
Satisfiability Modulo Ordering Consistency Theory
for Multi-threaded Program Verification
Fei He∗†

School of Software
Tsinghua University

Beijing, China
hefei@tsinghua.edu.cn

Zhihang Sun
School of Software
Tsinghua University

Beijing, China
sunzh20@mails.tsinghua.edu.cn

Hongyu Fan
School of Software
Tsinghua University

Beijing, China
fhy18@mails.tsinghua.edu.cn

Abstract
Analyzing multi-threaded programs is hard due to the num-
ber of thread interleavings. Partial orders can be used for
modeling and analyzing multi-threaded programs. However,
there is no dedicated decision procedure for solving partial-
order constraints. In this paper, we propose a novel ordering
consistency theory for multi-threaded program verification
under sequential consistency, and we elaborate its theory
solver, which realizes incremental consistency checking, min-
imal conflict clause generation, and specialized theory prop-
agation to improve the efficiency of SMT solving. We con-
ducted extensive experiments on credible benchmarks; the
results show significant promotion of our approach.

CCS Concepts: • Software and its engineering → For-
mal software verification; • Theory of computation→
Logic and verification.

Keywords: Program verification, satisfiability modulo the-
ory, memory consistency model, concurrency

ACM Reference Format:
Fei He, Zhihang Sun, and Hongyu Fan. 2021. Satisfiability Modulo
Ordering Consistency Theory for Multi-threaded Program Veri-
fication. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’21), June 20–25, 2021, Virtual, Canada. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3453483.3454108

∗Corresponding author.
†Fei He is also with Key Laboratory for Information System Security, MoE
of China, and Beijing National Research Center for Information Science
and Technology, China.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00
https://doi.org/10.1145/3453483.3454108

1 Introduction
Shared-memory multi-threaded programs are commonly
used in nowadays computing systems. The number of inter-
leavings of a concurrent program makes its verification very
hard in practice. It is highly desirable to develop techniques
to alleviate the execution explosion problem of concurrent
program verification.
A memory consistency model [6] restricts the execution

order of shared-memory accesses from different threads. It
determines what value(s) a read access can return. In this
paper, we follow the well-known sequential consistency (SC)
model [42], where an execution path is an interleaving of
instructions from different threads.
A promising technique for verifying multi-threaded pro-

grams is bounded model checking [16, 19] using partial orders
to represent the happens-before relation between shared-
memory access events [10, 11]. In this way, one can spec-
ify the uncertain and complicated interleaving behaviors of
multi-threaded programs.
A popular approach (e.g., in [9–11, 50, 56]) for solving

partial order constraints is based on integer difference logic.
Each event is associated with an integer-valued clock, and
event orders are represented as differences among these
clock variables. Then the partial order constraints can be
solved by the decision procedure of integer difference logic.
This approach determines a clock value for each event, which
goes a little bit too far because we only care about the events’
order, not their exact clock values.
Moreover, there is an important axiom (Axiom 2 in Sec-

tion 4) in reasoning about multi-threaded programs, which
defines the derivation rule for the so-called from-read orders.
Existing approaches [9–11, 29, 50] encode all possible from-
read constraints, irrespective of whether they are actually
needed for verification. This method yields a large number
of from-read constraints, which significantly increases the
burden on the solver and degenerates its performance.
In this paper, we propose a new and novel ordering con-

sistency Tord theory (see Section 4) and elaborate its theory
solver (see Section 5) for multi-threaded program verifica-
tion. We no longer need to specify all possible from-read
orders in the encoding formula. One direct benefit is the
significant reduction in the size of the encoding formula.
Another benefit is on-demand deduction of from-read orders.

https://doi.org/10.1145/3453483.3454108
https://doi.org/10.1145/3453483.3454108

PLDI ’21, June 20–25, 2021, Virtual, Canada Fei He, Zhihang Sun, and Hongyu Fan

With a specialized theory propagation procedure (see Sec-
tion 5.4), a from-read order is derived only when the relevant
variables get assigned. In this way, we avoid the generation
of massive useless from-read constraints.

We develop an efficient theory solver for Tord and integrate
it into the DPLL(T) framework. Given a partial assignment,
the solver judges whether this assignment is consistent with
the theory axioms, which can further be reduced to detecting
cycles on a so-called event graph. In particular, we use an
incremental consistency checking algorithm (see Section 5.2)
that utilizes the previously computed results and attains
better efficiency. We also devise a conflict clause generation
algorithm (see Section 5.3) for finding the minimal reasons
of inconsistency. The complexity of this algorithm is linear
in the number of conflict clauses and the number of edges
in the event graph.

Last but not least, inspired by the idea of unit clause propa-
gation, we propose a novel technique for theory propagation.
We attempt to find the so-called unit edges with this tech-
nique and use these edges to enforce values of some unas-
signed variables (see Section 5.4). The decision iterations of
DPLL(T) can therefore be greatly reduced, and the whole
performance is significantly improved.

We have implemented the proposed approach in CBMC [41]
and Z3 [23], and conducted experiments on 1061 credible
benchmarks in the ConcurrencySafety category of SV-
COMP 2019. We compare our approach with state-of-the-art
concurrent verification tools, namely CBMC [10], Lazy-CSeq
[36], CPA-Seq [14, 15], and Dartagnan [28]. Our approach
solves 38, 119, and 897 more cases than CBMC, CPA-Seq, and
Dartagnan, respectively, and 6 less cases than Lazy-CSeq.
Counting on both-solved cases, our approach runs 2.33x,
90.04x, 139.47x and 7.20x faster, consumes 18.7%, 99.6%, 99.0%
and 94.5% less memory, than CBMC, CPA-Seq, Dartagnan,
and Lazy-CSeq, respectively.
We have also compared our approach with state-of-the-

art stateless model checking tools, namely, Nidhugg/rfsc[4]
and GenMC [39] on 9 benchmarks from the Nidhugg suite.
Experimental results show that as the scale (measured by the
number of traces) of the program increases, our approach is
superior to these tools in most cases.

In summary, our main contributions are:

• We propose a new ordering consistency theory Tord for
multi-threaded program verification.

• We elaborate an efficient theory solver for Tord, which
realizes incremental consistency checking, minimal
conflict clause generation, and specialized theory prop-
agation to improve the efficiency of SMT solving.

• We implement our approach in CBMC and Z3. Exper-
iments on SV-COMP concurrent benchmarks demon-
strate order of magnitude improvements of our ap-
proach over state-of-the-art tools.

The rest of the paper is organized as follows. Section 2
introduces some background knowledge. Section 3 demon-
strates our symbolic encoding of multi-threaded programs.
Section 4 proposes the new Tord theory. Section 5 develops a
theory solver for Tord. We report experimental results in Sec-
tion 6 and discuss related work in Section 7. Finally, Section 8
concludes this paper.

2 Preliminaries
2.1 Notions
In first-order logic, a term is a variable, a constant, or an
𝑛-ary function applied to 𝑛 terms; an atom is ⊥, ⊤, or an
𝑛-ary predicate applied to 𝑛 terms; a literal is an atom or
its negation. A first-order formula is built from literals using
Boolean connectives and quantifiers. A model 𝑀 consists
of a non-empty object set dom(𝑀), called the domain of
𝑀 , an assignment that maps each variable to an object in
dom(𝑀), and an interpretation for each constant, function
and predicate, respectively. A formula Φ is satisfiable if there
exists a model𝑀 so that𝑀 |= Φ; Φ is valid if for any model
𝑀 ,𝑀 |= Φ.

A first-order theory T is defined by a signature and a set of
axioms. The signature consists of constant symbols, function
symbols, and predicate symbols allowed in T ; the axioms
prescribe the intended meanings of these symbols. A T -
model is a model that satisfies all axioms of T . A formula Φ
is T -satisfiable if there exists a T -model𝑀 so that𝑀 |= Φ;
Φ is T -valid if it is satisfied by all T -models.

2.2 Satisfiability Modulo Theory and DPLL(T)
The satisfiability modulo theories (SMT) problem [12, 23, 24]
is a decision problem for formulas in some combination of
first-order background theories. A theory solver is required
for each background theory T , called T -solver, with which
the T -satisfiability of any conjunction of literals in T can
be determined.
DPLL(T) is the standard framework for solving SMT in-

stances. It extends the classical DPLL algorithm [22, 45]
with dedicated theory solvers. Figure 1 shows a high-level
overview of DPLL(T). Given an SMT formula Ψ, DPLL(T)
first replaces each atom with a fresh Boolean variable. This
process is called Boolean abstraction because the resulting
formula, denoted by B(Ψ), is an over-approximation of the
original formula Ψ with respect to satisfiability. The satisfia-
bility of B(Ψ) can be determined by a SAT solver. If B(Ψ) is
unsatisfiable, so is Ψ; but the reverse may not hold. IfB(Ψ) is
satisfiable and𝑀 is the satisfying model returned by the SAT
solver, we need to go ahead to check whether𝑀 is consistent
with the underlying first-order theories.

A theory solver can be integrated with DPLL(T) in an
online or offline scheme. Let 𝑀 be the current (partial) as-
signment to B(Ψ). In the online scheme, T -solver checks
T -consistency of 𝑀 as long as 𝑀 changes (even when 𝑀

Satisfiability Modulo Ordering Consistency Theory for Multi-threaded Program Verification PLDI ’21, June 20–25, 2021, Virtual, Canada

SAT
solver

Theory
solver

Satisfiable model
𝑀 for ℬ Ψ

𝑀 is T-inconsistent
Add a conflict
clause to Ψ

𝑀 is
T-consistent

Ψ is satisfiable

ℬ Ψ is
unsatisfiable

Ψ is unsatisfiable

SMT formula Ψ

Figure 1. Flow of DPLL(T)

is a partial assignment); in the offline scheme, consistency
checking is involved only when𝑀 is a satisfying model of
B(Ψ). If𝑀 is T -inconsistent, T -solver attempts to generate
a conflict clause and adds it to the clause set to prevent the
solver from repeating the same path in the future. A typi-
cal theory solver also supports theory propagation, which
deduces values of unassigned literals by theory axioms.

2.3 Concurrent Executions as Partial Orders
Our approach is built on the framework of Alglave et al. [10],
which models concurrent executions using partial orders.

An event 𝑒 is a read or write memory access with the
following attributes:

• type(𝑒): the type of 𝑒 , i.e., W if 𝑒 is a write access, and
R if 𝑒 is a read access,

• addr (𝑒): the memory address that 𝑒 accesses,
• guard (𝑒): the guard condition on which 𝑒 is enabled.

Let E be the set of all events. There are some relations
over events in E. The program order relation ≺po is a total
order of events from the same processor. The write serial-
ization relation ≺ws is a total order of writes with the same
address. The read-from relation ≺rf links a write event 𝑒1
(with type(𝑒1) = W) to a read event 𝑒2 (with type(𝑒2) = R), so
that 𝑒2 reads the value written by 𝑒1.

Moreover, given a pair of write events 𝑒1, 𝑒2 (with type(𝑒1) =
type(𝑒2) = W) and a read event 𝑒3 (with type(𝑒3) = R) so that
𝑒1 ≺ws 𝑒2 and 𝑒1 ≺rf 𝑒3, we know that 𝑒1 happens before 𝑒2,
and 𝑒3 reads from 𝑒1. To ensure that 𝑒3 does not read from 𝑒2,
𝑒3 must happen before 𝑒2. We call such relation the from-read
relation ≺fr.
An execution is valid if ≺po ∪ ≺rf ∪ ≺ws ∪ ≺fr does

not form a cycle, i.e., there exists a linearization of events
on this execution. An execution is correct if it satisfies the
correctness condition. An incorrect execution is also called
a counterexample. A program is correct iff it does not contain
any valid counterexample.

int x = 0, y = 0, m = 0, n = 0;
void* 𝑡ℎ𝑟1(void* arg) {
 if(x == 1) m = 1;
 else m = x;
 y = x + 1;
}
void* 𝑡ℎ𝑟2(void* arg) {
 if(y == 1) n = 1;
 else n = y;
 x = y + 1;
}
int main() {
 pthread_t t1, t2;
 pthread_create(&t1, 0, thr1, 0);
 pthread_create(&t2, 0, thr2, 0);
 pthread_join(t1, 0);
 pthread_join(t2, 0);
 assert(!(m == 1 && n == 1));
}

(a) The original program

int x1 = 0, y1 = 0, m1 = 0, n1 = 0;
void* 𝑡ℎ𝑟1(void* arg) {
 if(x2 == 1) m3 = 1;
 else m4 = x3;
 y2 = x4 + 1;
}
void* thr2(void* arg) {
 if(y3 == 1) n3 = 1;
 else n4 = y4;
 x5 = y5 + 1;
}
int main() {
 pthread_t t1, t2;
 pthread_create(&t1, 0, thr1, 0);
 pthread_create(&t2, 0, thr2, 0);
 pthread_join(t1, 0);
 pthread_join(t2, 0);
 assert(!(m2 == 1 && n2 == 1));
}

(b) The SSA form

Figure 2. A two-threaded program

3 Symbolic Encoding of Multi-threaded
Programs

In this section, we use a simple example to introduce our
symbolic encoding approach, discuss its differences with
other approaches, and finally establish the correctness of our
encoding approach.

3.1 Symbolic Encoding
Consider the program in Figure 2a, which contains three
threads, i.e., main, 𝑡1 and 𝑡2. Our goal is to verify that𝑚 and
𝑛 cannot both equal 1 at the end of the execution.

We first convert the original program to its static single
assignments (SSA) form [21], shown in Figure 2b, where each
occurrence (no matter write or read) of each shared variable
is replaced with a fresh copy of this variable. A similar SSA
transformation procedure is adopted in [10, 50, 56].

SSA Variables and Access Events. Given an SSA variable
𝑥𝑖 , we write L𝑥𝑖M for its corresponding access event. Espe-
cially, if the access type is known, we write L𝑥𝑖M𝑤 for a write
access and L𝑥𝑖M𝑟 for a read access. With respect to the at-
tributes, we have type(L𝑥𝑖M𝑤) = W, type(L𝑥𝑖M𝑟) = R, and
addr (L𝑥𝑖M𝑤) = addrL𝑥𝑖M𝑟 = 𝑥 .

Considering 𝑥 in the program (Figure 2a), there are five ac-
cesses to this variable. Five SSA variables, i.e., 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5,
are introduced in the SSA form (Figure 2b). Note that 𝑥1, 𝑥5
represent write accesses and 𝑥2, 𝑥3, 𝑥4 represent read ac-
cesses; their corresponding events are represented as L𝑥1M𝑤 ,
L𝑥2M𝑟 , L𝑥3M𝑟 , L𝑥4M𝑟 and L𝑥5M𝑤 , respectively.

Value Assignment Encoding. Value assignments of vari-
ables in each thread can be encoded by directly interpreting
the SSA statements. Considering thread 𝑡1, the encoding 𝜌

𝑡1
va

PLDI ’21, June 20–25, 2021, Virtual, Canada Fei He, Zhihang Sun, and Hongyu Fan

of its value assignments is:

(𝑥2 = 1 →𝑚3 = 1) ∧ (¬(𝑥2 = 1) →𝑚4 = 𝑥3) ∧ (𝑦2 = 𝑥4 + 1)
In a similar way, we get the encodings 𝜌𝑡2va and 𝜌main

va for
value assignments of threads 𝑡2 and main, respectively. Value
assignment encoding of the whole program is:

𝜌va := 𝜌𝑡1va ∧ 𝜌𝑡2va ∧ 𝜌main
va

Error Condition. We use 𝜌err to encode the error condition
of the program. Considering the example program, its error
condition is

𝜌err := (𝑚2 = 1) ∧ (𝑛2 = 1)
Note that the conjunction 𝜌va ∧ 𝜌err is not a sufficient

condition for verifying the correctness of the program. A
satisfying model of 𝜌va ∧ 𝜌err does not necessarily lead to a
valid execution.

Considering the example program in Figure 2, a satisfying
model of 𝜌va ∧ 𝜌err is:

{𝑥1 ↦→ 0, 𝑥2 ↦→ 1,𝑚3 ↦→ 1, 𝑥4 ↦→ 0, 𝑦2 ↦→ 1,
𝑦3 ↦→ 1, 𝑛3 ↦→ 1, 𝑦5 ↦→ 0, 𝑥5 ↦→ 1,𝑚2 ↦→ 1, · · · }

However, the execution corresponding to this model is in-
valid. Let us consider variable 𝑥 . Recall that L𝑥1M𝑤 and L𝑥5M𝑤
are write accesses, L𝑥2M𝑟 and L𝑥4M𝑟 are read accesses. By
𝑥1 = 0, 𝑥5 = 1 and 𝑥4 = 0, L𝑥4M𝑟 must read from L𝑥1M𝑤 . More-
over, since L𝑥2M𝑟 happens between L𝑥1M𝑤 and L𝑥4M𝑟 , L𝑥2M𝑟
should also read (the value of 0) from L𝑥1M𝑤 , which contra-
dicts the assignment 𝑥2 ↦→ 1 in the model.
The main reason is that 𝜌va ∧ 𝜌err does not restrict the

order of memory accesses. In the following, we formulate
order constraints of concurrent executions.

Program Order Constraints. We use 𝜌po to encode the
program order constraints. Program order in a thread repre-
sents the natural order of access events in this thread. For
example, the program order 𝜌𝑡1po of 𝑡1 is:

L𝑥2M ≺po L𝑚3M ≺po L𝑥3M ≺po L𝑚4M ≺po L𝑥4M ≺po L𝑦2M

Moreover, since 𝑡1 and 𝑡2 are child threads of main, all events
in 𝑡1 and 𝑡2 should happen between (in PO) the invocations
to pthread_create and pthread_join, respectively.

Read-From Variables and Constraints. Note that a read
event L𝑥𝑖M𝑟 reads a value written by a write event to the same
address. Let 𝜋 (L𝑥𝑖M𝑟) be the set of write accesses that L𝑥𝑖M𝑟
may read from. Because of thread interactions, 𝜋 (L𝑥𝑖M𝑟) may
contain write accesses in other threads. Consider the read
event L𝑥2M𝑟 in the example program:

𝜋 (L𝑥2M𝑟) = {L𝑥1M𝑤, L𝑥5M𝑤}
For eachwrite event L𝑥 𝑗 M𝑤 ∈ 𝜋 (L𝑥𝑖M𝑟), we define a Boolean

variable 𝑟 𝑓 𝑥𝑗,𝑖 , called a read-from (RF) variable, to specify
whether L𝑥𝑖M𝑟 reads its value from L𝑥 𝑗 M𝑤 . With respect to
each RF variable, we have the following constraints:

• RF-Val constraint: if 𝑟 𝑓 𝑥𝑗,𝑖 is true, both L𝑥𝑖M𝑟 and L𝑥 𝑗 M𝑤

are enabled, and their values are equal, i.e.,

𝑟 𝑓 𝑥𝑗,𝑖 → guard (L𝑥𝑖M𝑟) ∧ guard (L𝑥 𝑗 M𝑤) ∧ (𝑥𝑖 = 𝑥 𝑗)

• RF-Ord constraint: if 𝑟 𝑓 𝑥𝑗,𝑖 is true, the write event L𝑥 𝑗 M𝑤

must happen before the read event L𝑥𝑖M𝑟 , i.e.,

𝑟 𝑓 𝑥𝑗,𝑖 → L𝑥 𝑗 M𝑤 ≺rf L𝑥𝑖M𝑟

• RF-Some constraint: if the read event L𝑥𝑖M𝑟 is enabled,
it must obtain its value from a certain write event in
𝜋 (L𝑥𝑖M𝑟), i.e.,

guard (L𝑥𝑖M𝑟) →
∨

L𝑥 𝑗 M𝑤 ∈𝜋 (L𝑥𝑖M𝑟)
𝑟 𝑓 𝑥𝑗,𝑖

In the following, we use 𝜌rf-val, 𝜌rf-ord, and 𝜌rf-some to repre-
sent the conjunctions of all RF-Val, RF-Ord, and RF-Some
constraints over all RF variables, respectively.

Write-SerializationVariables andConstraints. For each
variable 𝑥 , let 𝛾 (𝑥) be the set of write accesses to 𝑥 . We need
to determine a total order among all enabled write accesses
in 𝛾 (𝑥). To this end, for each pair of write accesses L𝑥𝑖M𝑤 ,
L𝑥 𝑗 M𝑤 in 𝛾 (𝑥), we define a Boolean variable 𝑤𝑠𝑥𝑖,𝑗 , called a
write-serialization (WS) variable, to represent whether L𝑥𝑖M𝑤
happens before L𝑥 𝑗 M𝑤 .

With respect to each WS variable, we have the following
constraints:

• WS-Cond constraint: if 𝑤𝑠𝑥𝑖,𝑗 is true, both L𝑥𝑖M𝑤 and
L𝑥 𝑗 M𝑤 are enabled, i.e.,

𝑤𝑠𝑥𝑖,𝑗 → guard (L𝑥𝑖M𝑤) ∧ guard (L𝑥 𝑗 M𝑤)

• WS-Ord constraint: if𝑤𝑠𝑥𝑖,𝑗 is true, the write event L𝑥𝑖M
𝑤

must happen before L𝑥 𝑗 M𝑤 , i.e.,

𝑤𝑠𝑥𝑖,𝑗 → L𝑥𝑖M𝑤 ≺ws L𝑥 𝑗 M𝑤

• WS-Some constraint: if both L𝑥𝑖M𝑤 and L𝑥 𝑗 M𝑤 are en-
abled, one must happen before the other, i.e.,

guard (L𝑥𝑖M𝑤) ∧ guard (L𝑥 𝑗 M𝑤) → 𝑤𝑠𝑥𝑖,𝑗 ∨𝑤𝑠𝑥𝑗,𝑖

In the following, we use 𝜌ws-cond, 𝜌ws-ord and 𝜌ws-some to repre-
sent the conjunctions of allWS-Cond,WS-Ord andWS-Some
constraints over all WS variables, respectively.

From-ReadConstraints. Considering one read access L𝑥𝑖M𝑟
and two write accesses L𝑥 𝑗 M𝑤 , L𝑥𝑘M𝑤 to the same variable 𝑥 , if
L𝑥 𝑗 M𝑤 happens before L𝑥𝑘M𝑤 and L𝑥𝑖M𝑟 reads from L𝑥 𝑗 M𝑤 , L𝑥𝑖M𝑟
must happen before L𝑥𝑘M𝑤 ; otherwise, L𝑥𝑘M𝑤 is closer than
L𝑥 𝑗 M𝑤 to L𝑥𝑖M𝑟 , and L𝑥𝑖M𝑟 should read from L𝑥𝑘M𝑤 rather than
L𝑥 𝑗 M𝑤 . Formally, this rule can be formulated as the following
from-read (FR) constraint:

𝑟 𝑓 𝑥𝑗,𝑖 ∧𝑤𝑠𝑥
𝑗,𝑘

→ L𝑥𝑖M𝑟 ≺fr L𝑥𝑘M𝑤

Let 𝜌fr denote the conjunction of all FR constraints.
Most existing techniques [10, 50, 52] for concurrent pro-

gram verification include all from-read constraints in their

Satisfiability Modulo Ordering Consistency Theory for Multi-threaded Program Verification PLDI ’21, June 20–25, 2021, Virtual, Canada

encoding formulas. This is a safe choice to ensure the cor-
rectness of the SMT encoding. However, it is not practical.
For each FR constraint 𝑟 𝑓 𝑥𝑗,𝑖 ∧𝑤𝑠𝑥

𝑗,𝑘
→ L𝑥𝑖M𝑟 ≺fr L𝑥𝑘M𝑤 , only

when both 𝑟 𝑓 𝑥𝑗,𝑖 and𝑤𝑠
𝑥
𝑗,𝑘

are evaluated true can the ordering
L𝑥𝑖M𝑟 ≺fr L𝑥𝑘M𝑤 be activated. At the beginning of SMT solv-
ing, all RF and WS variables are unassigned – none of these
FR orders can be activated. For most of the time, only a small
portion of these FR constraints takes effect. Maintaining such
a large set of (unnecessary for most of the time) constraints
is expensive for the SMT solver. As a result, the efficiency of
SMT solving degenerates (see Section 6.3 for more details).

The Whole Encoding Formula. The whole encoding for-
mula for a program is:

Ψ := Φssa ∧ Φord (1)

where

Φssa = 𝜌va ∧ 𝜌err ∧ 𝜌𝑟 𝑓 −𝑣𝑎𝑙 ∧ 𝜌𝑟 𝑓 −𝑠𝑜𝑚𝑒

∧ 𝜌𝑤𝑠−𝑐𝑜𝑛𝑑 ∧ 𝜌𝑤𝑠−𝑠𝑜𝑚𝑒 (2)

represents the data and control flow of the program, and

Φord = 𝜌po ∧ 𝜌𝑟 𝑓 −𝑜𝑟𝑑 ∧ 𝜌𝑤𝑠−𝑜𝑟𝑑 (3)

represents the order constraints of the program.
Note that 𝜌fr is excluded from our encoding formula. In-

stead of adding all FR constraints in the SMT formula, we
prefer adding them during SMT solving in an “online” schema
– an FR order is derived and activated only when the corre-
sponding RF andWS variables are evaluated true.

Let 𝑋ssa, 𝑋rf, and 𝑋ws be the sets of SSA, RF , and WS vari-
ables, respectively. The RF and WS variables are also called
ordering variables. The formula Φssa is over 𝑋ssa ∪ 𝑋rf ∪ 𝑋ws,
and Φord is over 𝑋rf ∪ 𝑋ws. Actually, Φord is a “pure” formula
that contains only ordering variables and ordering literals;
Φssa is a formula that does not include any ordering literal.
To decide the satisfiability of Φssa, we can use any existing
solver that supports a sufficiently rich fragment of first-order
logic. To decide the satisfiability of Φord, we intend to develop
a dedicated theory solver.

3.2 Comparison to Other Approaches
Our encoding is built on [10, 11, 50, 52, 56]. Compared to
their encoding formulas, the most significant difference is
that our encoding does not include FR constraints, which
has already been discussed in the preceding section (also see
Section 6.3 for experimental results).
Secondly, the way we model ordering constraints is also

different. The existing techniques (e.g., [10, 29, 50]) use integer-
valued clocks to model the time of occurrence for each event,
and use differences between clock values to model the order
among events. Then, they can rely on the integer difference
logic to solve ordering constraints. However, note here we
do not need to compute the exact occurrence time of each

event, but only their orders. We thus intend to develop a
dedicated solver for ordering consistency theory.

Thirdly, compared to the encoding in [10], the meaning of
each RF orWS variable is slightly different. In our encoding,
if an RF or a WS variable is assigned true, the two related
events must both be enabled, while the encoding in [10]
has no such requirement. As a result, the derivation of FR
orders with our encoding need not consider guard condi-
tions anymore. This change is quite important, since the
guard conditions often involve arithmetic computation and
data structures, which can hardly be handled by a dedicated
theory solver for order constraints.

3.3 Correctness of the Encoding
Even though our encoding is slightly different from that
in [10], we can prove its correctness.

Theorem 1. The formula Ψ ∧ 𝜌fr is satisfiable iff there is a
valid counterexample in the program.

Proof. This can be proved by showing the equisatisfiability
of Ψ ∧ 𝜌fr and the encoding in [10]. The encoding formula
of [10] has been proved correct (by Theorem 1 of [10]); we
thus have the conclusion. □

4 Ordering Consistency Theory
This section presents our ordering consistency theory. We
first introduce its definition, then discuss a data structure
that is useful for its reasoning.

4.1 Theory Definition
The theory of ordering consistency Tord has the signature

Σord : {𝑒1, 𝑒2, · · · , ≺po, ≺ws, ≺rf, ≺fr},
where

• 𝑒1, 𝑒2, · · · are constants, intended to represent the ac-
cess events in E.

• ≺po, ≺ws, ≺rf, ≺fr are binary predicates, intended to rep-
resent the different orders among access events.

A Σord-atom is either a Boolean variable or a predicate
𝑒1 ≺ 𝑒2, where ≺ ∈ {≺po, ≺rf, ≺ws, ≺fr}. A Σord-formula is con-
structed from Σord-atoms using Boolean connectives. Recall
the order constraints 𝜌po, 𝜌𝑟 𝑓 −𝑜𝑟𝑑 and 𝜌𝑤𝑠−𝑜𝑟𝑑 (in Section 3).
They are all Boolean combinations of Σord-atoms, and thus
are Σord-formulas; the formula Φord = 𝜌po∧𝜌𝑟 𝑓 −𝑜𝑟𝑑 ∧𝜌𝑤𝑠−𝑜𝑟𝑑
is also a Σord-formula.
Now we discuss the axioms of Tord.

Axiom 1 (Partial Order). Predicates ≺po, ≺ws, ≺rf, ≺fr in Σord
are partial orders, and

• ≺ws, ≺rf, ≺fr are over accesses to the same memory ad-
dress;

• ∀𝑒1, 𝑒2. 𝑒1 ≺ws 𝑒2 → type(𝑒1) = type(𝑒2) = W;
• ∀𝑒1, 𝑒2. 𝑒1 ≺rf 𝑒2 → type(𝑒1) = W ∧ type(𝑒2) = R;

PLDI ’21, June 20–25, 2021, Virtual, Canada Fei He, Zhihang Sun, and Hongyu Fan

𝑚1

𝑛1

𝑥3

𝑚4

𝑥4

𝑚2

𝑛2

𝑦1

𝑥1

𝑚3

𝑥2

𝑦2

𝑦4

𝑛4

𝑦5

𝑛3

𝑦3

𝑥5

(a) Symbolic Event Graph

𝑚1

𝑛1

𝑥3

𝑚4

𝑥4

𝑚2

𝑛2

𝑦1

𝑥1

𝑚3

𝑥2

𝑦2

𝑦4

𝑛4

𝑦5

𝑛3

𝑦3

𝑥5

≺𝑟𝑓

≺𝑤𝑠

≺𝑓𝑟

(b) From-read propagation

𝑚1

𝑛1

𝑥3

𝑚4

𝑥4

𝑚2

𝑛2

𝑦1

𝑥1

𝑚3

𝑥2

𝑦2

𝑦4

𝑛4

𝑦5

𝑛3

𝑦3

𝑥5

≺𝑟𝑓 ≺𝑟𝑓

(c) A T -inconsistent assignment

Figure 3. Examples of theory propagation

• ∀𝑒1, 𝑒2. 𝑒1 ≺fr 𝑒2 → type(𝑒1) = R ∧ type(𝑒2) = W;

Axiom 2 (FR Derivation). For any two write events 𝑒1, 𝑒2 ∈ E
and a read event 𝑒3 ∈ Ewith 𝑎𝑑𝑑𝑟 (𝑒1) = 𝑎𝑑𝑑𝑟 (𝑒2) = 𝑎𝑑𝑑𝑟 (𝑒3),
type(𝑒1) = type(𝑒2) = W and type(𝑒3) = R, we have:

𝑒1 ≺rf 𝑒3 ∧ 𝑒1 ≺ws 𝑒2 ⇒ 𝑒3 ≺fr 𝑒2

Each predicate symbol in Σord defines a binary relation
over E. We use the same symbol for a predicate and the
binary relation it defines.

Axiom 3 (Acyclicity). Let ≺ be the union ≺po ∪ ≺ws ∪ ≺rf
∪ ≺fr, and ≺+ the transitive closure of ≺, then

∀𝑒.¬(𝑒 ≺+ 𝑒).

The above axioms define the intended semantics of ≺po,
≺ws, ≺rf, ≺fr, as we understand them in the preceding sec-
tions. Note that Axiom 3 should hold after any number of
applications of Axiom 2, i.e., after deriving any number of
≺fr orders.

4.2 Event Graph
Let 𝛼 : 𝑋rf ∪ 𝑋ws → {true, false, unassigned} be the current
assignment to ordering variables. Let ≺ be the set of orders
derived from 𝛼 . The event set E and the order set ≺ can be
represented as a graph, called an event graph, where events
are represented as nodes and orders as edges.

At the beginning of SMT solving, all ordering variables are
unassigned; no RF orWS edges are drawn on the event graph.
Since FR orders are derived from RF and WS orders, there
are no FR edges, either. Therefore, only PO edges present in
the graph at that moment. The event set E and the program
order PO make up the skeleton of the event graph. Later,
along with variable assignments, more edges are added to
the graph.

According to the axioms of Tord, on each edge addition,
we need to check whether this new edge leads to a cycle. If
this is the case, we say the current variable assignment is
invalid – we then need to analyze the event graph to find
the reason for the cycle. Otherwise, if there is no cycle, we
go ahead to apply Axiom 2 to derive FR edges. Note that if
any FR edge is derived, we need to check the consistency of
the current variable assignment again.

We associate each edge with a Boolean expression, called
derivation reason (abbreviated as reason), to indicate what
this edge is derived from.

• the reason for a PO edge is true, for this edge always
presents in the graph.

• the reason for an RF or aWS edge is the corresponding
ordering variable, for this edge is directly derived from
this variable.

• the reason for an FR edge is the conjunction of reasons
for the RF edge and the WS edge that derive this FR
edge.

The concept of derivation reason can be lifted to a path.
Let 𝑒1 ≺ 𝑒2 ≺ · · · ≺ 𝑒𝑛 be a path on the event graph, the
𝑟𝑒𝑎𝑠𝑜𝑛 for this path is the conjunction of 𝑟𝑒𝑎𝑠𝑜𝑛𝑠 for each
edge it passes, i.e.,

𝑟𝑒𝑎𝑠𝑜𝑛(𝑒1 ≺ 𝑒2 ≺ · · · ≺ 𝑒𝑛) =
𝑛−1∧
𝑖=1

𝑟𝑒𝑎𝑠𝑜𝑛(𝑒𝑖 ≺ 𝑒𝑖+1)

Figure 3 shows three event graphs that may occur during
SMT solving of the program in Figure 2. To differentiate
event types, we use grey and white nodes to represent write
and read events, respectively. Moreover, program orders are
drawn as solid lines, while others are drawn as dashed lines.
In the beginning, the event graph contains only PO edges,
as shown in Figure 3a. After some assignments, more edges
are added to the event graph. Figure 3b shows an updated

Satisfiability Modulo Ordering Consistency Theory for Multi-threaded Program Verification PLDI ’21, June 20–25, 2021, Virtual, Canada

Consistency
checking

Conflict clause
generation

No

Unit-edge
propagation

From-read
propagation

Yes

SAT Solver

assignment conflict clauses

assigned
literal

FR edge

Theory Solver

Figure 4. Tord-solver with DPLL(T)

event graph during SMT solving, in which L𝑛1M𝑤 ≺rf L𝑛2M𝑟
and L𝑛1M𝑤 ≺ws L𝑛4M𝑤 derive L𝑛2M𝑟 ≺fr L𝑛4M𝑤 . Figure 3c shows
another event graph, where its edges form a cycle, indicating
a Tord-inconsistency.

Similar structures to our event graph were defined in [10,
50, 56]. Note that the events discussed in this paper can
hold symbolic values, and thus our event graph is actually
a “symbolic” event graph. In [10], a so-called symbolic event
structure is defined, which, however, is used to depict pro-
gram order only. Moreover, the event order graph defined
in [56] represents a counterexample instead of a program.
In [50], an interference skeleton is defined, which equals the
skeleton of our event graph.

5 Theory Solver for Tord
This section presents our Tord-solver, with emphasis on algo-
rithms for consistency checking, conflict clause generation,
and theory propagation.

5.1 Overview
Figure 4 shows an overview of the Tord-solver. Each time an
ordering variable is assigned in the SAT solver, Tord-solver
performs consistency checking to detect whether a cycle
exists after the corresponding edge addition to the event
graph.
If the current assignment is Tord-consistent, Tord-solver

proceeds to: (1) determine values of unassigned literals by
using axioms of Tord (called unit-edge propagation), and (2)
deduce all possible FR edges with respect to the assignment
(called from-read propagation). If any unassigned literal is
assigned, the assigned value should be returned to the SAT
solver; if any FR edge is deduced, the consistency checking
needs to be invoked again.
If the current assignment is Tord-inconsistent, Tord-solver

computes conflict clauses (called conflict clause generation)
to record the inconsistency reason, returns them to DPLL(T)
to prevent the solver from going down the same path in the
future.

5.2 Consistency Checking
Each time an ordering variable is assigned true, Tord-solver
needs to insert the corresponding edge into the event graph
and perform consistency checking. Consistency checking
can be reduced to cycle detection on the event graph.

Due to complicated thread interactions, numerous order-
ing variables need to be assigned in DPLL(T), leading to
massive and frequent consistency checking. Besides, from-
read propagation can cause more edge insertions and more
consistency checking. The previous work [9] suggests a fresh
cycle detection on each consistency checking, which is inef-
ficient. Note that before an edge addition, the event graph
must be acyclic – otherwise, it must have been recognized in
the previous consistency checking. It is thus more practical
to perform cycle detection incrementally.

We employ an incremental cycle detection (ICD) algorithm [8,
13] to check Tord-consistency. Each node in the graph is la-
beled with a topological order [32], which is required to be
consistent with edges in the graph. A topological order ex-
ists for a directed graph (including the event graph) iff this
graph is acyclic. Once a new edge is inserted into the event
graph, Tord-solver reuses the previous topological order and
attempts to compute a new topological order incrementally.
If a new topological order is computed, the event graph is
acyclic, and the current assignment is Tord-consistent. Other-
wise, a Tord-inconsistency is reported.

The employed ICD algorithm is based on a two-way search
on the event graph and applies pseudo-topological order
instead of topological order. Assuming an edge from 𝑒𝑖 to 𝑒 𝑗
is to be added, if 𝑜𝑟𝑑 (𝑒𝑖) < 𝑜𝑟𝑑 (𝑒 𝑗), the algorithm directly
adds the edge. Otherwise, ICD performs a backward search
to traverse along incoming edges from 𝑒𝑖 and records the
traversed nodes in set B. If 𝑒 𝑗 is visited during the backward
search, a cycle is detected. Otherwise, the ICD algorithm
continues to perform a forward search to traverse along
outgoing edges from 𝑒 𝑗 and records the traversed nodes in set
F. If any node in B is traversed in the forward search, a cycle
is detected. Note that the detected cycle is not necessarily
the minimal one. We rely on the conflict clause generation
algorithm to produce the “shortest” cycles.

Please refer to [13] for the detailed procedure, correctness,
and complexity of the two-way-search ICD algorithm. For
an event graph with 𝑛 nodes and𝑚 edges, each call to the
ICD algorithm takes O(𝑚𝑖𝑛{𝑛 2

3 ,𝑚
1
2 }) time.

5.3 Conflict Clause Generation
If a Tord-inconsistency occurs, we need to find the inconsis-
tency reason and report it to the SAT solver.

To find the inconsistency reason, it is sufficient to consider
critical cycles [49]. Formally, a cycle is critical if it is simple
(i.e., no duplicate nodes) and has no PO-chords [49]. Recall
that Tord-solver records a derivation reason for each edge, and
the derivation reason of a path can be calculated accordingly

PLDI ’21, June 20–25, 2021, Virtual, Canada Fei He, Zhihang Sun, and Hongyu Fan

(see Section 4.2). The derivation reason of critical cycles can
be returned as the inconsistency reason.
When a Tord-inconsistency occurs, the event graph may

contain many critical cycles; we prefer those with the short-
est width (defined as the number of non-PO edges on the
cycle). Their derivation reasons contain the minimal number
of ordering literals and can be used to prune more search
space. If there are multiple critical cycles with the shortest
width, we generate them all.

An important fact is that the event graph must be acyclic
before the current edge insertion. Therefore, the newly added
edge should present in all cycles. Let 𝑒𝑖 ≺ 𝑒 𝑗 be the newly
added edge; the conflict clause generation is reduced to find-
ing all derivation reasons of 𝑒 𝑗 ≺+ 𝑒𝑖 with the shortest width.
Let E𝑗−𝑖 be the set of nodes that occur on any path of

𝑒 𝑗 ≺+ 𝑒𝑖 , including 𝑒 𝑗 and 𝑒𝑖 themselves. For each 𝑒𝑛 ∈ E𝑗−𝑖 ,
denote 𝑟𝑒𝑎𝑠𝑜𝑛𝑠 (𝑒𝑛) the set of all derivation reasons of 𝑒 𝑗 ≺+

𝑒𝑛 with the shortest width. We compute 𝑟𝑒𝑎𝑠𝑜𝑛𝑠 (𝑒𝑛) in the
following routine:

• Step 1 (Subgraph construction). We construct a sub-
graph of the event graph by removing all nodes other
than E𝑗−𝑖 , and deleting non-PO edges that have a PO
chord (e.g., L𝑛1M𝑤 ≺rf L𝑛2M𝑟 in Figure 3b).

• Step 2 (Iterative solving).We traverse the subgraph in
topological order. Let 𝑒𝑛 be the current node to be
visited. Denote 𝑆𝑃 (𝑒𝑛) the set of shortest predecessors
of 𝑒𝑛 such that the paths 𝑒 𝑗 ≺+ 𝑆𝑃 (𝑒𝑛) ≺ 𝑒𝑛 have the
shortest width. We lift ∧ operator to sets, and compute
𝑟𝑒𝑎𝑠𝑜𝑛𝑠 (𝑒𝑛) as⋃

𝑒𝑝 ∈𝑆𝑃 (𝑒𝑛)
𝑟𝑒𝑎𝑠𝑜𝑛𝑠 (𝑒𝑝) ∧ 𝑟𝑒𝑎𝑠𝑜𝑛(𝑒𝑝 ≺ 𝑒𝑛)

After the traversal, 𝑟𝑒𝑎𝑠𝑜𝑛𝑠 (𝑒𝑖) records the set of shortest
derivation reasons of 𝑒 𝑗 ≺+ 𝑒𝑖 . A path in 𝑒 𝑗 ≺+ 𝑒𝑖 and 𝑒𝑖 ≺ 𝑒 𝑗
form a cycle. We append 𝑟𝑒𝑎𝑠𝑜𝑛(𝑒𝑖 ≺ 𝑒 𝑗) to each reason in
𝑟𝑒𝑎𝑠𝑜𝑛𝑠 (𝑒𝑖) and return them as conflict clauses.

We show the correctness and complexity of our conflict
clause generation algorithm by the following theorems. Their
proofs are omitted due to the page limit.

Theorem 2. The above conflict clause generation algorithm
finds all conflict clauses with the shortest width.

Theorem 3. The time complexity of our conflict clause gen-
eration algorithm is O(𝑐 ×𝑚′), where 𝑐 is the number of com-
puted conflict clauses and 𝑚′ is the number of edges in the
constructed subgraph.

5.4 Theory Propagation
During theory propagation, Tord-solver deduces values of
unassigned literals (by unit-edge propagation) and derives
from-read orders (by from-read propagation).

Unit-Edge Propagation. For ease of implementation, we
pre-create an edge for each ordering variable in 𝑋rf ∪ 𝑋ws.

Each of these edges has two states, active and inactive
(initially inactive). Only active edges present in the event
graph. An inactive edge is activated when the correspond-
ing ordering variable is set to true. An active edge is inac-
tivated if the corresponding ordering variable is unassigned
(due to backjump of DPLL(T)).

Let 𝑒𝑖 ≺ 𝑒 𝑗 be an inactive edge for an ordering variable
𝑣 . It is a unit edge if there already exists a path from 𝑒 𝑗 to 𝑒𝑖
in the event graph. In other words, if the ordering variable 𝑣
is assigned true, a cycle 𝑒𝑖 ≺ 𝑒 𝑗 ≺+ 𝑒𝑖 forms. To prevent this
cycle, 𝑣 must be set to false. In this way, we deduce the value
of an unassigned variable. We call this unit-edge propagation.
Unit-edge propagation is performed after incremental cy-

cle detection. Let B and F be the node sets obtained in the
backward and forward search of ICD, respectively. For any
node 𝑒𝑏 ∈ B and any node 𝑒𝑓 ∈ F, there must be a path from
𝑒𝑏 to 𝑒𝑓 that passes the newly added edge. We enumerate
each such node pair and check if (𝑒𝑓 , 𝑒𝑏) corresponds to an
inactive edge; if it does, the corresponding inactive edge
is a unit edge.
Figure 3c shows a cycle led by assignments 𝑟 𝑓 𝑦2,3 ↦→ true

and 𝑟 𝑓 𝑥5,2 ↦→ true. Assuming that 𝑟 𝑓 𝑥5,2 ↦→ true is assigned
first: the edge L𝑥5M𝑤 ≺rf L𝑥2M𝑟 is added; then there forms
a path from L𝑦3M𝑟 to L𝑥5M𝑤 (by PO edges), to L𝑥2M𝑟 (by this
added edge), and to L𝑦2M𝑤 (by PO edges). According to our
unit-edge propagation, the pair (L𝑦2M𝑤, L𝑦3M𝑟) corresponds
to a unit edge L𝑦2M𝑤 ≺rf L𝑦3M𝑟 , so that the value of 𝑟 𝑓 𝑦2,3 is
enforced to false. In this way, our unit-edge propagation can
prevent the Tord-inconsistency shown in Figure 3c.

From-Read Propagation. FR constraints are not included
in our encoding formula. We depend on Tord-solver to deduce
FR orders.

When adding an RF edge L𝑥𝑖M𝑤 ≺rf L𝑥 𝑗 M𝑟 , Tord-solver seeks
outgoing WS edges of node L𝑥𝑖M𝑤 . For each of such edges,
say L𝑥𝑖M𝑤 ≺ws L𝑥𝑘M𝑤 , Tord-solver derives L𝑥 𝑗 M𝑟 ≺fr L𝑥𝑘M𝑤 and
instantly adds it to the event graph. Similarly, when adding
a WS edge L𝑥𝑖M𝑤 ≺ws L𝑥 𝑗 M𝑤 , Tord-solver seeks outgoing RF
edges of L𝑥𝑖M𝑤 , say L𝑥𝑖M𝑤 ≺rf L𝑥𝑘M𝑟 , and derives L𝑥𝑘M𝑟 ≺fr
L𝑥 𝑗 M𝑤 .
Figure 3b shows an example of from-read propagation,

where L𝑛1M𝑤 ≺ws L𝑛4M𝑤 is added prior to L𝑛1M𝑤 ≺rf L𝑛2M𝑟 .
During the addition of L𝑛1M𝑤 ≺ws L𝑛4M𝑤 , since L𝑛1M𝑤 has
no outgoing RF edges yet, from-read propagation obtains
nothing. Then, while adding L𝑛1M𝑤 ≺rf L𝑛2M𝑟 , there is an
outgoing WS edge L𝑛1M𝑤 ≺ws L𝑛4M𝑤 from L𝑛1M𝑤 . By from-
read propagation we deduce L𝑛2M𝑟 ≺fr L𝑛4M𝑤 .

5.5 Example
Let us consider how to verify the program example in Fig-
ure 2 using Tord-solver integrated with DPLL(T).

Given the encoding formula Ψ, DPLL(T) first applies unit-
clause propagation and theory propagation to make as many
as possible deductions. As a result, manyWS variables are

Satisfiability Modulo Ordering Consistency Theory for Multi-threaded Program Verification PLDI ’21, June 20–25, 2021, Virtual, Canada

assigned, e.g.,𝑤𝑠𝑥1,5,𝑤𝑠
𝑦

1,2 are assigned true, and𝑤𝑠𝑥5,1,𝑤𝑠
𝑦

2,1,
𝑤𝑠𝑚3,1,𝑤𝑠

𝑚
4,1,𝑤𝑠

𝑚
4,3,𝑤𝑠

𝑛
3,1,𝑤𝑠

𝑛
4,1,𝑤𝑠

𝑛
4,3 are assigned false.

Assuming DPLL(T) chooses 𝑟 𝑓𝑚3,2 and decides its value to
true, we perform deduction as follows:

𝑟 𝑓𝑚3,2 =⇒ 𝑥2 = 1 (Guard holds)
=⇒ 𝑟 𝑓 𝑥5,2 (RF-Val, RF-Some)
=⇒ ¬𝑟 𝑓 𝑦2,3 ∧ ¬𝑟 𝑓 𝑦2,4 (Unit-edge)
=⇒ 𝑟 𝑓

𝑦

1,3 ∧ ¬𝑟 𝑓 𝑦2,4 (RF-Some)
=⇒ 𝑦3 = 0 ∧ ¬𝑟 𝑓 𝑦2,4 (RF-Val)
=⇒ 𝑟 𝑓

𝑦

1,4 (RF-Some)
=⇒ 𝑦4 = 0 (RF-Val)

Then we decide fromwhich write (L𝑛1M𝑤 , L𝑛3M𝑤 or L𝑛4M𝑤) the
access L𝑛2M𝑟 obtains its value. First, L𝑛3M𝑤 is excluded from
consideration since its guard condition (𝑦3 = 1) conflicts
with the current assignment (𝑦3 = 0). Second, L𝑛2M𝑟 is also
excluded since the values of 𝑛2 (equals 1) and 𝑛1 (equals 0)
are not equal. Third, if L𝑛2M𝑟 reads from L𝑛4M𝑤 , then 𝑛2 =

𝑛4 = 𝑦4 = 1, conflicting with the current assignment (𝑦4 = 0),
too. Therefore, the deduction from 𝑟 𝑓𝑚3,2 = true gets to a
contradiction.
Then, DPLL(T) backjumps and assigns 𝑟 𝑓𝑚3,2 to false, i.e.,

L𝑚2M𝑟 cannot read from L𝑚3M𝑤 . Note that L𝑚2M𝑟 also cannot
read from L𝑚1M𝑤 for𝑚2 ≠𝑚1. Thus 𝑟 𝑓𝑚4,2 is the only choice.
The subsequent deduction is as follows:

𝑟 𝑓𝑚4,2 =⇒ 𝑥3 =𝑚4 =𝑚2 = 1 (RF-Val)
=⇒ ¬𝑟 𝑓 𝑥1,3 (RF-Val)
=⇒ 𝑟 𝑓 𝑥5,3 (RF-Some)
=⇒ ¬𝑟 𝑓 𝑦2,3 ∧ ¬𝑟 𝑓 𝑦2,4 (Unit-edge)

Now the deduction gets to the same point as in the third
line of the first deduction procedure. The same as in the first
deduction, it also leads to a contradiction.
From the deduction procedures above, we conclude that

the encoding formula for the program is unsatisfiable. There-
fore, the safety property of this program holds.

6 Experimental Evaluation
This section introduces the implementation of our approach
and reports the comparative results with some state-of-the-
art verification tools.

6.1 Implementation and Setup
We implemented our techniques on top of CBMC [41] and
Z3 [23]. CBMC is powerful and flexible bounded model
checker for C/C++ programs and Z3 is a well-known and
widely-adopted SMT solver. In our implementation, CBMC
and Z3 act as the front and back ends, responsible for gener-
ating and solving SMT formulas respectively. We enhance
CBMC by concerning our Tord-theory, and extend Z3 with

our Tord-solver. All generated SMT formulas are in the SMT-
LIB-v2.0 format. In the following, we call our enhanced im-
plementation Zord 1.
All experiments were conducted on a computer with an

Intel(R) Core(TM) i7-10710U CPU and 16 GB DDR4 memory.
The operating system is ArchLinux-5.4.15. The time limit for
each verification task is 900 seconds.

6.2 Experiment on SV-COMP Benchmarks
We collect benchmarks from the ConcurrencySafety cat-
egory of SV-COMP 2019 2. This category is divided into 11
sub-categories, namely ldv-races (12), pthread (38), atomic
(11), C-DAC (4), complex (5), divine (16), driver-races (21),
ext (53), lit (11), nondet (6), and wmm (898), where the num-
ber adhered to each sub-category represents the number of
programs it contains. There are 14 programs in divine sub-
category that cannot be compiled by CBMC and are thus
excluded from the benchmark set. In total, we get 1061 test
cases.

We compare Zord with the following tools:
• CBMC: a tool that implements the partial-order-based
verification algorithms [10], with Z3 as the underlying
SMT solver.

• Lazy-CSeq: a tool that verifies concurrent programs
using the lazy sequentialization schema [36].

• CPA-Seq: a configurable program verification plat-
form [14, 15] with sequentially combined analysis
strategies.

• Dartagnan: a bounded model checker [28] for con-
current program verification under various memory
models.

Results. The experimental results are summarized in Ta-
ble 1, where column #Solved shows the number of cases
successfully solved by each tool, and the last three columns
show data for both-solved cases.

In total, Zord solves 38 more cases than CBMC, 119 more
cases than CPA-Seq, and 897 more cases than Dartagnan.
The only exception is Lazy-CSeq, which solves 6 more cases
than ours. Considering that Lazy-CSeq is a highly-optimized
tool (winner of the ConcurrencySafety category of SV-
COMP 2020), this result is acceptable. Considering the both-
solved cases, Zord is 2.33x faster than CBMC, 90.04x faster
than CPA-Seq, 139.47x faster than Dartagnan, and 7.20x
faster than Lazy-CSeq. Meanwhile, Zord uses 18.7% less
memory than CBMC, 99.6% less memory than CPA-Seq,
99.0% less memory than Dartagnan, and 94.5% less memory
than Lazy-CSeq.

We notice that programs in wmm sub-category are all very
small ones with instrumentations tomodel the weakmemory
semantics. One may not consider them as representative

1https://thufv.github.io/research/zord.html
2https://sv-comp.sosy-lab.org/2019/

https://thufv.github.io/research/zord.html

PLDI ’21, June 20–25, 2021, Virtual, Canada Fei He, Zhihang Sun, and Hongyu Fan

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Z
O
R
D
/s

CBMC/s
900

900

Figure 5. Zord vs. CBMC

0.1

1

10

100

0.1 1 10 100

Z
O
R
D
/s

LAZY-CSEQ/s
900

900

Figure 6. Zord vs. Lazy-CSeq

0.1

1

10

100

0.1 1 10 100

Z
O
R
D
/s

CPA-SEQ,DARTAGNAN/s
900

900

Figure 7. Zord vs. CPA-Seq (blue) and
Dartagnan (orange)

concurrent programs. Table 2 lists the summary results with
wmm sub-category excluded. In total, Zord solves 38, 113,
and 122 more cases than CBMC, CPA-Seq, and Dartagnan,
respectively, and 6 less cases than Lazy-CSeq. Counting
on the both-solved non-wmm cases, Zord is 2.63x, 11.06x,
157.47x and 6.24x faster, and uses 18.5%, 97.5%, 99.6%, and
97.7% less memory, than CBMC, CPA-Seq, Dartagnan, and
Lazy-CSeq, respectively.

Figure 5 compares Zord with CBMC on the CPU time of
each verification task. A point below (or above) the diagonal
represents a case that Zord is superior (inferior) to CBMC.
Programs in wmm sub-category are all simple so that their
accumulated CPU time by Zord and CBMC are 269s and
338s, respectively; we only draw a single point in the figure
to represent the whole wmm sub-category. There are a cluster
of points at the bottom left of Figure 5, which indicates
that these cases are solved extremely fast by both tools, and
CBMC even solves slightly faster on some tasks. This is
because either these tasks are trivial, or counterexamples
occur at a low depth. When the cases become complex, our
method starts to show its strength.

Figure 6 and Figure 7 compare Zord with Lazy-CSeq, and
Zord with CPA-Seq (blue points) and Dartagnan (orange
points) on each case, respectively. These results conform
to those in Table 1. Zord is remarkably superior to these
three tools in most cases. Among all cases, Zord outperforms
Dartagnan. Only in 14 and 3 cases is Zord inferior to Lazy-
CSeq and CPA-Seq, respectively.

6.3 Experiment on Strategies of Tord-solver
This experiment evaluates strategies of Tord-solver by testing
their effects on the whole performance of program verifica-
tion. Experiment settings are identical to 6.2.

Effects of FR Generation. This experiment compares the
effect of the front-end FR constraints generation. Zord does
not encode FR constraints into the SMT formula. Instead,
the Tord-solver conducts the derivation of FR constraints. An
alternative strategy, called Zord−, forces the front-end to

Table 1. Summary results on 1061 SV-COMP benchmarks

Tool #Solved
Both-solved

Num. CPU_time (s) Memory (GB)
(-/Zord) (-/Zord)

Zord 1051 - - -
CBMC 1013 1013 2933/1257 7.61/6.19
CPA-Seq 932 930 32866/365 1311.56/5.39

Dartagnan 154 154 6555/47 71.48/0.68
Lazy-CSeq 1057 1050 14025/1949 114.15/6.33

Table 2. Summary results on 163 non-wmm SV-COMP
benchmarks (i.e., with wmm sub-category excluded)

Tool #Solved
Both-solved

Num. CPU_time (s) Memory (GB)
(-/Zord) (-/Zord)

Zord 153 - - -
CBMC 115 115 2594/988 1.84/1.50
CPA-Seq 40 38 1106/100 29.56/0.75

Dartagnan 31 31 2992/19 54.19/0.21
Lazy-CSeq 159 152 10491/1680 72.35/1.63

encode all FR constraints into the SMT formula and lets
Tord-solver skip their derivation.

Figure 8 shows time comparison between Zord and Zord−
on each verification task. In most cases, Zord is more effi-
cient than Zord−. Among 1061 available cases, Zord solves
1051 cases correctly, and Zord− can solve 1049 cases. Zord−
has two more timeout cases whereas Zord solves them
within 95.4s and 248.3s. Since Zord ignores FR constraints
when generating the SMT formula, Zord encodes a smaller
formula than Zord−. Moreover, Zord− uses unit clause prop-
agation in the SAT level to assign FR constraints, whereas
Tord-solver performs from-read propagation on the event
graph to derive FR constraints with O(1) complexity. So
our application of the from-read axiom is more efficient.
The reported CPU_time consumptions of Zord− and Zord

Satisfiability Modulo Ordering Consistency Theory for Multi-threaded Program Verification PLDI ’21, June 20–25, 2021, Virtual, Canada

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Z
O
R
D
/s

ZORD
—
/s

900

900

Figure 8. Zord vs. Zord−

0.01

0.1

1

10

100

0.01 0.1 1 10 100

Z
O
R
D
/s

ZORD'/s
900

900

Figure 9. Zord vs. Zord′

0.01

0.1

1

10

100

0.01 0.1 1 10 100

IC
D
/s

Tarjan/s
900

900

Figure 10. ICD vs. Tarjan’s algorithm

are 13060.2s and 10745.6s, respectively. On 1049 both-solved
cases, Zord− spends 2841.1s while Zord spends 2037.7s –
these cases only take Zord 71.7% time as much as Zord−.
The experimental results indicate that it is more efficient to
pass the derivation of FR constraints to Tord-solver than to
encode those constraints into the SMT formula.

Effects of Unit-edge Propagation. This experiment evalu-
ates the effect of unit-edge propagation.Unit-edge propagation
enables Tord-solver to search for unit edges and propagate
their derivation reasons to false as many as possible. Note that
unit-edge propagation only affects the efficiency of theory
propagation but not its correctness. An alternative strategy
is to disable unit-edge propagation, signed as Zord′ .

Figure 9 shows time comparison between Zord and Zord′

on each verification task. Among 1061 available cases, Zord′

verifies 1048 cases correctly, and Zord succeeds in 1051 cases
– by applying unit-edge propagation, we solve 3 more cases
within 93.0s, 606.3s, and 245.0s, respectively. On 1048 both-
solved cases, Zord′ spends 1590.2s and Zord spends 1389.3s
– the time reduction is 12.6%. Moreover, compared to Zord′ ,
Zord reduces memory consumption, the number of deci-
sions, propagations, and conflicts to 97.5%, 84.4%, 90.1%, and
79.0%, respectively. The solving procedure of Zord only
involves 79.0% conflicts and 84.4% decisions as many as
Zord′ . Therefore, we confirm that unit-edge propagation
helps DPLL(T) avoid possible cycles in advance and make
fewer decisions to reduce the search space. In summary, unit-
edge propagation is an obvious optimization for Tord-solver.

Effects of ICD Algorithm. We also implement Tarjan’s
non-incremental cycle detection algorithm in our Tord-solver
and compare it with the ICD algorithm. Figure 10 shows
the CPU_time of SMT solving with these two algorithms on
each verification task. In small cases (<1s), the performance
is similar whereas in most complicated cases, the ICD algo-
rithm is more efficient than Tarjan’s algorithm. Excluding
both-timeout cases, the total CPU_time with Tarjan’s algo-
rithm is 4813s, and that with ICD is 2368s. SMT solving with
the ICD algorithm is 2.03 times faster than that with Tarjan’s
algorithm. For an event graph with 𝑛 nodes and𝑚 edges, the

complexity of Tarjan’s’ algorithm is O(𝑚× (𝑛 +𝑚)) and that
of ICD is O(𝑚×𝑚𝑖𝑛{𝑛 2

3 ,𝑚
1
2 }). Generally, the event graph of

a multi-threaded program is sparse (𝑚 << 𝑛2). As programs
become complex, incremental cycle detection starts to show
its efficacy.

6.4 Comparison with Stateless Model Checking
Stateless model checking (SMC) [30] is another successful
technique for multi-threaded program verification. It sys-
tematically explores all interleaving traces of the concurrent
program. Meanwhile, various partial order reduction tech-
niques [1, 17, 35, 57] are developed to alleviate explosion.
In this experiment, we compare Zord with two state-of-

the-art SMC tools:

• Nidhugg/rfsc: an SMC tool that implements the reads-
from equivalence exploration algorithm [4] under SC.

• GenMC: an SMC tool that implements an optimal al-
gorithm to build execution graphs dynamically [40].

Originally, we wanted to perform this experiment on SV-
COMP benchmarks. However, Nidhugg/rfsc and GenMC cur-
rently do not support many library functions used in SV-
COMP benchmarks, e.g., abort(), strcmp(), strcpy(), and
some of __VERIFIER_*. As a result, among the 1061 SV-
COMP verification tasks, Nidhugg/rfsc and GenMC only
solve 45 and 38 cases, respectively.

Therefore, we decide to use benchmarks from Nidhugg 3.
The original benchmark set contains 83 multi-threaded C
programs, many of which do not contain assertions since
they are prepared for testing POR techniques. We select
benchmarks using the following rules: (1) gcc-compilable,
(2) contain at least one assertion, (3) parameterizable, and (4)
verifiable by Nidhugg/rfsc.

Finally, we get 9 examples: CO-2+2W(𝑁), float_r(𝑁),
airline(𝑁), fib_bench(𝑁), szymanski(𝑁), lamport-
(𝑁), cir_buf(𝑁), parker(𝑁) and account(𝑁), where 𝑁
is a parameter.

3https://github.com/nidhugg/nidhugg/tree/master/benchmarks, commit
6af46b8

PLDI ’21, June 20–25, 2021, Virtual, Canada Fei He, Zhihang Sun, and Hongyu Fan

Table 3. Experiment results on Nidhugg benchmarks

Files Rst Traces Nidhugg/rfsc GenMC CBMC Zord Files Rst Traces Nidhugg/rfsc GenMC CBMC Zord

CO-2+2W(5) T 5 0.10 0.03 0.36 0.31 lamport(2) T 1.7 × 104 2.46 0.87 463.37 4.18
CO-2+2W(15) T 15 0.12 0.04 27.21 1.33 lamport(6) T 1.3 × 106 282.10 65.42 TO 379.32
CO-2+2W(25) T 25 0.10 0.04 307.77 6.55 lamport(10) T 1.5 × 107 TO 834.33 TO TO

float_r(10) T 11 0.08 0.03 0.05 0.22 cir_buf(5) T 252 0.19 0.07 TO 1.70
float_r(50) T 51 0.11 0.04 TO 1.66 cir_buf(9) T 4.9 × 104 25.90 12.07 TO 52.73
float_r(100) T 101 0.30 0.11 TO 4.90 cir_buf(13) T - TO TO TO 897.35

airline(3) T 27 0.09 0.03 0.19 0.23 parker(12) T 7.0 × 104 2.94 8.68 118.76 0.34
airline(7) T 8.2 × 105 161.21 20.96 0.60 0.30 parker(20) T 4.8 × 105 19.21 92.82 TO 0.34
airline(9) T - TO TO 1.44 0.50 parker(28) T 1.7 × 106 52.60 500.56 TO 0.38

fib_bench(4) T 3.4 × 104 2.74 0.82 TO 0.33 account(5) F 3456 0.01 0.11 0.65 0.28
fib_bench(5) T 5.3 × 105 37.53 14.15 TO 0.87 account(15) F - 0.01 TO 87.11 43.30
fib_bench(6) T 8.2 × 106 537.98 286.76 TO 1.50 account(25) F - 0.13 TO TO TO

szymanski(2) T - 4.07 TO 16.90 1.66
szymanski(4) T - 153.92 TO 271.81 6.14
szymanski(6) T - TO TO 775.24 12.54

Results. All benchmarks are verified under SC. The exper-
imental results are listed in Table 3, where the Rst column
reports the verification results, and the Traces column lists
the number of traces explored by GenMC. If the result is
true, the number reported in Traces is a measurement of the
size of the trace space.

CO-2+2W(𝑁) and float_r(𝑁) are trivial examples: there
is no branching statement; the main thread contains one
read event; each child thread contains one visible atomic
write. As a result, the number of traces in each program is
equal (or nearly equal) to the number of child threads (i.e.,
𝑁). Nidhugg/rfsc and GenMC can verify these programs
in a few tenths of a second. This is understandable since
the largest float_r(100) contains 101 traces only. Time
consumptions of CBMC and Zord increase gradually on the
increment of 𝑁 , since the size of the encoding formula grows
accordingly. However, Zord is obviously faster than CBMC.
Our ordering theory and elaborated theory solver help Zord
achieve higher efficiency.

Airline(𝑁), fib_bench(𝑁), and szymanski(𝑁) con-
tain branching statements, with 𝑁 representing either the
number of threads or the unrolling bound of loops. As 𝑁
increases, Nidhugg/rfsc and GenMC slow down rapidly. Ba-
sically, the verification time of Nidhugg/rfsc and GenMC
is proportional to the number of traces in the program. In
contrast, Zord performs very well in all these programs.
In lamport(𝑁) and cir_buffer(𝑁), Zord is inferior

to Nidhugg/rfsc and GenMC. The main reason is that these
two examples contain numerous array operations. As a result,
the array theory solver is involved in SMT solving, which is
not as efficient as the bit-vector solver. Nevertheless, Zord
is the only tool that solves cir_buffer(13).
In parker(𝑁), a _parker() procedure is invoked 𝑁

times. As 𝑁 increases, Nidhugg/rfsc and GenMC slow down
rapidly, in line with the fast growth of traces. In contrast,
Zord verifies each program in less than 0.4 seconds, and
the time does not notably change as 𝑁 increases. The main

reasons are: 1) this example contains only one thread, and 2)
Zord encodes the path condition of each memory event into
the SMT formula. As a result, increasing 𝑁 has no influence
on the size of the SMT formula.
In program account(𝑁), Nidhugg/rfsc obviously out-

performs others. Note that all variations of this example
are buggy. It happens that Nidhugg/rfsc finds the safety
violation by exploring one trace.

Summary. Firstly, as𝑁 increases, Zord outperforms CBMC
significantly, demonstrating the efficiency of our Tord-theory
solver. Secondly, SMC is suitable for programs with simple
branching structures, while Zord is more suitable for com-
plex programs. Thirdly, arrays and complex data structures
in the encoding formula can slow down the SMT solving.

6.5 Threats to Validity
The main threats to validity are whether the performance
improvements are due to our tactic and whether our imple-
mentation and experiments are credible.

Firstly, since we added support for Tord in CBMC and elab-
orated its theory solver in Z3, we compare Zord with them
instantly. The improvements over CBMC must come from
our tactic. Secondly, the experimental results of from-read
generation and unit-edge propagation are consistent with the
theoretical analysis, which confirms that the improvements
are indeed from these strategies. Thirdly, we compare our
incremental cycle detection algorithm to Tarjan’s SCC algo-
rithm during theory solving phase. The above three aspects
show the performance improvements are due to our tactic.
Implementation of Tord in CBMC is simple and clear, and

the implementation of Tord-solver is loosely coupled with
the overall framework of Z3. Benchmarks are collected from
the ConcurrencySafety category of SV-COMP 2019 and
Nidhugg. Many studies perform their experiments on these
benchmarks to demonstrate the effectiveness of their method.
These benchmarks are comprehensive, credible, and have

Satisfiability Modulo Ordering Consistency Theory for Multi-threaded Program Verification PLDI ’21, June 20–25, 2021, Virtual, Canada

already been preprocessed for verification. Finally, we per-
formed an extensive comparison with CBMC, Lazy-CSeq,
CPA-Seq, Dartagnan, and two SMC techniques implemented
in Nidhugg/rfsc and GenMC. The detailed results and analy-
sis of these tools show that Zord is correct and competitive.
We are thus confident in the effectiveness of Zord.

Another threat to the validity of our approach is whether
our approach can be generalized to other SMT solvers than
Z3. We model multi-threaded programs and encode them
into SMT formulas, which are independent of the SMT solver.
If we follow the axioms of multi-threaded program verifica-
tion and implement these rules into other SMT solvers, they
are also suitable for solving these SMT formulas. Therefore,
our approach can be implemented in other DPLL(T)-based
SMT solvers.

7 Related Work
There is much research on improving the availability and effi-
ciency of multi-threaded program verification by constraint
solving.
Multi-threaded program verification under SC has been

comprehensively studied in recent years. Alglave et al. [10,
11] use a partial order relation on memory events to repre-
sent possible executions caused by thread interleaving. All
partial order constraints are encoded into a formula. If no
counterexample is found, the multi-threaded program is safe.
Otherwise, we need to check that the counterexample is
not spurious, i.e., that the corresponding execution does not
form a cycle. The above technique inspires our method. We
propose a new theory to denote order constraints of mem-
ory events. Then we elaborate on the theory solver of Tord in
Z3 [23]. It can benefit from optimizations of Z3 inherently
and is fully compatible with DPLL(T) framework. By utiliz-
ing axioms of Tord, Tord-solver is responsible for verifying
whether the current order constraints are valid, i.e., whether
the current order is acyclic. In general, we develop a new
partial order theory to extend the basic idea of [10, 11] with
SMT-based constraints solving.

Horn et al. [33, 34] provide a different approach for repre-
senting and solving partial order constraints. They propose
a novel partial-string theory where order constraints are rep-
resented as partial strings and operators on partial strings
are defined accordingly.

Tord-solver’s decision procedure is closely related to in-
cremental cycle detection (ICD), a mature algorithm with
a long research history. Based on online topological order-
ing [41], researches on ICD begin with [43]. When an edge
is inserted, it considers updating the topological order by
reusing the previous order instead of calculating a new one.
They propose a method that takes amortized O(𝑛) time for
each edge insertion in a graph with 𝑛 nodes, faster than the
O(𝑛 +𝑚) offline algorithm (with𝑚 representing the num-
ber of edges). Later works [7, 8, 37, 47] and [13, 32] aim at

proposing new cycle detection algorithms; some work better
on sparse graphs (assuming𝑚 = O(𝑛)) and some better on
dense graphs (assuming𝑚 = O(𝑛2)).
To the best of our knowledge, the fastest algorithms are

proposed by Bender et al. [13]. It proposes two O(𝑚𝑖𝑛{𝑚1/2,
𝑛2/3}𝑚) algorithms for sparse graphs and one O(𝑛2𝑙𝑜𝑔(𝑛))
algorithm for dense graphs. Among them, we apply the
two-way-search algorithm for sparse graphs using pseudo-
topological order in our approach. This algorithm achieves
O(𝑚𝑖𝑛{𝑚1/2, 𝑛2/3}) for each edge insertion by using pseudo-
topological order and setting a well-designed limit to the
order. However, it can only find a strongly connected com-
ponent when a cycle occurs. Therefore, we extend the algo-
rithm to searching for all critical cycles with the least non-PO
edges.
Nieuwenhuis et al. [46] design an SMT implementation

of difference logic, where literal 𝑥 − 𝑦 ≤ 𝑘 is represented
with an edge from 𝑥 to 𝑦 with weight 𝑘 and 𝑥 − 𝑦 < 𝑘

represented with an edge with weight 𝑘 − 𝜖 where 𝜖 = 1
in integer difference logic and 𝜖 can be computed in linear
time in real difference logic [48]. After adding an edge from
𝑥 to 𝑦, a traverse of outgoing edges from 𝑦 and a traverse of
incoming edges from 𝑥 are performed to check whether this
edge addition forms a cycle. If a cycle on which weights of
edges sum negative is found, an inconsistency occurs. Their
difference logic solver’s behavior after each edge addition is
similar to us but far from incremental. It does not maintain
a topological order, so that cannot make use of previous
information. Thus, each traverse is exhaustive and takes
O(𝑛 +𝑚) time in a graph with 𝑛 nodes and𝑚 edges.
Ge et al.[29] propose another method to solve order con-

straints. They only define one sort of partial order relation,
i.e., the "happens-before" relation, and unite other sorts of
partial order relations to "happens-before". Then they check
if there is a cycle among ordering constraints. In this man-
ner, their theory cannot handle the intricate relation be-
tween different sorts of partial orders for concurrent pro-
gram verification, which, in our understanding, is very im-
portant for the efficiency of SMT solving. In comparison,
our method can model various order relations to formu-
late a multi-threaded program’s possible executions. After
each edge addition, their method calls Tarjan’s algorithm to
find cycles. We notice the high frequency of edge addition
and deletion while solving an SMT formula with order con-
straints. Instead, we develop a new ordering consistency (OC)
theory specifically for multi-threaded program verification
and elaborate on its theory solver with incremental cycle
detection to achieve higher efficiency. Using incremental cy-
cle detection,𝑚 additions in a graph with 𝑛 nodes take only
O(𝑚 ×𝑚𝑖𝑛{𝑛 2

3 ,𝑚
1
2 }) time, better than Tarjan’s algorithm

that spends O(𝑚 × (𝑛 +𝑚)).
Multi-threaded program verification is complicated be-

cause of the uncertainty caused by thread interleaving. Too

PLDI ’21, June 20–25, 2021, Virtual, Canada Fei He, Zhihang Sun, and Hongyu Fan

many possible execution paths may result in the state ex-
plosion problem. The most efficient techniques to alleviate
this problem include but are not limited to bounded model
checking [16, 19, 27, 28, 51], partial order reduction [1, 26, 53],
abstraction refinement [25, 31, 50], and statelessmodel check-
ing [2, 3, 38].

Bounded model checking (BMC) sets an upper bound for
loops or recursive functions to obtain a bounded program.
BMC is efficient and powerful in bug-finding and therefore
has been widely adopted by the majority of verification tools.
Moreover, to improve the availability of multi-threaded

program verification, many researchers combine BMC with
other techniques. Inverso et al. [36] propose a new approach
named Lazy Sequentialization, which transforms a multi-
threaded program into a sequential program under a specific
unrolling bound and execution round. This method simu-
lates thread interactions and is efficient in bug-finding. Yin
et al. [54–56] develop a SAT-based verification framework
called scheduling constraints-based abstraction refinement
(SCAR) for verifying multi-threaded programs under several
memory models. They ignore the order constraints first; in-
stead, they add conflict clauses in the iterations of abstraction
refinement to enhance the formula. They use the transitive
closure to check the consistency of order relation, which
achieves high efficiency. Cordeiro et al. [20] combine BMC
with Satisfiable Modulo Theory (SMT). They encode all pos-
sible executions and utilize theory conflict to abstract thread
interleaving. They implemented their tactics in ESCBMC, an
SMT-based verification tool.

Stateless model checking (SMC) [30] checks correctness by
enumerating all possible execution traces. Since thread inter-
leaving results in numerous traces, traces inducing the same
order between conflicting events are sorted into an equiva-
lence class, namely, a Mazurkiewicz trace [44]. Mazurkiewicz
traces can be further weakened to equivalence classes of
traces with identical read-from relations [5]. Efficient traver-
sal algorithms are developed to discover all Mazurkiewicz
traces consistent with thememorymodel and prune inconsis-
tent ones. Popular stateless model checkers, e.g., Nidhugg [2],
Nidhugg/rfsc [5], GenMC [40], RCMC [38], DC-DPOR [18],
are based on this technique.

8 Conclusion and Future Work
In this paper, we presented a novel SMT-based approach for
verifying multi-threaded programs. We proposed a dedicated
ordering consistency theory for multi-threaded program ver-
ification under SC, and elaborated its theory solver, which
realizes incremental consistency checking, minimal conflict
clause generation, and specialized theory propagation to im-
prove the efficiency of SMT solving. We implemented our
techniques on top of CBMC and Z3, and conducted experi-
ments on SV-COMP benchmarks and Nidhugg benchmarks
to evaluate its effectiveness and efficiency. The experimental

results show that our approach has significant improvements
over the state-of-the-art verification techniques.
Our approach is designed for multi-threaded program

verification under SC. We are planning to extend these tech-
niques to weak memory models in the future.

Acknowledgments
The authors would like to thank the anonymous referees for
their valuable comments and helpful suggestions. This work
is supported by the National Natural Science Foundation of
China under Grant No.: 62072267 and Grant No. 61672310,
the National Key Research and Development Program of
China under Grant No.: 2018YFB1308601, and the Guang-
dong Science and Technology Department under Grant No.:
2018B010107004.

References
[1] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos

Sagonas. 2014. Optimal Dynamic Partial Order Reduction. In Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (San Diego, California, USA) (POPL ’14).
Association for Computing Machinery, New York, NY, USA, 373–384.
https://doi.org/10.1145/2535838.2535845

[2] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt
Jonsson, Carl Leonardsson, and Konstantinos Sagonas. 2015. Stateless
Model Checking for TSO and PSO. In Tools and Algorithms for the
Construction and Analysis of Systems, Christel Baier and Cesare Tinelli
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 353–367. https:
//doi.org/10.1007/978-3-662-46681-0_28

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and
Carl Leonardsson. 2016. Stateless Model Checking for POWER. In
Computer Aided Verification, Swarat Chaudhuri and Azadeh Farzan
(Eds.). Springer International Publishing, Cham, 134–156. https:
//doi.org/10.1007/978-3-319-41540-6_8

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus
Lång, Tuan Phong Ngo, and Konstantinos Sagonas. 2019. Optimal
Stateless Model Checking for Reads-from Equivalence under Sequen-
tial Consistency. Proc. ACM Program. Lang. 3, OOPSLA, Article 150
(Oct. 2019), 29 pages. https://doi.org/10.1145/3360576

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus
Lång, Tuan Phong Ngo, and Konstantinos Sagonas. 2019. Optimal
Stateless Model Checking for Reads-from Equivalence under Sequen-
tial Consistency. Proc. ACM Program. Lang. 3, OOPSLA, Article 150
(Oct. 2019), 29 pages. https://doi.org/10.1145/3360576

[6] Sarita V Adve and Kourosh Gharachorloo. 1996. Shared memory
consistency models: A tutorial. computer 29, 12 (1996), 66–76. https:
//doi.org/10.1109/2.546611

[7] Deepak Ajwani and Tobias Friedrich. 2007. Average-Case Analysis of
Online Topological Ordering. In Proceedings of the 18th International
Conference on Algorithms and Computation (Sendai, Japan) (ISAAC’07).
Springer-Verlag, Berlin, Heidelberg, 464–475. https://doi.org/10.1007/
978-3-540-77120-3_41

[8] Deepak Ajwani, Tobias Friedrich, and Ulrich Meyer. 2008. An O(N2.75)
Algorithm for Incremental Topological Ordering. ACM Trans. Algo-
rithms 4, 4, Article 39 (Aug. 2008), 14 pages. https://doi.org/10.1145/
1383369.1383370

[9] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2014.
Don’t Sit on the Fence. In Computer Aided Verification, Armin Biere
and Roderick Bloem (Eds.). Springer International Publishing, Cham,
508–524. https://doi.org/10.1007/978-3-319-08867-9_33

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1007/978-3-319-41540-6_8
https://doi.org/10.1145/3360576
https://doi.org/10.1145/3360576
https://doi.org/10.1109/2.546611
https://doi.org/10.1109/2.546611
https://doi.org/10.1007/978-3-540-77120-3_41
https://doi.org/10.1007/978-3-540-77120-3_41
https://doi.org/10.1145/1383369.1383370
https://doi.org/10.1145/1383369.1383370
https://doi.org/10.1007/978-3-319-08867-9_33

Satisfiability Modulo Ordering Consistency Theory for Multi-threaded Program Verification PLDI ’21, June 20–25, 2021, Virtual, Canada

[10] Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial
Orders for Efficient Bounded Model Checking of Concurrent Software.
In Computer Aided Verification, Natasha Sharygina and Helmut Veith
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 141–157. https:
//doi.org/10.1007/978-3-642-39799-8_9

[11] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010.
Fences in Weak Memory Models. In Computer Aided Verification,
Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 258–272. https://doi.org/10.1007/978-
3-642-14295-6_25

[12] Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories.
Springer International Publishing, Cham, 305–343. https://doi.org/10.
1007/978-3-319-10575-8_11

[13] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E.
Tarjan. 2015. A New Approach to Incremental Cycle Detection and
Related Problems. ACM Trans. Algorithms 12, 2, Article 14 (Dec. 2015),
22 pages. https://doi.org/10.1145/2756553

[14] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. 2007.
Configurable Software Verification: Concretizing the Convergence
of Model Checking and Program Analysis. In Computer Aided Verifi-
cation, Werner Damm and Holger Hermanns (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 504–518. https://doi.org/10.1007/978-
3-540-73368-3_51

[15] Dirk Beyer and M. Erkan Keremoglu. 2011. CPAchecker: A Tool for
Configurable Software Verification. In Computer Aided Verification,
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 184–190. https://doi.org/10.1007/978-3-
642-22110-1_16

[16] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
1999. SymbolicModel Checkingwithout BDDs. In Tools and Algorithms
for the Construction and Analysis of Systems, W. Rance Cleaveland
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 193–207. https:
//doi.org/10.1007/3-540-49059-0_14

[17] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nis-
hant Sinha, and Kapil Vaidya. 2017. Data-Centric Dynamic Partial
Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec.
2017), 30 pages. https://doi.org/10.1145/3158119

[18] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nis-
hant Sinha, and Kapil Vaidya. 2017. Data-Centric Dynamic Partial
Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec.
2017), 30 pages. https://doi.org/10.1145/3158119

[19] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001.
Bounded Model Checking Using Satisfiability Solving. Form. Meth-
ods Syst. Des. 19, 1 (July 2001), 7–34. https://doi.org/10.1023/A:
1011276507260

[20] Lucas Cordeiro and Bernd Fischer. 2011. Verifying Multi-Threaded
Software Using Smt-Based Context-Bounded Model Checking. In Pro-
ceedings of the 33rd International Conference on Software Engineering
(Waikiki, Honolulu, HI, USA) (ICSE ’11). Association for Computing
Machinery, New York, NY, USA, 331–340. https://doi.org/10.1145/
1985793.1985839

[21] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently computing static single assign-
ment form and the control dependence graph. ACM TRANSACTIONS
ON PROGRAMMING LANGUAGES AND SYSTEMS 13 (1991), 451–490.
https://doi.org/10.1145/115372.115320

[22] Martin Davis, George Logemann, and Donald Loveland. 1962. A Ma-
chine Program for Theorem-Proving. Commun. ACM 5, 7 (July 1962),
394–397. https://doi.org/10.1145/368273.368557

[23] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 337–340. https://doi.org/10.1007/978-
3-540-78800-3_24

[24] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo
Theories: Introduction and Applications. Commun. ACM 54, 9 (Sept.
2011), 69–77. https://doi.org/10.1145/1995376.1995394

[25] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J.
Parkinson, and Viktor Vafeiadis. 2010. Concurrent Abstract Predicates.
In ECOOP 2010 – Object-Oriented Programming, Theo D’Hondt (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 504–528. https://doi.
org/10.1007/978-3-642-14107-2_24

[26] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-
Order Reduction for Model Checking Software. In Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (Long Beach, California, USA) (POPL ’05). As-
sociation for Computing Machinery, New York, NY, USA, 110–121.
https://doi.org/10.1145/1040305.1040315

[27] Malay K. Ganai and Aarti Gupta. 2008. Efficient Modeling of Concur-
rent Systems in BMC. In Model Checking Software, Klaus Havelund,
Rupak Majumdar, and Jens Palsberg (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 114–133. https://doi.org/10.1007/978-3-540-85114-
1_10

[28] Natalia Gavrilenko, Hernán Ponce-de León, Florian Furbach, Keijo
Heljanko, and Roland Meyer. 2019. BMC for Weak Memory Models:
Relation Analysis for Compact SMT Encodings. In Computer Aided
Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International
Publishing, Cham, 355–365. https://doi.org/10.1007/978-3-030-25540-
4_19

[29] Cunjing Ge, Feifei Ma, Jeff Huang, and Jian Zhang. 2016. SMT Solving
for the Theory of Ordering Constraints. In Languages and Compilers
for Parallel Computing, Xipeng Shen, Frank Mueller, and James Tuck
(Eds.). Springer International Publishing, Cham, 287–302. https://doi.
org/10.1007/978-3-319-29778-1_18

[30] Patrice Godefroid. 1997. Model Checking for Programming Languages
Using VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Paris, France)
(POPL ’97). Association for Computing Machinery, New York, NY, USA,
174–186. https://doi.org/10.1145/263699.263717

[31] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. 2011.
Predicate Abstraction and Refinement for Verifying Multi-Threaded
Programs. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas,
USA) (POPL ’11). Association for Computing Machinery, New York,
NY, USA, 331–344. https://doi.org/10.1145/1926385.1926424

[32] Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha
Sen, and Robert E. Tarjan. 2012. Incremental Cycle Detection, Topo-
logical Ordering, and Strong Component Maintenance. ACM Trans.
Algorithms 8, 1, Article 3 (Jan. 2012), 33 pages. https://doi.org/10.1145/
2071379.2071382

[33] Alex Horn and Jade Alglave. 2014. Concurrent Kleene Algebra of
Partial Strings. arXiv:1407.0385 [cs.LO] https://arxiv.org/abs/1407.0385

[34] Alex Horn and Daniel Kroening. 2015. On partial order semantics for
SAT/SMT-based symbolic encodings of weak memory concurrency.
arXiv:1504.00037 [cs.LO] https://arxiv.org/abs/1504.00037

[35] Jeff Huang. 2015. Stateless Model Checking Concurrent Programs with
Maximal Causality Reduction. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Port-
land, OR, USA) (PLDI ’15). Association for Computing Machinery, New
York, NY, USA, 165–174. https://doi.org/10.1145/2737924.2737975

[36] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore
La Torre, and Gennaro Parlato. 2014. Bounded Model Checking of
Multi-threaded C Programs via Lazy Sequentialization. In Computer
Aided Verification, Armin Biere and Roderick Bloem (Eds.). Springer
International Publishing, Cham, 585–602. https://doi.org/10.1007/978-
3-319-08867-9_39

[37] Irit Katriel and Hans L. Bodlaender. 2006. Online Topological Ordering.
ACM Trans. Algorithms 2, 3 (July 2006), 364–379. https://doi.org/10.
1145/1159892.1159896

https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1145/2756553
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3158119
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/368273.368557
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/978-3-540-85114-1_10
https://doi.org/10.1007/978-3-540-85114-1_10
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-030-25540-4_19
https://doi.org/10.1007/978-3-319-29778-1_18
https://doi.org/10.1007/978-3-319-29778-1_18
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/1926385.1926424
https://doi.org/10.1145/2071379.2071382
https://doi.org/10.1145/2071379.2071382
https://arxiv.org/abs/1407.0385
https://arxiv.org/abs/1407.0385
https://arxiv.org/abs/1504.00037
https://arxiv.org/abs/1504.00037
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.1145/1159892.1159896
https://doi.org/10.1145/1159892.1159896

PLDI ’21, June 20–25, 2021, Virtual, Canada Fei He, Zhihang Sun, and Hongyu Fan

[38] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-
tor Vafeiadis. 2017. Effective Stateless Model Checking for C/C++
Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec.
2017), 32 pages. https://doi.org/10.1145/3158105

[39] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.
Model Checking for Weakly Consistent Libraries. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for
Computing Machinery, New York, NY, USA, 96–110. https://doi.org/
10.1145/3314221.3314609

[40] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.
Model Checking for Weakly Consistent Libraries. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for
Computing Machinery, New York, NY, USA, 96–110. https://doi.org/
10.1145/3314221.3314609

[41] Daniel Kroening and Michael Tautschnig. 2014. CBMC – C Bounded
Model Checker. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, Erika Ábrahám and Klaus Havelund (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 389–391. https://doi.org/10.
1007/978-3-642-54862-8_26

[42] Leslie Lamport. 1979. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Computer Architecture
Letters 28, 09 (1979), 690–691. http://doi.org/10.1109/TC.1979.1675439

[43] Alberto Marchetti-Spaccamela, Umberto Nanni, and Hans Rohnert.
1996. Maintaining a topological order under edge insertions. Inform.
Process. Lett. 59, 1 (1996), 53 – 58. https://doi.org/10.1016/0020-0190(96)
00075-0

[44] Antoni Mazurkiewicz. 1987. Trace theory. In Petri Nets: Applications
and Relationships to Other Models of Concurrency, W. Brauer, W. Reisig,
and G. Rozenberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 278–324.

[45] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. 2001. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th Annual Design Automation Conference (Las
Vegas, Nevada, USA) (DAC ’01). Association for Computing Machinery,
New York, NY, USA, 530–535. https://doi.org/10.1145/378239.379017

[46] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2006. Solving
SAT and SAT Modulo Theories: From an Abstract Davis–Putnam–
Logemann–Loveland Procedure to DPLL(T). J. ACM 53, 6 (Nov. 2006),
937–977. https://doi.org/10.1145/1217856.1217859

[47] David J. Pearce and Paul H. J. Kelly. 2007. A Dynamic Topological Sort
Algorithm for Directed Acyclic Graphs. ACM J. Exp. Algorithmics 11
(Feb. 2007), 1.7–es. https://doi.org/10.1145/1187436.1210590

[48] Alexander Schrijver. 1986. Theory of Linear and Integer Programming.
John Wiley & Sons, Inc., USA.

[49] Dennis Shasha and Marc Snir. 1988. Efficient and Correct Execution
of Parallel Programs That Share Memory. ACM Trans. Program. Lang.
Syst. 10, 2 (April 1988), 282–312. https://doi.org/10.1145/42190.42277

[50] Nishant Sinha and Chao Wang. 2011. On Interference Abstractions. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Austin, Texas, USA) (POPL ’11).
Association for Computing Machinery, New York, NY, USA, 423–434.
https://doi.org/10.1145/1926385.1926433

[51] Chao Wang, HoonSang Jin, Gary D. Hachtel, and Fabio Somenzi. 2004.
Refining the SAT Decision Ordering for Bounded Model Checking.
In Proceedings of the 41st Annual Design Automation Conference (San
Diego, CA, USA) (DAC ’04). Association for Computing Machinery,
New York, NY, USA, 535–538. https://doi.org/10.1145/996566.996713

[52] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta. 2009.
Symbolic Predictive Analysis for Concurrent Programs. In FM 2009:
Formal Methods, Ana Cavalcanti and Dennis R. Dams (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 256–272. https://doi.org/10.
1007/978-3-642-05089-3_17

[53] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. 2008. Peep-
hole Partial Order Reduction. In Tools and Algorithms for the Con-
struction and Analysis of Systems, C. R. Ramakrishnan and Jakob Re-
hof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 382–396.
https://doi.org/10.1007/978-3-540-78800-3_29

[54] Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. 2018.
YOGAR-CBMC: CBMC with Scheduling Constraint Based Abstraction
Refinement. In Tools and Algorithms for the Construction and Analysis
of Systems, Dirk Beyer and Marieke Huisman (Eds.). Springer Interna-
tional Publishing, Cham, 422–426. https://doi.org/10.1007/978-3-319-
89963-3_25

[55] Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2018. Scheduling
Constraint Based Abstraction Refinement for Weak Memory Mod-
els. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (Montpellier, France) (ASE 2018). As-
sociation for Computing Machinery, New York, NY, USA, 645–655.
https://doi.org/10.1145/3238147.3238223

[56] L. Yin, W. Dong, W. Liu, and J. Wang. 2020. On Scheduling Constraint
Abstraction for Multi-Threaded Program Verification. IEEE Trans-
actions on Software Engineering 46, 5 (may 2020), 549–565. https:
//doi.org/10.1109/TSE.2018.2864122

[57] Naling Zhang, Markus Kusano, and ChaoWang. 2015. Dynamic Partial
Order Reduction for Relaxed Memory Models. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Portland, OR, USA) (PLDI ’15). Association for
Computing Machinery, New York, NY, USA, 250–259. https://doi.org/
10.1145/2737924.2737956

https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-54862-8_26
http://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1016/0020-0190(96)00075-0
https://doi.org/10.1016/0020-0190(96)00075-0
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1145/1187436.1210590
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/1926385.1926433
https://doi.org/10.1145/996566.996713
https://doi.org/10.1007/978-3-642-05089-3_17
https://doi.org/10.1007/978-3-642-05089-3_17
https://doi.org/10.1007/978-3-540-78800-3_29
https://doi.org/10.1007/978-3-319-89963-3_25
https://doi.org/10.1007/978-3-319-89963-3_25
https://doi.org/10.1145/3238147.3238223
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1145/2737924.2737956
https://doi.org/10.1145/2737924.2737956

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notions
	2.2 Satisfiability Modulo Theory and DPLL(T)
	2.3 Concurrent Executions as Partial Orders

	3 Symbolic Encoding of Multi-threaded Programs
	3.1 Symbolic Encoding
	3.2 Comparison to Other Approaches
	3.3 Correctness of the Encoding

	4 Ordering Consistency Theory
	4.1 Theory Definition
	4.2 Event Graph

	5 Theory Solver for Tord
	5.1 Overview
	5.2 Consistency Checking
	5.3 Conflict Clause Generation
	5.4 Theory Propagation
	5.5 Example

	6 Experimental Evaluation
	6.1 Implementation and Setup
	6.2 Experiment on SV-COMP Benchmarks
	6.3 Experiment on Strategies of Tord-solver
	6.4 Comparison with Stateless Model Checking
	6.5 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

