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Abstract
Almost-sure termination is the most basic liveness property
of probabilistic programs. We present a novel decomposition-
based approach for proving almost-sure termination of prob-
abilistic programs with complex control-flow structure and
non-determinism. Our approach automatically decomposes
the runs of the probabilistic program into a finite union of
ω-regular subsets and then proves almost-sure termination
of each subset based on the notion of localized ranking su-
permartingales. Compared to the lexicographic methods and
the compositional methods, our approach does not require
a lexicographic order over the ranking supermartingales as
well as the so-called unaffecting condition. Thus it has high
generality. We present the algorithm of our approach and
prove its soundness, as well as its relative completeness. We
show that our approach can be applied to some hard cases
and the evaluation on the benchmarks of previous works
shows the significant efficiency of our approach.

CCS Concepts: • Theory of computation→ Probabilis-
tic computation; Logic and verification.
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1 Introduction
Probabilistic programs are obtained by enriching classical
imperative programs with probabilistic behaviors, e.g. the
variables can be assigned to some random values sampled
from a probability distribution, such as uniform, exponen-
tial, normal, etc. Besides the probabilistic behaviors, non-
determinism also plays a crucial role in probabilistic pro-
grams. Probabilistic programs can be applied to randomized
algorithms, machine learning, stochastic network protocols,
security systems, etc. Thus, static analysis of probabilistic
programs is also very important. Termination is one of the
simplest and most important liveness properties in static
analysis. In the field of static analysis of classical programs,
the termination problem requires that the program always
terminates for all of the inputs or the initial values. But for
probabilistic programs, we care about the almost-sure (a.s.)
termination, i.e., the probabilistic program terminates with
probability 1 for all of the inputs or the initial values. We
also care about the positive termination, i.e., the expected
termination time of the probabilistic program is finite.

The widely studied method to analyze termination of clas-
sical programs is the notion of ranking functions [10, 11, 27],
which is sound and complete. The counterpart of ranking
functions in probabilistic setting is the so-called Lyapunov
ranking functions [14]. Lyapunov ranking function-based
method is a sound and complete method to prove positive
termination of probabilistic programs with countable state
spaces but without non-determinism. Besides, another no-
tion of ranking supermartingales extends ranking functions
for probabilistic programs with real-valued variables [5] and
non-determinism [7, 13]. These supermartingale-based meth-
ods are limited only to probabilistic programs with rather
restricted control-flow structure. Agrawal et al. [1] intro-
duced the notion of lexicographic ranking supermartingales
(LexRSM). Ferrer Fioriti and Hermanns [13], as well as Huang
et al. [20], proposed the compositional methods based on
ranking supermartingales. All of these methods can be ap-
plied to prove a.s. termination of probabilistic programs with
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complex control-flow structure. However, they all require a
lexicographic order over the supermartingales and the un-
affecting condition [1, 13], which are hard to be fulfilled in
complicated situations. The simple probabilistic program
presented in Example 1.1 has no LexRSM . Also, the unaffect-
ing condition can not be met in this example. But actually,
we can prove a.s termination of this program by a collection
of linear ranking supermartingales and we do not require a
lexicographic order or the unaffecting condition of them.
When we look at this program, two traces in the while

loop can be found. The first trace is ρ1 = x , 0 x > 0
prob(0.5) x := x − 1 , and the second is ρ2 = x , 0
x ≤ 0 x := x + 1 . If we leave out the semantic of the
program, ρ1 and ρ2 can be arbitrarily interleaved during pro-
gram executing. Suppose the program is not almost-surely
(a.s.) terminating, then the set of non-terminating traces
should be T = (ρ1 |ρ2)ω . We can easily prove that the sub-
set T1 = ρ1

ω is a.s. terminating by a ranking supermartin-
gale x , since the integer variable x is decreased to 0 almost-
surely. For the same reason, we can prove that another subset
T2 = ρ2

ω is a.s. terminating by a ranking supermartingale
−x . Then, the remaining subsets of T are the cases of ρ1
and ρ2 interleaving, i.e., T3 = ((ρ1+ρ2) | (ρ2+ρ1)) (ρ1 |ρ2)ω .
It can be easily found that all of the trace in T3 are infeasi-
ble since the sequential compositon of either ρ1ρ2 or ρ2ρ1
is blocked. Thus T3 is also a.s terminating. Meanwhile, we
have T ⊆ T1 ∪ T2 ∪ T3. In this way, we have proved the a.s
termination of this probabilistic program.
Such a decomposition-based approach has many advan-

tages compared to the methods mentioned above. In general,
synthesizing a.s. terminating arguments for anω-regular sub-
set should be more efficient than that for the entire program.
The a.s. terminating arguments for the specialized subsets
are also rather simple, i.e., we propose a notion of localized
ranking supermartingales for proving a.s termination of the
ω-regular trace sets. The decomposition-based approach is
also naturally parallelizable. Actually, analogous approaches
are proved to be efficient in proving termination of large-
scale classical programs [9, 18]. However, these approaches
can not be applied to probabilistic programs. They are aimed
at proving that every single trace is terminating. But in prob-
abilistic setting, a.s. termination require us to prove a set of
traces terminating with probability one. Nevertheless, some
non-terminating traces with probability zero can still exist.
The theoretic foundation of the decomposition-based ap-
proach in probabilistic setting is rather intricate. Moreover,
the so-called rank certificates of these approaches is also not
applicable to probabilistic programs. We resolve all of the
problems above by proposing a brand new decomposition-
based approach.

We summarize our main contributions to proving a.s ter-
mination as below:

• We propose a new approach to a.s. termination which
is based on ω-regular decomposition. Our approach is
applicable to probabilistic programs with rather com-
plex control-flow structure.
• We propose a notion of localized ranking supermartin-
gale to prove a.s termination of the ω-regular proba-
bilistic trace sets, which can be synthesized efficiently.
• We prove the soundness of our approach, as well its
relative completeness.
• We show our approach is applicable to some hard cases.
The evaluation on the benchmarks of previous works
shows the significant efficiency of our approach.

Example 1.1. The variable x is integer-valued.

1 while x , 0 do
2 if x > 0 then
3 if prob (0.5) then x := x - 1;

4 else x := x + 1; fi
5 od

2 Preliminaries
2.1 Basic Notions
For a set A, we denote the cardinality of A as |A|, and denote
the power set of A as 2A. We denote by N, N0, N0, Z and
R the sets of all positive integers, non-negative integers,
non-negative integers with +∞, integers and real numbers,
respectively. We use boldface notation to denote vectors, e.g.
x, y, etc. We denote the i-th component of a vector x by x[i].

2.2 Omega-Regular Language and Büchi Automaton
Omega-Regular Language. Anω-languageL isω-regular

if it has the form
• Aω where A is a nonempty regular language not con-
taining the empty string.
• AB, the concatenation of a regular language A and an
ω-regular language B.
•
⋃n

i=1Ai where each Ai is ω-regular languages.
The ω-regular languages generalize the definition of regu-

lar languages to infinite words. They can be recognized by
Büchi automata.

Büchi Automata. A deterministic Büchi automaton is a
tuple A = (Q, Σ, δ ,q0, F ) that consists of the following com-
ponents:
• Q is a finite set of the states of A.
• Σ is a finite set called the alphabet of A.
• δ : Q × Σ→ Q is the transition function of A.
• q0 ∈ Q is the initial state of A.
• F ⊆ Q is a set of accepting states of A.

The ω-regular language recognized by the Büchi automa-
tonA is denoted as L(A). For any string ρ over Σ, we say ρ
is accepted by A if and only if there exists q ∈ F occurring
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infinitely often in the run of ρ, denoted as ρ ∈ L(A). The set
of Büchi automata is closed under the operations of union,
intersection, concatenation and complementation.

2.3 Probability Theory
Measure and Probability. Let Ω be a nonempty set. A

σ -algebra F is a class of subsets of Ω, such that Ω ∈ F
and F is closed under complement and countable union. A
set A is F -measurable if A ∈ F . A function f : Ω → R is
(F ,B(R))-measurable or just F -measurable if f −1(A) ∈ F
for all A ∈ B(R), where B(R) the smallest σ -algebra which
contains all the subintervals in R, called the Borel σ -algebra.
The set of measurable functions is closed under algebraic
operations and point-wise sequential limits, i.e., supk ∈N{ fk }
or lim infk ∈N{ fk }. A probability space is a triple (Ω, F , µ),
where Ω is a nonempty set (so-called sample space), F is a
σ -algebra on Ω, and µ : F → [0, 1] is a probability measure
on (Ω, F ) such that µ(Ω) = 1 and

∑∞
i=1 µ (Ai ) = µ

(⋃∞
i=1Ai

)
for all pairwise-disjoint sets A1,A2, · · · ∈ F .

RandomVariables, Filtrations and StoppingTime. Let
(Ω, F , µ) be a probability space. A random variable X is an
F -measurable function X : Ω → R. We denote by E(X )
the mathematical expectation of X such that E(X ) ≜

∫
Ω
Xdµ,

where
∫
is the Lebesgue integral [2]. A sequence ofσ -algebra

{Fi }
∞
i=0 is called a filtration if Fj ⊆ Fk ⊆ F for all j ≤ k . The

increasing sequence of σ -algebras can represent the growing
amounts of the information. In addition, (Ω, F , {Fi }∞i=0, µ) is
called filtered probability space. LetT : Ω → N0 be a random
variable defined on that filtered probability space. Then T is
a stopping time w.r.t. {Fi }∞i=0 if {T ≤ i} is Fi -measurable for
all i ∈ N0.

Conditional Expectation. Let (Ω, F , µ) be a probability
space, X : Ω → R a random variable on that probability
space with finite expectation, and H ⊆ F a sub-sigma-
algebra of F . A conditional expectation of X , denoted as
E(X |H), is anH -measurable function which satisfies:∫

H

E(X |H)dµ =
∫
H

Xdµ

The definition above does not guarantee that the conditional
expectation is existing or uniquely defined. Sometimes the
uniform integrability [2] of X is required. In this paper, we
employ Proposition 3.1 from [1] to guarantee the existence
of the conditional expectation, i.e., E(|X |) < ∞ or X is real-
valued and non-negative. In the rest of this paper, we suppose
it is satisfied acquiescently.

Supermartingales andRanking Supermartingales. Let
(Ω, F , {Fi }

∞
i=0, µ) be a filtered probability space. A stochastic

process {Xi }
∞
i=0 is a supermartingale w.r.t. {Fi }∞i=0 if E(Xn+1 |

Fn) ≤ Xn . Moreover, let ϵ ≥ 0 andT be a stopping time w.r.t.
{Fi }

∞
i=0. {Xi }

∞
i=0 is an ϵ-ranking supermartingale if Xn ≥ 0

and E(Xn+1 |Fn) ≤ Xn − ϵ1{T >n } .

2.4 Probabilistic Programs
2.4.1 Syntax. The grammar of probabilistic programs is
presented below.

⟨statement⟩ ::= ⟨assignment⟩ | ‘skip’
| ⟨statement⟩ ‘;’ ⟨statement⟩
| ‘if’ ⟨ndpbexpr⟩ ‘then’ ⟨statement⟩

‘else’ ⟨statement⟩ ‘fi’
| ‘while’ ⟨bexpr⟩ ‘do’ ⟨statement⟩ ‘od’

⟨assignment⟩ ::= ⟨pvar⟩ ‘:=’ ⟨expr⟩
| ⟨pvar⟩ ‘:=’ ⟨distribution⟩

⟨expr⟩ ::= ⟨constant⟩ | ⟨pvar⟩
| ⟨constant⟩ ‘·’ ⟨pvar⟩
| ⟨expr⟩ ‘+’ ⟨expr⟩ | ⟨expr⟩ ‘-’ ⟨expr⟩

⟨bexpr⟩ ::= ⟨expr⟩ ‘>’ ⟨expr⟩ | ⟨expr⟩ ‘<’ ⟨expr⟩
| ⟨expr⟩ ‘=’ ⟨expr⟩
| ⟨bexpr⟩ ‘and’ ⟨bexpr⟩
| ⟨bexpr⟩ ‘or’ ⟨bexpr⟩
| ‘not’ ⟨bexpr⟩

⟨ndpbexpr⟩ ::= ‘*’ | ‘prob(p)’ | ⟨bexpr⟩

Here ⟨pvar⟩ is the variables appearing in probabilistic pro-
grams. ⟨distribution⟩ stands for the values sampled from a
probability distribution like uniform, exponential, normal, etc.
The production ⟨ndpbexpr⟩ is the guard of if-then-else
and while statements. It can be “*”, which represents a
non-deterministic choice between the branches, or prob(p),
which represents the probabilistic choices P1 ⊕p P2 in the
style of McIver et al. [24]. This notation can be considered as
syntax sugar for “c := uniform(0, 1); if c < p then P1 else
P2 fi”. The guard can also be a predicate ⟨bexpr⟩ represent-
ing the deterministic conditional branching. The operators
of the logic and the arithmetic can be extended naturally, e.g.
≥, ≤, ,, etc.

Example 2.1. An example of the probabilistic program be-
low is first presented in [1]. It has a 3-dimensional lexico-
graphic supermartingale. We employ it to demonstrate our
decomposition-based approach.

0 assume x ≥ 0 and y ≥ 0;

1 while x ≥ 0 and y ≥ 0 do
2 if * then
3 if prob (0.5) then
4 x := x - 2;

5 else skip; fi
6 else
7 x := 2x; y := y - 1;

8 fi
9 od

2.4.2 Semantics. The semantics of a real-valued proba-
bilistic program can be defined as an uncountable state-space
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ℓ0

ℓ1

ℓf ℓ4

ℓ1′ ℓ2

ℓ5

ℓ3

ℓ7ℓ7′

x ≥ 0 ∧ y ≥ 0

x < 0 ∨ y < 0

x ≥ 0 y ≥ 0 ∗

prob(0.5)

prob(0.5)

∗

x := 2x

y := y − 1

x := x − 2

skip

Figure 1. pCFA of Example 2.1.

Markov decision process. We define its semantics on the so-
called probabilistic control-flow automaton (pCFA) and asso-
ciate each program with a set of stochastic processes.

Probabilistic Control-flow Automata. The probabilis-
tic control-flow automaton is a kind of representation of the
probabilistic programs. It is a probabilistic generalization of
the program graph [25] or the control-flow automaton [3] of
classical programs. It can also be regarded as a variant of
the probabilistic control-flow graphs [7], where the nodes are
the program locations and each edge is labeled with a single
program statement.

Definition 2.2 (Probabilistic Control-flow Automaton). A
probabilistic control-flow automaton is a tuple P = (L,∆, Σ
V , ℓinit, ℓterm, F) where
• L is a set of locations.
• Σ is a set of statements labeled on the control-flow
edges.
• ∆ ⊆ L × Σ × L is a set of transitions representing the
control-flow edges.
• V is a set of variables occurring in statements of Σ.
• ℓinit ∈ L is the initial location.
• ℓterm ∈ L is the terminating location.
• F ⊆ L is a set of accepting states.

For every pCFA, we require that each location has at least
one outgoing transition.We assume there is a self-loop transi-
tion τid with an id statement stid on the location ℓterm. The id
statement is like the skip statement which does not change
the value of any program variables. We also assume that
ℓterm follows the location after the last outermost loop of
the probabilistic programs. Every assignment operation is a
tuple (i,u), where 1 ≤ i ≤ |V | is an index of the target vari-
able and the update elementu is a B(R)-measurable function
u : R |V | → R or a value sampled form a probability distribu-
tiond with expectation E[d]. In a pCFA, there can be multiple
control-flow edges from location ℓi to ℓj . For each transition
τ ∈ ∆, we have τ ≜ (ℓi , st, ℓj ) such that ℓi is the source loca-
tion and ℓj is the target location. We denote the statement st
of τ as St(τ ). If St(τ ) is a deterministic branching statement,

we denote the guard predicate of τ as G(τ ). If St(τ ) is a prob-
abilistic branching statement, we denote the probability of τ
as Pr (τ ). In this case, we require there is another transition
τ ′ outgoing form ℓi such that Pr (τ ′) = 1 − Pr (τ ). We call
τ ′ the complementary transition of τ . This requirement is
important and we call it probability completeness.

It is intuitively clear that any probabilistic program can be
naturally transformed into a pCFA. The method is similar to
the standard transformation method from a probabilistic pro-
grams to its pCFG [7].Whenwe transform a probabilistic pro-
gram into a pCFA, if-then-else and while statements are
replaced by assume statements on the control-flow edges.We
omit the keyword “assume” and label only the ⟨ndpbexpr⟩
on the edges, i.e., a predicate, a probability or a star. Dif-
ferent to the ⟨statement⟩ defined in the grammar, we call
the statements labeled on the control-flow edges the unitary
statements. The unitary statements can be considered as the
smallest units of the statements. In the rest of this paper,
we always consider the unitary statements instead of the
statements defined in the grammar.

Configurations, Runs and Traces. A configuration of
a pCFA P is a tuple C ≜ (ℓ, x), where ℓ is a location of P and
x is an |V |-dimensional vector. We say that a transition τ is
enabled on a configuration (ℓ, x) if ℓ is the source location
of τ and (a) St(τ ) is a deterministic branching statement
and x |= G(τ ), or (b) St(τ ) is not a deterministic branching
statement. We say (ℓ′, x′) is a successor configuration of (ℓ, x)
via a transition τ = (ℓ, st, ℓ′) if x′ is calculated following:

• If St(τ ) is not an assignment statement, then x′ = x.
• If St(τ ) is an assignment statement with update tuple
(j,u), then x′ equals to (x with x[j] ← u(x)) if u is a
B(R)-measurable function, or equals to a sample value
from u if u is a distribution.

Associate P with a set of initial vectors Ξinit and then
we can define the paths on P . A computation of length
k in P is a finite sequence of configurations π ≜ (ℓ0, x0)
· · · (ℓk , xk ) such that ℓ0 = ℓinit, x0 ∈ Ξinit , and the configu-
ration (ℓi+1, xi+1) is a successor configuration of (ℓi , xi ) for
each 0 ≤ i < k . A run in P is an infinite sequence of config-
urations whose every finite prefix is a computation. Mean-
while, based on the unitary statements, the computations
and runs can also be defined as a sequence of statements,
i.e., πΣ ≜ st0 st1 · · · , where st0 is a virtual statement as-
signing the program variables to the initial vector x0 and
each sti is St(τi ) such that τi is enabled on the configura-
tion (ℓi−1, xi−1). A statement trace is a sequence of unitary
statements ρ ≜ st1 · · · stk · · · , which represents a set of
computations or runs beginning with any initial vectors. We
say a run π is terminating if it reaches a configuration whose
first component is ℓterm, or equivalently, πΣ contains stid . We
say a trace ρ is terminating if it contains stid .
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Remark 1. It is important that the pCFA P can be viewed
as a Büchi automaton. The locations in L are the states of the
Büchi automaton. The set of unitary statements Σ is the alpha-
bet. The locations except the terminating location ℓterm are ac-
cepting states. As a result, the ω-regular languages recognized
by P are obviously the statement traces representing the non-
terminating runs of P, i.e., {ρ | ρ is not terminating} ⊆ L(P).

Example 2.3. Figure 1 is the pCFA transformed from the
probabilistic program in Example 2.1. The set of unitary
statements is Σ ≜ { x ≥ 0 , y ≥ 0 , x < 0 , y < 0 ,
prob(0.5) , ∗ , x := x − 2 , x := 2x , y := y − 1 }.
Except the terminating location ℓf , other locations are all
accepting states.

Stochastic Process. The probabilistic behaviors of P can
be quantitatively captured by constructing a suitable prob-
ability measure over the set of its runs. However, the non-
deterministic behaviors are not allowed in the probability
space. There are two kind of non-deterministic behaviors in
a pCFA, i.e., (a) the non-deterministic branching statements,
and (b) multiple transitions enabled on a given configura-
tion (ℓ, x). We do not distinguish between these two kinds
of non-determinism. We employ the automaton scheduler to
resolve the non-determinism.

Definition 2.4 (Automaton Scheduler). An automaton sche-
duler of a pCFA P is a function σ assigning to every compu-
tation π a probability distribution on its successor transition.
Let ∆e be the set of transitions enabled on the last configura-
tion of π . We select a non-probabilistic transition τ from ∆e
with probability 1, or a couple of probabilistic transitions, i.e.,
τ and its complementary transition τ ′, with the probability
p labeled on them. The unselected transitions in ∆e have
probability 0 on the distribution.

Remark 2. The automaton scheduler does not distinguish
between deterministic and non-deterministic transitions. So we
have a probability distribution on every step. It can be regarded
as a meticulous and special case of the scheduler defined in
[1]. In the rest of this paper, we call it scheduler for short.

A pCFA P associated with an initial vector xinit ∈ Ξinit
and a scheduler σ can uniquely define a stochastic process
{Ci }

∞
i=0 which produces a random run (ℓ0, x0) (ℓ1, x1) · · · . It

begins with the initial configuration (ℓ0, x0) = (ℓinit, xinit). As-
sume i steps have elapsed, i.e., a computation πi = (ℓ0, x0) · · ·
(ℓi , xi ) has already been produced. Then a transition τ is
sampled from the distribution σ (πi ) and the successor con-
figuration (ℓi+1, xi+1) of (ℓi , xi ) via the transition τ can be
calculated by definitions. We call {Ci }

∞
i=0 the canonical sto-

chastic process.

Remark 3. We can also formalize the definition of {Ci }
∞
i=0,

as well as its probability space (Ω, F , Pσxinit ), which is uniquely
determined by P together with xinit and σ . The sample space
Ω is a set of all random runs in P. Ci (π ) denotes the i-the

configuration on the random run π . Each Ci can be regarded
as a vector-valued function that maps a run π ∈ Ω to the
|V | + 1 dimensional vector space of the configurations. The
function Li (π ) and Si (π ) denote the i-th location and the i-th
statement of the random run π respectively. All of Ci , Li and
Si for i ∈ N0 should be F -measurable. Moreover, Pσxinit , as well
as F , are defined as the measure and the σ -algebra on the
infinite product space respectively. They are derived from the
production of the measurable spaces by the so-called cylin-
der construction in [2]. Besides, we can define the filtration
{Fi }

∞
i=0 such that each Fi is the smallest σ -algebra that makes

Cj , Lj and Sj Fj -measurable for 0 ≤ j ≤ i . The filtration rep-
resents the information gained along with the execution of the
probabilistic programs, with which we can distinguish more
and more runs diverged on the branching statements in Ω.

2.5 Almost-Sure Termination
Consider a pCFA P associated with an initial vector xinit
and a scheduler σ , we have the filtered probability space
(Ω, F , {Fi }

∞
i=0, P

σ
xinit ). Then we can define a random variable

Tm : Ω → N0 such that for each run π ∈ Ω, the value Tm(π )
represents the first time that the terminating location ℓterm
is reached (or equivalently, the statement stid appears in πΣ).
If π does not terminate, then Tm(π ) = ∞. We call Tm the
termination time of P. Tm is apparently a stopping time w.r.t.
{Fi }

∞
i=0. We are interested in the termination time of all the

runs, then we have the concept of almost-sure termination.

Definition 2.5 (Almost-Sure Termination [1]). A probabilis-
tic program P is almost-surely terminating if for any ini-
tial vector xinit ∈ Ξinit and any scheduler σ , it holds that
Pσxinit ({π | Tm(π ) < ∞}) = 1.

There are many supermartingale-based methods to prove
a.s. termination of probabilistic programs [1, 5, 7, 13]. Their
mathematical foundations are similar to the following theo-
rem.

Theorem 2.6 (Almost-Sure Termination). Given of a pCFA
P with a filtered probability space (Ω, F , {Fi }∞i=0, P

σ
xinit ), if

there exists an ϵ-ranking supermartingale w.r.t. {Fi }∞i=0, then
we have Pσxinit ({π | Tm(π ) < ∞}) = 1 .

3 Certified Stochastic Modules
As discussed in Section 1, we can partition the set of all
non-terminating runs into a collection of ω-regular subsets,
and then prove a.s. termination of the runs in each subset
by a collection of rather simple arguments. In analogous ap-
proaches [9, 18], ranking functions and invariants, together
with Floyd-Hoare logic, are used to prove termination of the
traces of classical programs, and to extend a single trace to
a general trace set. However, most of these notions are not
applicable to probabilistic programs. For this reason, we pro-
pose a brand new approach with the help of the notions in
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the probabilistic setting. In this section, we provide the the-
oretical foundations of our decomposition-based approach.
We first present the notion of stochastic modules, which can
represent a set of ω-regular probabilistic runs effectively. We
also propose the specialized a.s. terminating arguments for
stochastic modules. Then we present the notion of certified
stochastic modules, which can be used to generalize the ω-
regular set to a larger set while maintain the identical a.s.
terminating arguments.

3.1 Stochastic Modules
We use stochastic modules to represent the sets of probabilis-
tic runs. A stochastic module is a pCFA. But different to the
pCFA of the entire probabilistic program, the stochastic mod-
ule is constructed from a lasso-shape ω-statement trace and
it has exactly one accepting state. Thus, a stochastic module
recognizes an ω-regular language in the form of U · Vω ,
whereU andV are regular languages over the alphabet of
the unitary statements. We callU the stem of the trace and
V the loop of the trace. We denote the accepting state as
ℓa . It is clear that ℓa is visited infinitely often in every run
of the trace accepted by the stochastic module. A stochas-
tic module is called a lasso module if it is constructed from
a lasso-shape ω-statement trace directly. The control-flow
structure of a lasso module is rather simpler than that of an
entire probabilistic program. There is no interleaving of the
non-probabilistic branches in the loop part of the traces. So,
synthesizing a.s. terminating arguments for lasso modules
should be rather easy.

Example 3.1 (Stochastic Modules). Consider the pCFA P in
Figure 1. It can be decomposed into two stochastic modules.
Let ρs = x ≥ 0 y ≥ 0 represent the guards before the
main loop. Let ρ1 = ρs [ ( prob(0.5) x := x − 2 ) | (

prob(0.5) skip ) ] represent the trace in the main loop
with a probabilistic branching statement. Let ρ2 = ρs ∗

x := 2x y := y − 1 represent another trace in the main
loop. The set of non-terminating traces in this program is
T = ρs (ρ1ρ2)

ω . We can decompose T into two subset T1 =
ρs (ρ1 |ρ2)

∗ρ1
ω and T2 = ρs (ρ1

∗ρ2)
ω such that T ⊆ T1 ∪ T2.

Then we have the first stochastic module P1 recognizing T1,
which is presented in Figure 4. We will show how to build
it automatically in Section 4. The second stochastic module
P2 recognizes T2. Thus L(P) ⊆ L(P1) ∪ L(P2).

3.1.1 Localized Ranking Supermartingales. The rank-
ing supermartingale [1, 5, 13] for probabilistic programs
requires its expectation value to decrease by at least ϵ after
every step. However, our new notion of the localized ranking
supermartingales (LocRSM) for stochastic modules does not
require such a strict condition. It is more like the variant of
the supermartingale in the work of McIver et al. [23], i.e.,
its expectation value decreases after every loop iteration.

Our LocRSM just requires its expectation value to decrease
strictly after the accepting state ℓa is visited.

Example 3.2 (LocRSM). In Figure 3, the accepting state is
ℓ1. We can define a stochastic process R over the values of
the blue expressions, e.g. x + 3, x + 2, 0, on each step. We can
find that the expectation value of R decreases by at least 1
after ℓ1 is visited (x + 3→ x + 2 and x + 3→ 0) and dose not
increase after other locations are visited. So, R is a LocRSM .

Given a stochastic module A associated with an initial
vector xinit ∈ Ξinit and a scheduler σ , we can also define a
filtered probability space (ΩA, FA, {Fi }∞i=0, P

σ
xinit ). It is clear

that {Ln = ℓa} is Fn-measurable. Now we can give a formal
definition of LocRSM .

Definition 3.3 (Localized Ranking Supermartingale). Given
a constant ϵ > 0 and a stochastic moduleA, a stochastic pro-
cess {Ri }∞i=0 w.r.t. {Fi }

∞
i=0 is a localized ranking supermartin-

gale for A if Rn ≥ 0 and E(Rn+1 |Fn) ≤ Rn − ϵ1{Ln=ℓa } .

3.1.2 A.S. Termination of Stochastic Module. The no-
tion of LocRSM can be used to prove a.s termination. The
following lemma provides us the mathematical foundation
to prove a.s. termination of stochastic modules.

Lemma 3.4. Given a stochastic module A associated with
an initial vector xinit ∈ Ξinit and a scheduler σ , let (ΩA, FA,
{Fi }

∞
i=0, P

σ
xinit ) be the filtered probability space. If there is a

localized ranking supermartingale {Ri }∞i=0 forA w.r.t. {Fi }∞i=0,
then we have Pσxinit ({π | Tm(π ) =∞}) = 0.

Proof. For all ω ∈ Ω, let αk (ω) = sup{i ∈ N0 | i < k ∧
Li (ω) = ℓa}, βk (ω) = inf{i ∈ N0 | i > k ∧ Li (ω) = ℓa}
and ∆k (ω) = βk (ω) − αk (ω). All of αk , βk and ∆k are FA-
measurable. Because all of βk and ∆k are finite, we suppose
there exists an M ∈ N0 such that M is the upper bound of
βk and ∆k . Then we define a stochastic process {Yi }∞i=0 as
follows:

Yk (ω) =



Rk (ω) + (1 − k
M )ϵ if αk (ω) does not exist

Rk (ω) if Lk (ω) = ℓa or
Tm(ω) ≤ k

Rk (ω) + (1 − k−αk (ω)
M )ϵ if αk (ω) exists and

Tm(ω) > k

First, we can easily haveYn ≥ Rn ≥ 0 andE(|Yn |) < E(|Rn |)+
2ϵ < ∞. Since αk and {Tm ≤ k} are Fk -measurable, then
Yk is also Fk -measurable. Let ϵm = ϵ/M , we have ϵm > 0.
For {Ln = ℓa}, we have αn+1 = n and Yn − E(Yn+1 |Fn) =
Rn − E(Rn+1 + (1 − n+1−n

M )ϵ |Fn) = Rn − E(Rn+1 |Fn) − (1 −
1
M )ϵ ≥ ϵ/M = ϵm . In other cases, we can also prove Yn −
E(Yn+1 |Fn) ≥ ϵm . For {Tm ≤ n}, we can prove Yn − E(Yn+1 |
Fn) ≥ 0. Then by the definition of ϵ-ranking supermartin-
gales, {Yi }∞i=0 is obviously an ϵm-ranking supermartingale
w.r.t. {Fi }∞i=0. Hence, we have P

σ
xinit ({π | Tm(π ) = ∞}) = 0

according to Theorem 2.6. □
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3.2 Certified Stochastic Module
In this section, we present the notion of certified stochastic
module. It is a stochastic module together with a.s. terminat-
ing arguments (Lemma 3.4), i.e., the LocRSM and its support
invariants. The a.s. terminating arguments are based on the
notions of expression maps and invariant maps. Moreover, a
certified stochastic module built from a lasso module can be
extend to a more general certified stochastic module, which
contains more traces sharing the identical a.s. terminating
arguments. This extending is very important to the efficiency
of our approach.

3.2.1 Expression Map on Stochastic Modules. An ex-
pression map for a stochastic module A is a function η :
L → R |V | → R assigning to each location ℓ ∈ L a B(R)-
measurable function η(ℓ). Additionally, if all of the functions
η(ℓ) are affine, we call η a linear expression map. We can build
a stochastic process {Ri }∞i=0 based on an expression map η
and the canonical stochastic process {Ci ≜ (ℓi , xi )}∞i=0, i.e.,
Ri ≜ η(ℓi )(xi ) for all i ∈ N0. An example of this construction
can be found in Example 3.6. Moreover, if we want to prove
that {Ri }∞i=0 is a LocRSM , its ϵ-ranking and lower bounded
properties should be validated. These are achieved by the
notions of so-called pre-expectation transformers and support
invariants.

3.2.2 Pre-Expectation on StochasticModules. The pre-
expectation transformer of stochastic module is slightly dif-
ferent from that of pCFG. The main difference is there can
be multiple enabled transitions from a single configuration
on a stochastic module. We follow the pre-expectation trans-
former style of [1] and present the pre-expectation calculas
for stochastic modules. LetA be a stochastic module andη be
a (linear) expressionmap over the location set L ofA. Let τ =
(ℓ, st, ℓ′) be a transition enabled on (ℓ, x). The pre-expectation
transformer over η is a function Pre : L × R |V | × ∆→ R de-
fined as follows:
• If St(τ ) is an assignment statement with an update
tuple (j,u), we have:

Pre(ℓ, x, τ ) ≜ η(ℓ′)(x with x[j] ← z)

where z equals to u(x) if u is a B(R)-measurable func-
tion, or equals to E(u) if u is a distribution.
• If St(τ ) is a probabilistic branching statement, let ∆p
be the set of τ and its complementary transitions,

Pre(ℓ, x, τ ) ≜
∑

τ ′=(ℓ,st,ℓ′′)∈∆p

Pr (τ ′) · η(ℓ′′)(x)

It is clear that Pre(ℓ, x, τ ) = Pre(ℓ, x, τ ′) for all τ ′ ∈ ∆p .
• if St(τ ) is a deterministic or non-deterministic branch-
ing statement, then

Pre(ℓ, x, τ ) ≜ η(ℓ′)(x)

We say a transition τ = (ℓi , st, ℓj ) is ϵ-ranked by η from
(ℓi , x) if Pre(ℓi , x, τ ) ≤ η(ℓi )(x) − ϵ . It is the core concept

Skip
⊤

{P} skip {P}
Assign

⊤

{P[e/x]} x := e {P}

AssignDist
⊤

{∀e ∈ dist .P[e/x]} x := dist {P}

Cond
{P ∧ b} skip {Q}

{P} assume(b) {Q}

Prob
⊤

{P} prob(p) {P}
NonDt

⊤

{P} * {P}

Conseq
P → P ′ {P ′} st {Q ′} Q ′→ Q

{P} st {Q}

Figure 2. Probabilistic Floyd-Hoare Logic Rules

for validating the ϵ-ranking property of a LocRSM map, i.e.,
E(Rn+1 |Fn) ≤ Rn − ϵ1{Ln=ℓa } .

3.2.3 InvariantMapon StochasticModules. In general,
a LocRSM {Ri }∞i=0 always needs support invariants to guar-
antee that all of its random variables have a lower bound, i.e.,
Ri ≥ 0 for every i ∈ N0. In the CFG of classical programs,
Floyd-Hoare logic is engaged to check the inductive property
of the invariants. But it is not compatible with probabilistic
programs. Some slight modifications should be applied to
it. We call the new rules the probabilistic Floyd-Hoare Logic,
which is defined on the level of the unitary statements of
probabilistic programs. Its inference rules are presented in
Figure 2. A probabilistic Floyd-Hoare triple {P} st {Q} is
valid if it can be proved by the inference rules. An invari-
ant map for a stochastic module A is a function I assign-
ing to each location ℓ ∈ L a predicate such that for every
transition τ = (ℓ, st, ℓ′) ∈ ∆, the probabilistic Hoare triple
{I(ℓ)} st {I(ℓ′)} is valid. EachI(ℓ) is called the invariant on
ℓ. Additionally, if all the predicates of I are linear predicates,
we call I the linear invariant map.

Remark 4. The rule “AssignDist” for probabilistic assign-
ment seems so complicated since it needs reasoning about the
first-order logic formula with an universal quantifier. But in
general, the pre- and post-conditions of these rules are simple
linear invariants to characterizing the boundary of the affine
expressions. Thus, the domains of these invariants are always
simple convex sets. So, we just need to check the validity of the
quantifier-free formulas with the variable x replaced by the
minimal or the maximal value in its distribution.

3.2.4 A.S. Termination of Certified Stochastic Mod-
ule. Now we have all ingredients to give a formal definition
of the certified stochastic modules.

Definition 3.5 (Certified Stochastic Module). A certified
stochastic module is a tuple (A,η,I), whereA is a stochastic
module, η is an expression map and I is an invariant map
over L. We callη the LocRSM map andI the support invariant
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map. For all location ℓ ∈ L and all x |= I(ℓ), the map η has
the following properties,
• (Lower bounded) We require η(ℓ)(x) ≥ 0.
• (ϵ-ranking) All of the transition τ with source loca-
tion ℓ are ϵ-ranked,
– if ℓ = ℓa , we require ϵ > 0,
– if ℓ , ℓa , we require ϵ = 0.

Example 3.6. An example of the certified stochastic module
is presented in Figure 3. Both of the LocRSM map η and its
support invariant map I are presented in the framed labels
(blue and red respectively) near the nodes. The accepting
state ℓa is the node labeled with ℓ1. All of the η(ℓ) are lower
bounded by I(ℓ). All transitions outgo from ℓ1 are 1-ranked
and others are 0-ranked. For a certain initial vector together
with a scheduler, the stochastic process Ri ≜ η(ℓi )(xi ) for all
i ∈ N0 is R1 ≜ ∞,R2 ≜ x + 3, · · · . It is a LocRSM .

We have the following theorem to prove that the certified
stochastic modules are a.s. terminating.

Theorem 3.7 (A.S. Termination of Certified Stochastic Mod-
ule). Let (A,η,I) be a certified stochastic module. For any
initial vector xinit ∈ Ξinit and any scheduler σ , in the filtered
probability space (ΩA, FA, {Fi }∞i=0, P

σ
xinit ), we have P

σ
xinit ({π |

Tm(π ) =∞}) = 0.

Proof. We first prove that the stochastic process {Ri }∞i=0,
where Ri ≜ η(ℓi )(xi ), is a LocRSM for A w.r.t. FA . After-
wards this theorem is a direct consequence of Lemma 3.4.
It is clear that {Ri }∞i=0 is real-valued and Ri ≥ 0, as well
as Ri is Fi -measurable for i ∈ N0 by definitions. Then,
it remains to prove E(Ri+1 |Fi ) ≤ Ri − ϵ1{Li=ℓa } for i ∈
N0. Let ∆ℓi be the set of the transitions enabled on ℓi by
x |= I(ℓi ). For {Li = ℓa}, E(Ri+1 |Fi ) = E(η(ℓi+1)(xi+1)|Fn)
≤ max{Pre(ℓi , xi , τ )| τ ∈ ∆ℓi } ≤ η(ℓi )(xi ) − ϵ = Ri − ϵ .
Meanwhile, for {Li , ℓa}, by the same reason we can get
E(Ri+1 |Fi ) ≤ η(ℓi )(xi ) − 0 = Ri . Thus, {Ri }∞i=0 is a ϵ-LocRSM
for A with σ and xinit . Hence, we have Pσxinit ({π | Tm(π ) =
∞}) = 0 by Lemma 3.4. □

4 Decomposition-Based Approach
Section 3 provides all of the theoretic foundations and the
probabilistic notions of our decomposition-based approach.
In this section, we present the overall technical algorithm
in detail, such as constructing and extending the stochastic
modules, and synthesizing ϵ-LocRSM for stochastic modules.

4.1 Overall Algorithm
The overall algorithm of our decomposition-based approach
is presented in Algorithm 1. In the main loop, the pCFA P
of the probabilistic program P is decomposed into a set of
certified stochastic modules {Pi }ni=1. The satisfiability check-
ing of the formula on line 3 is achieved by the Büchi au-
tomata operations on P and {Pi }ni=1. If there does not exist

Algorithm 1: Decomposition algorithm.
input :A probabilistic program P
output : {P is a.s terminating, unknown}

1 n ← 0
2 P ← buildpCFA(P)
3 while ∃ρ. ρ ∈ L(P)\

⋃n
i=1 L(Pi ) do

4 ρc ← complementTrace(P, ρ)
5 (An,ηn,In) ← buildCertifiedModule(A(ρc ))
6 if (An,ηn,In) exists then
7 Pn ← extendCertifiedModule(An,ηn,In)

8 n ← n + 1
9 else return unknown

10 return P is a.s terminating

an ω-statement trace ρ belongs to L(P)\
⋃n

i=1 L(Pi ), the
a.s. termination of P is proved. Otherwise, we get a proba-
bility complete ω-statement trace ρc from P. The trace ρc
is also lasso-shape. We first try to prove the a.s. termina-
tion of the lasso module A(ρc ) by synthesizing a LocRSM
for it. If the synthesis is successful, the lasso module An
is extended to a general stochastic module Pn . Otherwise,
the algorithm returns unknown. 1 The synthesis algorithm is
polynomial-time [1]. On average, we need synthesize O(n)
LocRSMs, where n is the number of the branches in P . Thus,
the overall algorithm is also polynomial-time in expectation.
But we can sample multiple differentω-traces and synthesize
the certified stochastic modules simultaneously. The natural
parallelization can greatly speed up our algorithms for large-
scale probabilistic programs. The details of the algorithm are
presented in the following.

4.2 Constructing Stochastic Modules
On line 2 of Algorithm 1, we build a pCFA P from the prob-
abilistic program P . Again, we emphasize that P is also a
Büchi automaton such that all of the locations of P, expect
the terminating location ℓterm, are accepting states. Thus, all
of the non-terminating traces are accepted by P.
As we mentioned before, a stochastic module is a pCFA

built from a lasso-shapeω-statement trace ρ. It has exact one
accepting state ℓa . In our algorithm, ρ is sampled from the
Büchi automaton of L(P)\

⋃n
i=1 L(Pi ). However, the pCFA

built from ρ may not satisfy the probability completeness re-
quirement, i.e., ρ can only go through one of the probabilistic
branching statements but never go through its counterpart.
Such a sample trace ρ have no information about another
branch of the whole probabilistic branching statement. Thus,
we should complement ρ by simulating it on the pCFA and

1Actually, before return unknown, we can try to refute a.s. termination of ρc
by the notion of the stochastic invariants and the repulsing supermartingales
[8]. Refuting a.s. termination of ρc should also be simpler than the entire
probabilistic programs.
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when we meet a probabilistic transition without complemen-
tary transition, we add its complementary transition and the
following transitions to ρ. After that, we can get a comple-
mentedω-trace ρc . On line 4 of Algorithm 1, we complement
ρ on P and get a probability complete ω-statement trace ρc .
On line 5, we build a stochastic module A(ρc ).

Example 4.1. Consider the pCFA P in Figure 1, let ρs =
x ≥ 0 y ≥ 0 represent the sequential guards. An ω-
trace sampled from P could be ρ = ρs (ρs ∗ prob(0.5)
x := x − 2 )ω . It is obviously that ρ is not a probability
complete trace. Thus, we can simulate ρ on P and get a new
ω-trace ρc = ρs (ρs ∗ [ ( prob(0.5) x := x − 2 )

| ( prob(0.5) skip ) ] )ω . The stochastic module A1
constructed from ρc is presented in Figure 3 (The colorized
labels with gray frame can be ignored). The accepting state
ℓa of A1 is ℓ1.

4.3 Building Certified Stochastic Modules
On line 5 of Algorithm 1, a certified stochastic module (An,
ηn,In) is built. Since An is a lasso module, synthesizing
a.s. terminating arguments for it should be rather easy. In
this step, we synthesize a ϵ-LocRSM map ηn and its support
invariant mapIn forAn . These tasks can be accomplished by
the standard linear constraints based synthesis method using
Farkas’s Lemma. The details of these methods can be found
in [1, 5, 10, 27]. Nevertheless, the notion of LocRSMs is little
different to that of RSMs. We only require the expectation
value of LocRSM to strictly decrease when the accepting
state is visited. Specifically, we use the linear templates to
express LocRSM maps and invariant maps. The constraints
of Definition 3.5 can be encoded as following formulas.

∀x, ℓ.I(ℓ)(x) → η(ℓ)(x) ≥ 0 (1)
∀x, τ .I(ℓa)(x) → Pre(ℓa, x, τ ) ≤ η(ℓa)(x) − ϵ (2)
∀x, ℓ, τ .I(ℓ)(x) → Pre(ℓ, x, τ ) ≤ η(ℓ)(x) (3)

The universal quantifiers on x can be eliminated by Farkas’s
Lemma. Finally, we can get all of the parameters of LocRSM
expressions by constraint solving.

Example 4.2. The certified stochastic module built from the
lasso moduleA1 in Example 4.1 is presented in Figure 3. The
colorized labels near each node ℓ are the LocRSM expression
η(ℓ) and the invariant I(ℓ) respectively. In this example, the
linear template for synthesizing LocRSM expression on each
location ℓi is aix +biy. Let ϵ be 1. First, the expressions on all
locations should satisfy the lower bounded property (1), e.g.,
we have ∀x,y.I(ℓ1)(x,y) → a1x +b1y ≥ 0 on ℓ1. Second, all
transitions outgoing from the accepting state ℓ1 should be
1-ranked (2), e.g., for the transition (ℓ1, x ≥ 0, ℓ1′), we have
∀x,y.I(ℓ1)(x,y) → a1′x + b1′y ≤ a1x + b1y − 1. Moreover,
the transitions outgoing from other states can be 0-ranked
(3), e.g., for the probabilistic branching transition outgoing
from ℓ3, we have ∀x,y.I(ℓ3)(x,y) → 0.5 · (a4x + b4y) + 0.5 ·

ℓ0

∞ | ⊤

ℓ1
x + 3 | x ≥ −2

ℓf 0 | ⊤ ℓ4

x + 1 | x ≥ 0

ℓ1′

x + 2 | x ≥ 0

ℓ2

x + 2 | x ≥ 0

ℓ5

x + 3 | x ≥ 0

ℓ3

x + 2 | x ≥ 0

x ≥ 0 ∧ y ≥ 0

x < 0 ∨ y < 0

x ≥ 0

y ≥ 0

∗

prob(0.5)

prob(0.5)

x := x − 2

skip

Figure 3. Certified Stochastic Module (A1)

(a5x + b5y) ≤ a3x + b3y. By applying Farkas’s Lemma and
solving these constraints, we can get the LocRSM map in
Figure 3.

In addition, it is important to consider a special case sep-
arately in order to improve the synthesis efficiency. Recall
that an ω-statement trace ρ represents a set of runs begin-
ning with some initial vectors. But the set can be empty,
i.e., the run is blocked on a configuration. For example, the
statement trace ρ with a prefix x = uniform(0, 1) x < 0
is blocked after the statement x < 0 . Given a statement
trace ρ, if there exists an integer k ∈ N such that the proba-
bility of reaching the configuration (ℓk , x) is zero, we say ρ is
(almost-surely) infeasible. In our algorithm, let ρc be the form
of ρs .ρl ω where ρs is the stem and ρl is the loop. Suppose
ρs is a.s. infeasible, for every location ℓ in ρl , its invariant
I(ℓ) should be⊥. As a result, arbitrary expression map η can
satisfy the requirements in Definition 3.3. Thus, we should
check the feasibility of ρs before synthesis. Furthermore, we
can also check the feasibility of ρs .ρl , which can be achieved
by solving the constraints of the path formulas. The skills
for checking the validity of the probabilistic Floyd-Hoare
triples with universal quantifiers can also be used here. We
call the certified stochastic module of this case the trivial
module. Otherwise, we call it the non-trivial module.

4.4 Extending Certified Stochastic Modules
On line 7 of Algorithm 1, we extend the lasso stochastic
module An to a general stochastic module Pn such that Pn
also has the same a.s terminating arguments (ηn,In). The
generalization is a very important technique to improve the
efficiency of our algorithm. We can rule out the terminating
runs as many as possible by generalizing a lasso module. To
achieve this, we propose two generalization rules to modify
An as follows:

Rule 1: Merge Locations. If there exists a transition τ =
(ℓi , st, ℓj ) inAn such thatηn(ℓi ) = ηn(ℓj ) andIn(ℓi ) = In(ℓj ),
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ℓ0

∞ | ⊤

ℓ1
x + 3 | x ≥ −2

ℓf 0 | ⊤ ℓ4

x + 1 | x ≥ 0

ℓ5

x + 3 | x ≥ 0

ℓm

x + 2 | x ≥ 0

Σ′ = Σ/{ x := x − 2 , x := 2x , x < 0 }

x ≥ 0 ∧ y ≥ 0

x < 0 ∨ y < 0

x ≥ 0

prob(0.5)

prob(0.5)

Σ′

Σ′Σ

x := x − 2

skip

Σ′
Σ′

Figure 4. Extended Certified Stochastic Module (P1)

then we can merge the nodes of ℓi and ℓj . Besides, the tran-
sition τ should also be transformed to a self-loop transition
on the merged location.

Rule 2: Add Transitions. Let st be an unitary statement,
and ℓi and ℓj be the locations of An . Let ℓa be the accepting
state of An . We can add a transition τ = (ℓi , st, ℓj ) to An if
the probabilistic Hoare triple {I(ℓi )} st {I(ℓj )} is valid and
τ is ϵ-ranked by η from (ℓi , x) for all x |= I(ℓi ),

• when ℓi = ℓa , we require ϵ > 0,
• when ℓi , ℓa , we require ϵ = 0.

Moreover, if st is a probabilistic branching statement, we
should also add the corresponding complementary transition
after τ is added.
The above rules modify the control-flow structure of the
An while maintaining the properties of certified stochastic
modules required in Definition 3.5. After the modifications,
the extended stochastic module Pn accepts more traces than
the lasso module An does. We have L(An) ⊆ L(Pn).

Example 4.3 (Extending Certified Stochastic Module). The
extended certified stochastic module P1 is presented in Fig-
ure 4. Compared to the certified stochastic module in Fig-
ure 3, the locations ℓ1, ℓ1′ and ℓ3 are merged into a single
location ℓm . The transitions from ℓ1 to ℓ1′ and from ℓ1′ to
ℓ2 are transformed to the self-loop transitions on ℓm . Be-
sides, some transitions which do not affect the variable x
are trivially added to some locations. Finally, the languages
recognized by P1 is L(P1) = Σ∗ ( x ≥ 0 Σ′∗ [ ( prob(0.5)
Σ′∗ x := x − 2 ) | ( prob(0.5) Σ′∗ skip ) ] )ω . Let T1 be
the first trace set in Example 4.1. It is clear that T1 ⊆ L(P1).
We can also find another certified stochastic module P2 by
our algorithm such that T2 ⊆ L(P2).

5 Soundness and Completeness
5.1 Soundness
We employ Theorem 5.2 to ensure the soundness of our
decomposition approach. To prove this theorem, we first
prove the following lemma.

Lemma 5.1. Given a pCFA P together with an initial val-
uation xinit ∈ Ξinit and a scheduler σ , we have a filtered
probability space (Ω, F , {Fi }∞i=0, P

σ
xinit ). For any {st j }, we have

Pσxinit (
⋂k

i=0{Si ▷ st j }) =
∏k

i=0 Pσi ({Si ▷ st j }), where k ∈ N0
and ▷ ∈ {=,,}.

Proof. The measurable space (Ω, F ) can be considered as the
cylinder construction on the production of the measurable
spaces (Ωσi , Fσi ) of the scheduler on i-th steps. Let Ai ≜
{Si ▷ st j }. It is clear thatAi is Fσi -measurable. Then our goal
is a direct consequence of Corollary 2.7.3 in [2]. □

Theorem 5.2 (Soundness). Let P be a probabilistic program
and P the pCFA of P. If P can be decomposed into a finite
set of a.s. terminating stochastic modules {Pi }ni=1 such that
L(P) ⊆

⋃n
i=1 L(Pi ), then P is a.s. terminating.

Proof. We can associate P with arbitrary scheduler σ and an
initial vector xinit ∈ Ξinit , then there is a probability space
(Ω, F , Pσxinit ). By Definition 2.5, P is a.s. terminating if we can
prove Pσxinit ({π | Tm(π ) = ∞}) = 0. Associate each Pi with
the same σ and xinit , we get a sequence of probability spaces
{(Ωi , F i , Pi )}ni=1 and we have Pi ({π | Tm(π ) = ∞}) = 0 by
the definition of a.s. termination. However, (Ω, F , Pσxinit ) and
{(Ωi , F i , Pi )}ni=1 are different probability space. So, our goal
Pσxinit ({π | Tm(π ) = ∞}) = 0 is not a direct consequence
of Pi ({π | Tm(π ) = ∞}) = 0 for 0 ≤ i ≤ n. Although
we can achieve it by constructing a uniform probability
space such that each Pi is a conditional probability in the
uniform probability space, this should be somewhat intri-
cate and technical. We prove this by contradiction. Given
a unitary statement st, the set {Sj = st} is F -measurable.
Moreover, given a run πΣ, the set limk

⋂k
j=0{Sj = Sj (πΣ)}

is also F -measurable. Because the initial vector xinit has
been uniquely determined, there is a one-to-one correspon-
dence between the sets of ρ and πΣ, denoted as f . We have
limk

⋃
ρ ∈L(Pi )

⋂k
j=0{Sj = Sj (f (ρ))} = Ω |i ⊆ Ωi and we can

prove Ω |i is both F - and F i -measurable. Since L(P) ⊆⋃n
i=1 L(Pi ), we can partition Ω into n pairwise disjoint sub-

set {Ω |i }ni=1 such that all of them are F -measurable. Let
Ai = {π | Tm(π ) = ∞} ∩ Ω |i . It is clear that Ai is F -
measurable. Suppose Pσxinit ({π | Tm(π ) = ∞}) > 0, since
{π | Tm(π ) = ∞} =

⋃n
i=1A

i in Ω, then there must be
some i∗ such that Pσxinit (A

i∗ ) > 0. Because P and Pi∗ are
associated with the same σ and xinit , let Bi =

⋃
ρ ∈L(Pi )

{Sj = Sj (f (ρ))}. Then by Lemma 5.1 we have Pσxinit (A
i∗ )

= Pσxinit (limk
⋂k

j=0{Sk , stid} ∩ Bi
∗

) = limk P
σ
xinit (

⋂k
j=0{Sj ,

stid}∩Bi
∗

)= limk
∏k

j=0 Pσj ({Sj , stid}∩Bi
∗

)= Pi
∗

(limk
⋂k

j=0
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{Sj , stid} ∩ Bi
∗

) ≤ Pi
∗

({π | Tm(π ) = ∞}) = 0. Then we get
a contradiction and thus Pσxinit ({π | Tm(π ) = ∞}) = 0. Hence,
P is a.s. terminating. □

5.2 Relative Completeness
There is no result that an a.s. terminating probabilistic pro-
gram, real-valued and with non-determinism, has a ranking
supermartingale. Actually, all of the existing methods for
this problem are incomplete. At this point, we only prove the
relative completeness of our approach, i.e., if P has a LexRSM ,
it can be proved to be a.s terminating by our approach. More-
over, Example 2.1 and the cases in Section 6.1 show that our
approach is strict stronger than the LexRSM-based method.
The LexRSM-based method for proving a.s. termination is
proposed by Agrawal et al. [1]. We first present the basic
concepts of it.

Definition 5.3 (Lexicographic Ranking Supermartingale
Map). Let ϵ > 0. An n-dimensional lexicographic ϵ-ranking
supermartingale map (ϵ-LexRSM map) for a pCFA P sup-
ported by an invariantmapI is ann-dimensionalmeasurable
map ®η = (η1, · · · ,ηn) on P such that for each configuration
(ℓ, x) where ℓ , ℓterm and x |= I(ℓ) the following conditions
are satisfied:
• (Lower bounded) for all 1 ≤ j ≤ n, ηj (ℓ)(x) ≥ 0.
• for each transition τ enabled on (ℓ, x), there exists
1 ≤ j ≤ n such that
– (ϵ-Ranking) τ is ϵ-ranked by ηj from (ℓ, x).
– (Unaffecting) for all 1 ≤ j ′ < j we have that τ is
0-ranked by ηj′ from (ℓ, x).

Theorem 5.4 ([1] Theorem 4.8). Let P be the pCFA of a prob-
abilistic program. Assume that there exists an ϵ > 0 and an n-
dimensional ϵ-LexRSM map ®η = (η1, . . . ,ηn) for P supported
by an invariant map I. Then P terminates almost-surely.

Given a pCFA P with an n-dimensional ϵ-LexRSM map
®η, the transition set |∆| is finite. For a transition τ ∈ ∆, let
(ℓ, x) |= I(ℓ) where ℓ is the source location of τ . We say τ
has level j if τ is ϵ-ranked by ηj from (ℓ, x) and 0-ranked by
ηj′ from (ℓ, x) for all 1 ≤ j ′ < j. The minimal level of τ is
denoted as lev(τ ). We can group the transition set ∆ into n
subsets such that ∆i ≜ {τ | lev(τ ) = i} for 1 ≤ i ≤ n. In the
following part, we do not distinguish between the transition
τ and the statement St(τ ) labeled on τ .

Theorem 5.5 (Relative Completeness to LexRSM 2). Let P
be the pCFA of a probabilistic program. If P can be proved
to be a.s. terminating by Theorem 5.4, then P can also be
decomposed into n certified stochastic modules.

Proof. Let ®η = (η1, . . . ,ηn) be the ϵ-LexRSM map and I its
support invariant map for P. Let T(P) be the set of all
2The proof of this theorem can be naturally extended to the specialized
form for classical programs.

traces in P. It is obviously that T(P) ⊆ ∆ω . Let Ti ≜ T ∩
((∆i+1 | · · · | ∆n)

∗.∆i )
ω . Because ∆ =

⋃n
i=1 ∆i , we have⋃n

i=1 Ti = T ∩ ∆ω = T . Thus, T can be decomposed into n
subsets Ti for 1 ≤ i ≤ n. Next, we show that each trace set
Ti can be transformed into a certified stochastic module. It is
clear that each Ti is anω-regular languages over the alphabet
Σ and there exists a stochastic module Ai recognizes Ti ,
i.e., Ti = L(Ai ). We notice that each ηi and I are well-
defined on the location set Li of each Ai . The projections
of ηi and I to Li are η′i and Ii . Then, by Definition 3.5 and
Definition 5.3, we can find that each η′i is a ϵ-LocRSM map
forAi supported by the invariant mapIi . Then (Ai ,η

′
i ,Ii ) is

a certified stochastic module. Hence, P can be decomposed
into n certified stochastic modules. □

6 Evaluations
In this section, we show the efficiency of our approach by
some hard cases and the benchmarks from [1].

6.1 Case Studies
Case 1. The probabilistic program of this case is presented

in Case 1, where the variables are integer-valued. It is a.s
terminating but also have no LexRSM . The basic traces in
this case are:
ρ0 = 0 ≤ id ∧ id ≤ max tmp := id + uniform{0, 1}

ρ1 = tmp , id tmp ≤ max tmp := tmp + uniform{0, 1}

ρ2 = tmp , id tmp > max tmp := 0

Then we have L(P) = ρ0(ρ1 |ρ2)
ω . Suppose we first get

an ω-trace ρc1 = ρ0ρ
ω
1 , the stochastic module A(ρc1) can

be proved to be a.s. terminating by η(ℓa) = tmp with the
support invariant I(ℓa) = tmp ≥ 0. Then the corresponding
certified module can be extended to a general module such
that L(P1) = (ρ0 |ρ1 |ρ2)∗ρ1ω . We can find another certified
stochastic module L(P2) = ρ0ρ

∗
1ρ2(ρ1

∗ρ2)
ω . It is a trivial

module. Then we have L(P) ⊆ L(P1) ∪ L(P2). As a result,
the a.s. termination of Case 1 is proved.

Case 2. The probabilistic program of this case is presented
in Case 2. There is a nested loop on line 3. If the branch-
ing condition of line 5 is “prob(0.5)”, there should be a
2-dimensional LexRSM for this program. Actually the pro-
gram is a.s terminating but has no LexRSM . That is because
two branches of the nested loop are executed in the same
number of times and the lexicographic method is not aware
of this. There are three basic traces in this case:
ρs = i ≥ 0 ∧ n > 0 j := 2 ∗ n

ρ1 = ρs j ≥ 0 j := j − n j ≥ n i := i − 1 i := i − uniform(0, 1)

ρ2 = ρs j ≥ 0 j := j − n j < n i := i + 1 i := i − uniform(0, 1)

ρ3 = ρs j < 0 i := i − uniform(0, 1)

We have L(P) = (ρ1 |ρ2 |ρ3)ω . We can build the first certified
module (P1,η,I) such that L(P1) = (ρ1ρ2)ω , η(ℓa) = i + 1
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Listing 1. Case 1
1 if 0 ≤ id and id ≤ max then

2 tmp := id + uniform{0, 1, 2};

3 while tmp , id do

4 if tmp ≤ max then

5 tmp := tmp + uniform{0, 1};

6 else tmp := 0; fi

7 od

8 else skip;

9 fi

Listing 2. Case 2
1 while i ≥ 0 and n > 0 do

2 j := 2 * n;

3 while j ≥ 0 do

4 j := j - n;

5 if j ≥ n then i := i + 1;

6 else i := i - 1; fi

7 od

8 i := i - uniform(0, 1);

9 od

Listing 3. Case 3
1 while x ≥ 4 and y ≥ 0 do

2 if * then

3 c := uniform(0, x);

4 if c ≥ 1 then x := x - 1;

5 else x := x + 1; fi

6 else

7 x := *; y := y - 1;

8 fi

9 od

and I(ℓa) = i ≥ −1. The traces in L(P) − L(P1) can be
proved to be a.s. terminating by several trivial modules.

Case 3. Case 3 is a variant of Example 2.1. The prob-
abilistic program in this case is also a.s. terminating but
the LexRSM can not be synthesized. Although the unaf-
fecting property can be satisfied, the ϵ-ranking property
of the first branch can not be validated by the synthesiz-
ing method. That is because the synthesizing method be-
comes over-approximate when some probabilistic variables
get involved in the guard predicate, e.g. the variable c . The
invariant about the variable c on line 4 is 0 ≤ c ≤ x and
both the guards of following two branches can be satisfied.
Then the synthesizing method requires both of these two
transitions are ϵ-ranked with ϵ > 0. It is obviously impossi-
ble and thus the synthesis fails. However, we can calculate
the expectation value of the candidate supermartingale ex-
pression x . Though non-linear arithmetics are required, we
can find that it decreases by at least 1/3. So, we can still
prove the a.s. termination of this case by our decomposition-
based approach. Because in Theorem 5.2, we do not require
any specific method to prove a.s. termination of stochastic
modules. We can decompose P as Example 4.1 and then
prove a.s. termination of the stochastic module P1 by the
method of [23], in which the weakest pre-condition style
expectation-transformer can handle the guards with proba-
bilistic variables.

6.2 On Benchmarks
We present the experimental results on the available bench-
marks from [1]. Most of these benchmarks can be proved
to be a.s. terminating by a n-dimensional LexRSM , where
2 ≤ n ≤ 3. We evaluate our approach on these benchmarks
with the help of Büchi Automizer [15, 18] and make compar-
ison to LexRSM-based method [1]. The results are presented
in Table 1. The column “#D.” represents the numbers of the
dimensions of the LexRSMs. The column “#T .” and column
“#N .” are the numbers of the trivial modules and the non-
trivial modules respectively used in our method. The right
most column are the sets of the LocRSM expressions on η(ℓa)
of the non-trivial modules. Some non-trivial modules have
the same η(ℓa). As we can see, our approach fails on just 1
benchmark while the LexRSM-based method on 5. For most

Table 1. Our approach v.s. LexRSM-based method

Benchmark #D. #T. #N. {η(ℓa )} for each Pi ∈ N .

alain 3 3 3 {n1, n2 }
catmouse 2 1 2 {−m + x , 2m − 2x + 1}

counterex1a - 2 10 {−2y + 2n + 1, x , 2y + 1}
counterex1c 2 2 8 {−2y + 2n + 1, y, x , 2y + 1}

easy1 1 0 1 {−2x + 79}
exmini 2 0 1 {−i − j + k + 101}

insertsort 3 2 0 ∅

ndecr 2 0 1 {i }
perfect 3 2 3 {2y2 − 2y1 + 1, y1 }
perfect2 3 1 4 {4y2 − 4y1 + 1, y2 − y1 + 1, · · · }
real2 - - - -

realbubble 3 2 3 {i , −j + i }
realselect 3 3 0 ∅

realshellsort - 4 1 {i }
serpent 3 3 5 {2x + 1, 2y + 1, −2y + 2n + 1}

sipmabubble 3 1 3 {2i + 1, i − j }
speedDis2 - 0 3 {−2z + 2x + 1, n − x }
speedN*iple 3 1 2 {m − y, n − x }
speedpldi2 2 1 1 {v1 }
speedpldi4 2 1 4 {i , i −m }

speedS*eDep - 2 4 {m − y, n − x }
speedS*gle2 2 0 2 {m − y, n − x }
unperfect 2 25 12 {20y2 − 20y1 + 9, y2 − y1 + 1, · · · }
unperfect⋆ 2 4 3 {−2y1 + 2y2 + 1, y1 }

wcet1 2 1 1 {i }
while2 3 2 3 {i , j }

of the benchmarks, the numbers of non-trivial modules are
closed to the dimensions of the LexRSMs. For some bench-
marks, our approach just needs no more than one non-trivial
module. All above proves the significant efficiency of our
approach. Nevertheless, there are fewer benchmarks that
our method needs much more non-trivial modules. The “un-
perfect” case needs reasoning on disjunctive invariant but
our invariant synthesis is weak at this. But if we add the in-
variant (y1 ≥ 2∨y1 ≤ 0) to its source code, i.e., “unperfect⋆”,
our approach can resolve it efficiently. For the “real2” case,
we find that it is not an a.s. terminating program.

7 Related Work
Supermatingale-Based Approaches. This kind of meth-

ods was first presented in [5]. It synthesizes a global ranking
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supermartingale and is applicable to a.s termination of sim-
ple probabilistic programs with real-valued variables but
without non-determinism. Chatterjee et al. [6] presented a
method to synthesize polynomial ranking supermartingales
for non-deterministic probabilistic programs with polyno-
mial guards and assignments. Huang et al. [19] proposed
new approaches for the a.s. termination problem based su-
permartingales with lower bounds on conditional absolute
difference and Central Limit Theorem. Chatterjee et al. [8]
proposed the stochastic invariants and repulsing supermartin-
gales for quantitative termination and reachability problems.
In [1, 7, 13, 20, 23], the ranking supermatingale-based ap-
proach is extended with non-determinism. The approach of
[13] can handle both non-determinism and continuous prob-
ability distributions over transitions. It required the uniform
integrability condition but was still shown to be somewhat
unsound in [20]. Huang et al. [20] strengthened the compo-
sitional approach in [13] to a sound approach by the notion
of descent supermartingale map. It required the so-called
strict decrease condition but did not require non-negativity
of supermartingales. The work [7] is about the termination
for probabilistic and non-deterministic recursive programs.
The so-called conditionally difference-bounded ranking super-
martingales was used to prove a.s. termination in this ap-
proach. Agrawal et al. [1] extended the ranking supermartin-
gale approach with lexicographic orderings. McIver et al.
[23] presented the “parametric” super-martingale methods
based on the expectation-transformer and weakest precondi-
tion reasoning. The most related works on a.s termination
are [1, 13, 20]. All of these approaches can be applied to the
probabilistic programs with complex control flow. However,
all of them require the lexicographic order or the unaffecting
condition and can not rule out the “non-terminating” cases
resulted from the infeasible paths.

Other Methods for A.S. Termination. Besides the rank-
ing supermatingale-based approaches, there are other meth-
ods to prove a.s. termination. [12] presented a sound and
complete method for proving termination of finite-state prob-
abilistic programs. In [4, 14], Lyapunov ranking functions
provided a sound and complete method for proving positive
termination of probabilistic programs with countable state
space and without non-determinism. In [22, 24] proposed
a bounded martingale-based method to prove a.s. termina-
tion of probabilistic programs with non-determinism but re-
stricted to discrete probabilistic choices. There are also some
proof rule-based approaches for a.s. termination analysis,
such as [21] for positive termination and [26] for recursive
probabilistic programs.

Decomposition-Based Methods. This kind of approach
to termination of classical programs was proposed in [18].
Chen et al. [9] presented an advanced version. The basic idea
of this method is the so-called trace abstraction, which was

presented in [16, 17]. All of these methods are not applicable
to the a.s terminating problem of probabilistic programs.

8 Conclusion and Future Work
In this work, we present a decomposition-based approach
to prove a.s. termination of probabilistic programs. Our ap-
proach is based on the notions of stochastic modules and
LocRSM . We prove the soundness and the relative complete-
ness of our approach. The evaluation on the benchmarks
of previous works shows the significant efficiency of our
approach. Furthermore, our approach can also be combined
with the a.s. termination refuting algorithm and make the
refutation more efficient. It can also be used to analysis ex-
pected termination time of probabilistic programs.
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