuation J𝜎K𝑣 either is ⊥ or satisfies 𝜑2.

In the (𝑛 + 1)-th iteration of trace abstraction refinement, a trace (candidate counterexample in

the non-probabilistic scenario) is selected from the rest of the automaton 𝐴 \⋃𝑛
𝑖=1 L(𝑄𝑖 ), which

is followed by an attempt to verify it. Should the trace indeed be violating, the counterexample

is reported; otherwise, the trace is generalised into a Floyd-Hoare automaton 𝑄𝑛+1. The iteration
goes until the𝑚-th round when 𝐴 \⋃𝑚

𝑖=1 L(𝑄𝑖 ) = ∅.
In the above process, the generalisation process encompasses two steps: interpolation [13, 41] and

the construction of a Floyd-Hoare automaton. More specifically, given a non-violating trace 𝜎1 . . . 𝜎𝑛 ,

the interpolation of the trace produces a tagged trace, of form: {𝜑0} 𝜎1 {𝜑1} . . . {𝜑𝑛−1} 𝜎𝑛 {𝜑𝑛},
where the propositions 𝜑𝑖 are called interpolants and the Hoare triple {𝜑𝑖−1} 𝜎𝑖 {𝜑𝑖 } holds for every
segment. At the same time,𝜑𝑒 implies𝜑0 and𝜑𝑛 implies𝜑 𝑓 . Utilising the tagged trace, a Floyd-Hoare

automaton is constructed by establishing a location set corresponding to each generated predicates

{𝜑0, . . . , 𝜑𝑛} 11. In what follows, the transitions ℓ
𝜎−→ ℓ ′ for 𝜎 in the statement set of the program

CFA 𝐴 are added, whenever the Hoare triple {𝜆(ℓ)} 𝜎 {𝜆(ℓ ′)} holds.

Example 5.6 (Generalisation). Notably, this generalisation is directly applicable to our context.

Referring back to traces 1 and 2, the interpolation process by the established tool SMTInterpol [13]

returns the following tagged traces for Traces 1 and 2:

{True} 𝑋 ::= 0 {𝑋 = 0} Pb(0,L) {𝑋 = 0} 𝐶 ::= 0 {𝑋 = 0} assume ¬(𝐶 > 0) {𝑋 = 0} (7)

10
Simply given by (general) PCFA without probabilistic statements.

11
Duplicate predicates are naturally removed.
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Fig. 14. Optimised CEGAR with Trace Abstraction

{True} 𝑋 ::= 0 {True} Pb(0,L) {True} 𝐶 ::= 0 {𝐶 ≤ 0} assume 𝐶 > 0 {False}
Pb(1,R) {False} skip {False} 𝐶 ::= 𝐶 − 1 {False} assume ¬(𝐶 > 0) {False} (8)

Then, by introducing the location set for the interpolants for each tagged trace and subsequently

adding the transitions, the generalised certified general PCFA Figs. 6 and 7 are obtained. □

Probabilistic Refinement with Trace Abstraction. The theoretical aim of the instantiation

involves to construct a 𝑉 =
⋃𝑛

𝑖=1𝑄𝑖 where each 𝑄𝑖 is a certified (general) PCFA. Specifically:

• the initial 𝑉 is the trivial PCFA that accepts all traces Σ∗; and,
• when a spurious counterexample is found, generalise the enumerated non-violating traces

and union all the Floyd-Hoare automata obtained by generalisation from each trace into

a PCFA 𝑄 . Next, update 𝑉 in an incremental manner (so there is no need to keep every

generated 𝑄) by: 𝑉 ← 𝑉 ∪𝑄 .

5.3 Optimised Instantiation with Trace Abstraction for Refutational Completeness
When we probe closer to the flexibility on examining each traces provided by trace abstraction,

we discern that there is room for further optimisation. In this section, we shall dig deeper into the

integration with trace abstraction to explore potential optimisations and their impact.

In general, the verification problem is undecidable, which, in light of our CEGAR-driven algorithm,

implies that the refinement loop might never terminate. Nevertheless, we can still modify the

algorithm to ensure termination and a valid counterexample when the problem is genuinely

unsatisfiable; this is referred to as refutational completeness. It is worth noting that, this property

suggests a theoretical guarantee on automatically proving an arbitrarily close lower bound.
To achieve this effect, it is worth noting the following trivial facts:

(1) The main objects we are dealing with are now single traces (rather than states), allowing us

to consider each trace separately;

(2) The counterexample consists of only finite traces as declared in Lemma 5.1;

(3) There are only a finite number of traces of a certain length in any PCFA 𝐴; and,

(4) It is possible to decide the existence of a counterexample in a finite trace set.

Based on the facts, to achieve refutational completeness, two principles can be derived: (1) storing

the enumerated violating traces in a specific storage, from and only from which counterexamples

are sought; and, (2) preventing the re-enumeration of traces within the storage. As there are only
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finite traces, the structure of the storage can be either a set of separated traces or a general PCFA,

which does not hinder the operations below.

Optimised CEGAR Framework. Incarnating the principles, the direct instantiation can be

optimised to form the algorithmic procedure depicted in Fig. 14. Compared to the direct instantiation,

this new algorithm possesses some subtle differences.

The algorithm consists of two loops – the left loop modifies and examines the mentioned storage

A, while the right loop eliminates discovered non-violating traces. Initially, rather than extracting

a reason policy directly, the process picks a shortest trace 𝜏 from 𝐴 ∩ 𝑉 \ A, thereby avoiding

re-enumerating traces in the storage. Next, verify this single trace 𝜏 , from which three kinds of

results may be yielded. If the trace is found to be non-violating, the standard generalisation process

is employed to construct a certified general PCFA 𝑄𝜏 . After this, the aforementioned updating

procedure is applied to 𝑉 . When 𝜏 is violating, a simple scenario occurs if its weight surpasses the

threshold independently, for which we report a counterexample with this single trace.

A more intriguing scenario arises otherwise. As the examination of A is rather computationally

intensive, a specialised generalisation procedure is also executed to add traces with “similar reasons

for violation” to the discovered 𝜏 . This process, unlike the aforementioned generalisation for non-

violating traces, faces two main hurdles. First, the interpolation process cannot be applied, which

we’ll explain in more detail below. Second, the process must avoid introducing loops to make use

of Fact 4 mentioned earlier. In response to these challenges, a novel finite generalisation process

for violating traces will be introduced below. For now, one just needs to know that the finite

generalisation results in a (general) PCFA, denoted by A𝜏 , such that 𝜏 ∈ L(A𝜏 ) and there are only

finite traces in L(A𝜏 ).
With the finitely generalised automaton A𝜏 for the picked trace 𝜏 , the traces are then integrated

into the storage A. Subsequently, the storage A retains only finite traces. Recall (in Section 5.1)

that the existence of a potential counterexample for finite traces can be decided by encoding

the problem in MAX-SMT [7, 33]. Also, one may notice that the direct instantiation of trace

abstraction Section 5.2 is also complete for finite traces. Hence, adopting the analysis process may

also be a possible choice for examining A. As a result from the examinations, if a counterexample

is identified, i.e., MAX-SMT produces a result > 𝛽 , the subset identified by MAX-SMT is reported;

otherwise, the process recommences from the beginning for the next iteration.

Finite Generalisation. We now turn our attention to the finite generalisation process for

violating traces. The fundamental steps for this process resemble those for non-violating traces:

one first computes a set of tagged traces, from which an automaton is subsequently built. However,

the construction methods for these formalisms significantly differ from those used for generalising

non-violating traces. Let us delve deeper into the details.

Tagging Traces by Weakest Pre-condition. The interpolation process used for non-violating

traces cannot be applied when tagging violating traces. To understand why, consider the details of

interpolation [31, 41]: for an unsatisfiable proposition 𝜑 ∧ 𝜑 ′, comprising sub-propositions 𝜑 and

𝜑 ′, a proposition𝜓 exists such that: (1) 𝜑 implies𝜓 ; (2)𝜓 ∧ 𝜑 ′ is unsatisfiable; and (3)𝜓 contains

only variables present in both 𝜑 and 𝜑 ′. Given the unsatisfiability requirement, it is evident why

this cannot be applied to violating traces, where reaching 𝜑 𝑓 is, by definition, satisfiable.
To address this challenge, we use the weakest pre-condition technique, introduced by Dijkstra [16].

The tagging procedure involves computing backwardly from𝜑 𝑓 . Theweakest pre-condition function

wp(𝜎, 𝜑) yields the weakest proposition that ensures 𝜑 after executing statement 𝜎 , defined as:

wp(𝑋 ::= 𝐸, 𝜑) := 𝜑 [𝑋/𝐸] wp(assume 𝜑 ′, 𝜑) := 𝜑 ′ → 𝜑 wp(𝜎, 𝜑) := 𝜑

Here, 𝜑 [𝑋/𝐸] substitutes every occurrence of 𝑋 in 𝜑 with 𝐸, and→ denotes logical implication.
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Given a violating trace 𝜎1 . . . 𝜎𝑛 with pre- and post-conditions 𝜑𝑒 and 𝜑 𝑓 , one can compute a

tagged trace that: {𝜑0} 𝜎1 {𝜑1} . . . {𝜑𝑛−1} 𝜎𝑛 {𝜑𝑛}, where:𝜑𝑖 := wp(𝜎𝑖+1, 𝜑𝑖+1) for 𝑖 ∈ {1, . . . , 𝑛 − 1},
with 𝜑𝑛 := 𝜑 𝑓 and 𝜑0 := 𝜑𝑒 ∧ wp(𝜎1, 𝜑1).
Constructing Finitely Generalised Automaton. With tagged traces introduced, we can now

construct the finitely generalised automaton. However, applying the original method directly

remains infeasible due to the risk of introducing loops. To address this, we extend the usual

Floyd-Hoare automaton by introducing the concept of order, resulting in the ordered Floyd-Hoare
automaton. Consider a standard Floyd-Hoare automaton, (𝐴, 𝜆), consists of a PCFA 𝐴 with location

set 𝐿. An ordered Floyd-Hoare automaton extends this to a triple (𝐴, 𝜆, 𝜌), where 𝜌 : 𝐿 → N assigns

a unique priority to each location. For a transition ℓ
𝜎−→ ℓ ′ to belong to the automaton, it must

satisfy both the usual condition {𝜆(ℓ)} 𝜎 {𝜆(ℓ ′)} and the additional requirement 𝜌 (ℓ) < 𝜌 (ℓ ′).
Given a tagged trace {𝜑0} 𝜎1 {𝜑1} . . . {𝜑𝑛−1} 𝜎𝑛 {𝜑𝑛}, we construct an ordered Floyd-Hoare

automaton as follows. First, define a location set {ℓ0, . . . , ℓ𝑛}, whose size matches the length of

the trace, unlike the non-violating case where locations correspond to distinct propositions. Next,

assign 𝜆(ℓ𝑖 ) := 𝜑𝑖 and 𝜌 (ℓ𝑖 ) := 𝑖 for each location ℓ𝑖 . Set ℓ0 as the initial location and ℓ𝑛 as the

final location. Finally, include all transitions satisfying the conditions for an ordered Floyd-Hoare

automaton.

Refutational Completeness. We here first present a formal account for the property.

Theorem 5.7 (Refutational Completeness). Given a PCFA 𝐴, a pre- and a post-condition 𝜑𝑒
and 𝜑 𝑓 with a threshold 𝛽 , if P

[
⊬ {𝜑𝑒 } 𝐴

{
𝜑 𝑓

}]
> 𝛽 , then the process introduced above will terminate

and report a valid counterexample.

Given the above process, refutational completeness follows as below. When the violating prob-

ability surpasses the threshold, a counterexample with finite traces exists, per Fact 2. For any

potential counterexample, let 𝑁 be the length of its longest trace. By Fact 3, and since traces are

not re-enumerated, there will be an iteration where the shortest trace in L(𝐴 ∩𝑉 \ A) exceeds 𝑁 .

Thus, all violating traces constituting the valid example will be stored in A. Finally, by Fact 4, this

counterexample must be detected through examining storage A.

6 Empirical Evaluation
To evaluate the effectiveness and efficiency of our proposed approach, we implemented our frame-

work instantiated with trace abstraction. We tested it on a diverse set of examples and compared

its performance with state-of-the-art tools.

Implementation. Our prototype, developed in Java and Scala, integrates high-performance

libraries to tackle key challenges. For satisfiability modulo theories (SMT), we employed SMTIn-

terpol [13], selected for its robust interpolation capabilities vital to trace abstraction. Automata

manipulation is handled by the flexible Brics [45] library, while Breeze [24] facilitates computa-

tionally intensive numerical tasks, such as MDP and MC reachability analysis. An input file is a

program like that in Example 2.1, which is internally parsed and converted to PCFA.

Baseline Tools. We compared our prototype against two state-of-the-art tools for violation

bound analysis: cegispro2 [5] and PSI [20]. Cegispro2, a recent advancement based on fixed-point

and pre-expectation techniques, has shown superior performance over tools such as Exist [2]

and storm [30] in prior studies. PSI, a well-established tool, is known for its precise bounds, fast

computation, and robust handling of both discrete and continuous random variables. We assessed

the time performance of these tools using identical validation objectives and benchmark examples.

Notably, tools and benchmarks from [33, 54], though technically relevant, were not included in the

evaluation due to fundamental compatibility issues. Specifically, [33] takes a PRISM-variant input
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format, hard to convert from and to probabilistic programs. While [54] requires manually provided

invariants, hence unsuitable to compare with fully automated tools like ours, CegisPro2, and PSI.

Benchmarks. We identify four challenging features when selecting benchmarks:

(P1) Unbounded loops (i.e., loops with an unbounded number of iterations),

(P2) Bounded loops with over 100 times of iterations,

(P3) Loops with over 5 conditional and probabilistic branches in the body, and

(P4) Sequential or nested loops.

Following these criteria, we curated a diverse and representative set of examples from the

literature, including:

• We tested all loopy examples from [50]
12
, a comprehensive benchmark suite with both

simple and complex cases featuring intricate branching structures. This suite remains widely

adopted in recent tools [55, 57].

• We tested all assertion benchmarks from CegisPro2 [5], which collected examples from

diverse literature sources and compared against multiple state-of-the-art tools. However, we

found that their suite has limited diversity, consisting mostly of single loops with simple

bodies and restricted number of iterations.

• To enrich our test set, we incorporated additional loopy examples from broader literature,

including PSI [20], Exist [2], Amber [43], [8, 52], [54], and Diabolo [57]. Some derive from real-

world applications: “Reliability” from [8, 52] models a pixel-block search algorithm from x264

video encoders with hardware failures; “Herman3” from [57] implements the probabilistic

self-stabilisation algorithm [32] with three threads; “Coupon5” from [57] represents the

classical coupon collector problem [19], applied in commercial analysis [56] and biology [11].

• Finally, to address the lack of nested loop benchmarks, we developed “LimitV” and “LimitVP”

by modifying the “Limit” example from Example 2.1, featuring nested loops and unbounded

state spaces.

Overall, the experimental dataset consists of 37 examples from diverse sources. In these bench-

marks, continuous distributions were adapted to the tools by discretization. All tests were conducted

on a MacBook Pro (M4 Pro, 48GB RAM).

Experimental Evaluation. The experimental results for examples from [50] are presented in

Table 1, while results for the other examples are summarized in Table 2. For each example, we tested

multiple parameter settings with different proof bounds (𝛽). Following established practices [5, 20],

we preserved original thresholds from CegisPro2’s benchmark suite and tested additional tighter

thresholds. For examples where PSI computed exact solutions, we selected 𝛽 values near the exact

bounds. For remaining examples, we used the standard guess-and-refine approach, commonly

employed in the field. Importantly, all threshold selections are consistent across tools for fair

comparison.

The results first of all confirm our tool’s correctness through consistency with CegisPro2 and

PSI for both upper and lower bounds. In contrast, CegisPro2 only reports whether bounds are

proved and will crash or fail to terminate for improper bounds, unlike our tool which extracts

counterexamples.

Statistically, we tested 68 verification tasks across both tables. Our method handles 55 tasks,

timing out in 11, with 2 tasks (“InvPend” and “Vol”) beyond our current integer-only implementation.

These two cases also exceed CegisPro2’s capacity due to negative numbers, a theoretical limitation

as per [5], and cause PSI timeouts due to excessive iterations. In comparison, CegisPro2 handles 22

tasks, while PSI handles only 4. Our method demonstrates superior performance (in terms of time)

12
Available at https://github.com/eth-sri/psi/tree/master/test/colorado.
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Table 1. Examples from [50]: Each example is tested with multiple parameters, where “UB” denotes un-
bounded; for each parameter, different “Bound” values (i.e., threshold 𝛽) are tested, forming a verification
task. “Type” indicates which criteria the example satisfies. In “Time” columns, numbers represent seconds,
“TO” denotes time-out (over 500s), “N/A” means not applicable; bold font shows the fastest time among
methods. In our “Result” column, “SAT” indicates safety of the bound, “UnSAT(𝑛)” indicates violation with
𝑛 counterexample traces. CegisPro2’s “Result” is simpler: it proves or reports errors. When the bound is a
proper upper bound, we denote this by ✓; for lower bounds, we use the tool’s “lower bound” functionality,
denoting success by “✓ (Lower)”. PSI’s “Prob” column shows exact violation probability values.

Example Name Parameter Type Bound
Our Method CegisPro2 PSI

Time (s) Result Time (s) Result Time (s) Prob
BeauquierEtal3 count<1 P1, P3 0.6 0.281 SAT N/A - N/A -

Cav1
x>250 P1 0.6 84.971 SAT TO - N/A -

x>187.5 P1 0.1 51.799 SAT TO - N/A -

Cav2 h-t>4 P1

0.05 1.329 UnSAT (4) 16.453 ✓ (Lower) N/A -

0.06 1.891 UnSAT (7) 41.043 ✓ (Lower) N/A -

Cav3 x-estX>10 P3 0.5 TO - TO - TO -

Cav4
x<=3 P1 0.1 0.702 SAT 0.65 ✓ N/A -

x<=8 P1 0.01 1.285 SAT 1.612 ✓ N/A -

Cav5 i>10 P1, P3

0.5 3.978 SAT TO - N/A -

0.1 0.898 UnSAT (8) TO - N/A -

Cav6
N=3 P3 0.58 0.836 SAT N/A - TO -

N=4 P3 0.56 5.619 SAT N/A - TO -

N=5 P3 0.55 103.212 SAT N/A - TO -

Cav7 count>10 P1

0.3 223.926 UnSAT (229944) TO - N/A -

0.5 TO - TO - N/A -

BookMod
count<=20 P1, P3 0.001 4.402 SAT N/A - N/A -

count<=40 P1, P3 0.00025 19.562 SAT N/A - N/A -

Cart count<5 P1, P3 0.5 TO - TO - N/A -

Carton5

count<8 P1, P3 0.2 3.754 SAT TO - N/A -

count<7 P1, P3 0.2 33.327 SAT TO - N/A -

count<6 P1, P3 0.2 199.67 UnSAT (820) TO - N/A -

count<5 P1, P3 0.2 22.979 UnSAT (205) TO - N/A -

Fig6 c>5 P1

0.5 21.422 UnSAT (572) TO - N/A -

0.9 34.11 SAT TO - N/A -

Fig7 x<=1000 P1

0.0015 3.422 UnSAT (3) 0.515 ✓ (Lower) N/A -

0.00198 1.607 SAT 53.183 ✓ N/A -

InvPend pAng>100 P3 - N/A - N/A - TO -

LoopPerf guardOK>2 P3, P4 0.5 TO - N/A - TO -

Vol count>3 P2, P3 - N/A - N/A - TO -

Herman count <5 P2, P3 0.7 0.549 SAT N/A - TO -

Israeli-jalfon-3 count>=1 P1, P3

0.3 0.741 UnSAT (3) 64.455 ✓ (Lower) N/A -

0.6 0.688 SAT 82.902 ✓ N/A -

Israeli-jalfon-5 count>=1 P1, P3 0.3 0.741 UnSAT (3) 64.455 ✓ (Lower) N/A -

in 50 tasks, while CegisPro2 excels in 7 and PSI in 2. When our tool reports results, it is typically

much faster — over 100× faster than CegisPro2 in “Israeli-jalfon-3” and over 800× faster than PSI

in “Coupon5” — not to mention they are often TO while we report results in a few seconds.

Delving deeper into the types of the tasks. Observably, CegisPro2 performs well mostly in

verification tasks falling into (P2) with relatively simple loop bodies. However, their method is
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Table 2. Other Examples: Columns have the same meaning as Table 1

Example Name Parameter Type Bound
Our Method CegisPro2 PSI

Time (s) Result Time (s) Result Time (s) Prob

RwMultiStep
UB P1

0.45 3.782 SAT TO - N/A -

0.39 2.123 UnSAT (4) TO - N/A -

200 P2 0.3 154.691 SAT 10.543 ✓ TO -

brp
8000000000 P2

0.001 TO - 16.218 ✓ TO -

0.00001 TO - 10.095 ✓ TO -

200 P2 0.0001 2.609 SAT 3.314 ✓ TO -

Chain 10000 P2 0.4 83.136 SAT TO - TO -

ChainStepSize
10000000 P2, P3

0.7 TO - 11.279 ✓ TO -

0.6 TO - TO - TO -

0.55 TO - TO - TO -

200 P2, P3 0.8 0.652 SAT 19.623 ✓ TO -

EqualProbGrid UB P1

0.6 0.272 SAT TO - N/A -

0.4 1.374 UnSAT (3) TO - N/A -

Geo
x>3 P1 0.3 0.584 UnSAT (1) 1.028 ✓ (Lower) N/A -

x>5 P1 0.9 0.359 SAT 1.797 ✓ N/A -

Grid 100 P2 0.93 5.061 SAT TO - 12.865 0.5

ZeroConf
100000000 P2

0.53 TO - 17.806 ✓ TO -

0.526 TO - TO - TO -

200 P2 0.6 0.138 SAT 4.844 ✓ TO -

Coupon5 count<100 P2 1.5E-9 0.538 SAT 1.451 ✓ 491.158 1.273E-9

Herman3 count<100 P2, P3 0.01 0.304 SAT 28.064 ✓ TO -

Reliability unrel>0 P3, P4 0.01 5.434 SAT N/A - TO -

SeqLoop y >3 P4 0.3 0.304 SAT N/A - TO -

NestedLoop y >1030 P4 0.4 194.848 SAT N/A - TO -

Limit X == 0 P1 0.5 0.15 SAT N/A - N/A -

LimitV X == 0 P3, P4

0.4 5.052 UnSAT (7) N/A - N/A -

0.5 0.182 SAT N/A - N/A -

LimitVP X == 0 P3, P4

0.3 2.376 UnSAT (3) N/A - N/A -

0.45 0.275 SAT N/A - N/A -

Birthday
UB P1, P3

0.5 26.574 UnSAT (361) TO - N/A -

0.7 45.301 UnSAT (1561) TO - N/A -

0.99 409.902 UnSAT (43888) TO - N/A -

3 P3 0.4 17.002 SAT TO - 3.703 0.388

5 P3 0.7 46.692 UnSAT (1261) TO - 43.231 0.85

Cards sum != 1000 P2 0.3 0.563 SAT TO - TO -

highly sensitive to the structure of the loop body, loop conditions and the distance to the real

value, and hence, for examples falling into other categories, it is easily overwhelmed. The data also

shows that these challenging cases are difficult for PSI, which is a renowned tool for exact solution
computation. It is hence solely capable of tackling bounded loops stemming from its theoretical

foundation, while from the experimental results, it is also not working swiftly for bounded loops

with relatively large iterations. For examples falling into (P1), the unrolling-based method struggles

to handle the situation.

In contrast, the experimental results highlight the advantages of our method in addressing more

general and versatile cases. Specifically, the data demonstrates that our method exhibits evident

superior performance in handling examples of type (P1). It also typically resolves instances of (P2)
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efficiently with reasonable loop counts, while showing greater robustness to variations in loop

bodies and conditions. This is evidenced by the fact that our method outperforms CegisPro2 in 9

tasks for (P2), compared to only 5 tasks where the opposite is true. Moreover, our method robustly

handles the more complex and general cases (P3) and (P4), which are particularly challenging for

CegisPro2 and PSI, especially when combined with (P1) and (P2). Essentially, for (P3) and (P4),

thanks to the separation of concerns offered by the refinement principle, the complex structures,

including nested and sequential loops, are seamlessly handled by the established method of trace

abstraction, which has shown its excellence in non-random verification.

Beyond efficiency, our method is often capable of computing tight bounds. For example, in the

“Grid” and “Coupon5” cases in Table 2, the bounds computed by our method are very close to

the exact values computed by PSI, and these bounds are swiftly provable by our method. In fact,

our method can even prove the upper bound of “Reliability” in Table 2 by 0.0016 as compared to

the original 0.0072 produced in [52] and 0.0051 from Rely [8]. Also, the theoretical refutational

completeness also proves itself in the experimental data; e.g., when unbounded, the “Birthday”

example should have probability 1 of violating, then even when we set the threshold to be 0.99, our

tool still successfully reports the counterexample.

In summary, our method demonstrates superior performance, effectively addressing a broader

range of cases and excelling in handling complex program structures. Even in scenarios where

other tools are applicable, our method offers greater stability and efficiency, successfully covering a

substantial portion of the combined capabilities of cegispro2 and PSI.

7 Related Work

Automaton and MDP. When integrating graphical program representation via Control Flow

Automata (CFA) or Control Flow Graph (CFG) with Markov Decision Processes (MDP), the most

straightforward approach is to use MDP as the program’s semantics. This is achieved by unrolling

the CFA / CFG while exploring the program’s concrete state space. This principle supports proba-

bilistic model checking [30, 39], a successful lightweight probabilistic program analysis technique.

Practical tools like PRISM [37] have been developed with industrial strength, successfully deployed

across diverse domains, some beyond computer science [17, 26, 38, 46]. Additionally, bounded

model checking for probabilistic programs [35] has been developed, analysing programs with

potentially infinite valuations. In this work, we propose a different approach to integrate PCFA

with MDP. This method, entirely structural / syntactic, converts a PCFA into an MDP by erasing

computational semantics, rather than unrolling the potential state space.

Probabilistic CEGAR. The study conducted by Hermanns et al. [33] bears a significant connec-

tion to our work. They explored the extension of predicate abstraction within a probabilistic setting

using a CEGAR-guided algorithm [14]. We drew inspiration from their work for our broad CEGAR

framework and the idea of counterexamples, as well as their method of verification through enu-

meration. Despite these similarities, the theoretical foundation is the key divergent point between

our projects with theirs. Given the immense flexibility provided by the new refinement principle we

developed in Theorem 4.7, we are able to take one more step towards generalising the framework to

a versatile one that is capable of being straightforwardly instantiated by various non-probabilistic

techniques, including the predicate abstraction considered in their work. Especially, we discuss the

extension with trace abstraction, which could hardly cooperate with their method.

Trace Abstraction and Probabilities. Trace abstraction [28, 49] is a key technique in non-

probabilistic program verification. It views a program as a set of traces rather than a state space,

leading to award-winning tools like [27]. Beyond imperative program verification, it has applica-

tions in domains like termination analysis [29]. For combining trace abstraction with probabilities,
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pioneering work by Smith et al. [52] addressed this via program synthesis. Unlike our method,

which exposes probabilities at the control-flow level, Smith et al. encapsulated them at the statement

level. For probabilistic distributions on statements, symbolic representations of violation probabili-

ties are synthesised for candidate counterexample traces. Due to their handling of probabilities,

traces remain probabilistically independent, akin to the non-probabilistic case. This approach,

however, places the burden of handling distributions on each trace, limiting the use of existing

non-probabilistic verification techniques. Moreover, their use of the union bound [3] also impedes

completeness, even for finite trace examples like P [⊬ {True} 𝑋 ∼ 𝑓 𝑙𝑖𝑝;𝑌 ∼ 𝑓 𝑙𝑖𝑝 {𝑋 ∧ 𝑌 }]. Besides,
trace abstractions are also applied in termination analysis, e.g., Chen et al. [12] aim to automatically

prove almost sure termination (AST) by decomposing programs into certified 𝜔-regular automata.

Probabilistic Threshold Problem. The problem considered in this work, determining whether

P
[
⊬ {𝜑𝑒 } 𝑃

{
𝜑 𝑓

}]
≤ 𝛽 , has been addressed by other works. Smith et al. [52] also consider this prob-

lem. Wang et al. [54] analyse violation probabilities by synthesising bounds with exponential tem-

plates. This problem can also be tackled using pre-expectation calculus and expectation-transformer

semantics [23, 40], an elegant probabilistic counterpart of Dijkstra’s predicate-transformer seman-

ticsf in his seminal work [16]. This approach has been exploited recently in CegisPro2 [5]. The

semantics computes expectations, which can elegantly compute violation probabilities [40]. The

key obstacle to automation, however, is the same as predicate-transformer semantics – synthesising

(probabilistic) invariants, which works like [4] aim to overcome. We believe incorporating such

information in the interpolation process could enhance interpolant quality, potentially resolving

previously unsolvable problems or improving solving time.

Static Analysis of Bayesian Programs. Besides the topics, there is a rising trend in the analysis

of the posterior distribution of Bayesian programs, which additionally equip usual probabilistic

programs with the observe structure to express conditioning. Various techniques have been

proposed to address this novel problem, including typing [6], fixed-point & Optional Stopping

Theorem [55], and novel semantics [57].

8 Conclusion
This work introduces structural abstraction for verifying the threshold query for probabilistic

programs. In this approach, transitions in a Probabilistic Control-Flow Automaton (PCFA) are

treated as pure labels, abstracting the semantics and enabling a view of the PCFA as a Markov

Decision Process (MDP). From the theoretical establishment of this abstraction and the principles

of refinement, our method shows the ability to separate probability from semantics. We hence

developed a general CEGAR framework capable of leveraging non-random techniques, for which

we demonstrated the instantiation via trace abstraction, with a further optimised refutationally

complete method. Our implementation, benchmarked against advanced tools on diverse examples,

highlights its adaptability and superiority in various scenarios.
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