
Interference Relation-Guided SMT Solving for
Multi-Threaded Program Verification

Hongyu Fan
School of Software, Tsinghua

University
Key Laboratory for Information

System Security, MoE
Beijing National Research Center for
Information Science and Technology

Beijing, China
fhy18@mails.tsinghua.edu.cn

Weiting Liu
School of Software, Tsinghua

University
Key Laboratory for Information

System Security, MoE
Beijing National Research Center for
Information Science and Technology

Beijing, China
lwt16@mails.tsinghua.edu.cn

Fei He∗
School of Software, Tsinghua

University
Key Laboratory for Information

System Security, MoE
Beijing National Research Center for
Information Science and Technology

Beijing, China
hefei@tsinghua.edu.cn

Abstract
Concurrent program verification is challenging due to a large
number of thread interferences. A popular approach is to
encode concurrent programs as SMT formulas and then rely
on off-the-shelf SMT solvers to accomplish the verification.
In most existing works, an SMT solver is simply treated
as the backend. There is little research on improving SMT
solving for concurrent program verification.
In this paper, we recognize the characteristics of inter-

ference relation in multi-threaded programs and propose
a novel approach for utilizing the interference relation in
the SMT solving of multi-threaded program verification un-
der various memory models. We show that the backend
SMT solver can benefit a lot from the domain knowledge of
concurrent programs. We implemented our approach in a
prototype tool called Zpre. We compared it with the state-of-
the-art Z3 tool on credible benchmarks from the Concurren-
cySafety category of SV-COMP 2019. Experimental results
show promising improvements attributed to our approach.

CCS Concepts: • Software and its engineering → Soft-
ware verification and validation; • Theory of computa-
tion → Logic and verification.

Keywords: Concurrent programs, Program verification, Sat-
isfiability modulo theory, Partial order, Weak memory mod-
els
∗Corresponding author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9204-4/22/02. . . $15.00
https://doi.org/10.1145/3503221.3508424

1 Introduction
Concurrent program verification is challenging in practice [7,
44]. Thread interference is the main hurdle for verifying such
systems. Consider such a situation that a variable is shared
between two threads; it is hard to say which access shall
happen before the other. Within the weak memory models,
the ordering of instructions in each thread can further be
violated. To prove the correctness of a concurrent program,
one needs to consider all possible interferences between
concurrent threads. The vast number of thread interferences
makes the reasoning of concurrent programs highly intricate.
At the same time, Satisfiability modulo theories (SMT) [8,

19, 20] plays a vital role in program verification. An SMT-
based program verifier consists of two components: a fron-
tend that encodes the verification condition as an SMT for-
mula; and a backend that solves the verification condition
formula. There are many well-known studies on frontends.
One of the most successful techniques is the use of partial
orders [6, 7, 33, 35, 36] to model the interference relation
of concurrent programs. Each memory access is associated
with a unique timestamp, and the interference relations are
represented as ordering constraints over these timestamps.
Sinha and Chao [45] introduced interference abstraction to
over- and under-approximate thread interference, which can
analyze concurrent programs more efficiently. Cordeiro [16]
proposed a method to check deadlock and data races of con-
current programs by explicitly exploring interferences and
producing one symbolic execution per interference. From
the angle of an SMT solver, all the above techniques were
focused on the encoding of concurrent program verification
and did less on the backend SMT solver.
A powerful SMT solver is certainly a crucial factor for

concurrent program verification. However, most of the SMT
solvers are designed for the general purpose of constraint
solving. Domain-specific knowledge is neglected in these
solvers. As a result, the SMT solver may explore redundant
search space, which will be pruned if the domain knowledge
is applied [9, 14, 26, 38]. In concurrent program verification,
interference relations convey essential information about

https://doi.org/10.1145/3503221.3508424

PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea Hongyu Fan, Weiting Liu, and Fei He

the interleavings of threads, and applying this knowledge in
SMT solvingmay be quite useful for pruning the search space.
When modeling a multi-threaded program, each interference
relation is represented using a Boolean variable, called an
interference variable.
Our basic idea is to develop a strategy to guide the SMT

solving of concurrent program verification. Note that the
DPLL(T) [24] procedure is essentially a depth-first search
process; it needs to choose a variable and make an assign-
ment at each search step. We intend to construct a partial
order, called the decision order, which represents priorities of
unassigned variables being selected in the search procedure
of DPLL(T). To some extent, the decision order determines
the search direction of SMT solving. We propose several
heuristics for constructing this decision order. Firstly, we
recognize the importance of interference variables and as-
sign them higher priorities in the decision order. Secondly,
we distinguish several types of interference variables and
assign them with different priorities. Finally, we propose a
lightweight technique to enforce the decision order in the
SMT solver to improve the efficiency of SMT solving.
Another issue for concurrent program verification is the

relaxed memory access in the weak memory model (WMM).
Sequential consistency (SC) [36] forces memory access in each
thread to follow the order of instructions, but WMM (e.g.,
TSO [43], PSO [47]) allows certain memory operation order-
ing to be relaxed, which brings intra-thread uncertainty and
makes concurrent program verification even harder. Model-
ing concurrent programs in WMM is more complex than in
SC. However, changing the memory model has less impact
on the number of interference variables. This paper also illus-
trates that for concurrent program verification, our approach
applies to WMMs and has a higher efficiency than in SC.

We implemented our approach on top of CBMC [33] and
Z3 [19]. We performed extensive experiments on credible
benchmarks collected from the ConcurrencySafety category
of SV-COMP 2019 [1]. Counting on both-solved SMT in-
stances, our proposed method achieved an average of 1.49x,
1.87x, and 1.89x speedups over Z3 in SC, TSO, and PSO, re-
spectively.

The contributions of this paper are summarized as follows:

• We presented a novel approach for utilizing interfer-
ence relation to guide SMT solving of multi-threaded
program verification under various memory models.

• We devised efficient heuristics for constructing the
decision order of multi-threaded programs.

• We implemented our approach on top of CBMC and
Z3 and conducted extensive experiments to confirm
its effectiveness and evaluate its efficiency. Experimen-
tal results show the promising performance of our
approach.

The rest of this paper is organized as follows. Section 2
introduces necessary preliminaries. Section 3 uses a simple

M is T-unsat
add T-conflict clause to 𝛷

𝛣(𝛷) is sat
M is corresponding model

SAT Solver Theory Solver

M is T-sat

𝛷 is sat

ℬ(𝛷) is unsat

𝛷 is unsat

SMT formula 𝛷

Figure 1. Flow of DPLL(T).

Algorithm 1: DPLL(T)
Input: An SMT formula Ψ
Output: sat or unsat

1 while true do
2 while ! propagate_and_check() do
3 if !has_decision() then return unsat ;
4 else resolve_conflict() ;
5 if !decide() then return sat ;

example to illustrate the importance of interference relation
for concurrent program verification. Section 4 details our
interference relation-guided SMT solving. Experimental re-
sults and analysis are presented in Section 5, followed by
related works in Section 6 and conclusion in Section 7.

2 Preliminaries
2.1 SMT and DPLL(T)
Satisfiability modulo theories (SMT) is the satisfiability prob-
lem with a combination of first-order background theories.
SMT is widely applied in software verification, hardware
model checking, theorem proving, etc.
Figure 1 shows a high-level overview of the standard

framework for SMT solving, called DPLL(T) [18, 24]. Given
an SMT formula Φ, each atom of it is replaced by a new
Boolean variable (called Boolean abstraction). The resulting
formula, denoted as B(Φ), is a Boolean formula. DPLL(T)
employs a SAT solver to find a satisfiable model𝑀 for B(Φ).
Note that B(Φ) is an over-approximation of Φ. If B(Φ) is un-
satisfiable, the original formula Φ must also be unsatisfiable.
However, the opposite may not hold. If B(Φ) is satisfiable,
DPLL(T) calls theory solvers to check the 𝑇 -satisfiability of
𝑀 . If𝑀 is 𝑇 -sat, Φ is also satisfiable. Otherwise, the theory
solver adds conflict clauses to Φ and passes it to SAT solver.
Then DPLL(T) performs the next iteration.

Algorithm 1 depicts the pseudocode of DPLL(T). Themethod
propagate_and_check() employs unit and theory propagation
to assign values to as many variables as possible. It returns
true if the current model is 𝑇 -sat, and false if the current
model has theory conflicts. The method resolve_conflict()

Interference Relation-Guided SMT Solving for Multi-Threaded Program Verification PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea

learns conflict clauses to enhance constraints in formula Φ.
The method decide() selects the next unassigned Boolean
variable. We conclude that the current model satisfies Φ if
there are no unassigned variables.

Example 2.1. For SMT formula 𝜙 ≡ (𝑥 = 3∨𝑦 ≤ 4) ∧𝑥 ≥
5, where 𝑥 and 𝑦 are two variables. The SMT solver first
abstracts 𝜙 as B(𝜙) ≡ (𝑏1∨𝑏2) ∧𝑏3 where Boolean variables
𝑏1, 𝑏2, and 𝑏3 denote 𝑥 = 3, 𝑦 ≤ 4, and 𝑥 ≥ 5, respectively.
If B(𝜙) is true, then the clause 𝑏1 ∨ 𝑏2 must be true. Firstly,
suppose the SAT solver assigns 𝑏1 to true, a satisfying model
𝑀 , i.e., (𝑏1 = 1, 𝑏2 = 0, 𝑏3 = 1) of B(𝜙) is returned eventually.
However, this model is spurious since 𝑥 = 3∧𝑦 > 4∧𝑥 ≥ 5 is
unsat under integer theory. After resolving this conflict, the
SAT solver assigns 𝑏2 to true and returns another satisfying
model 𝑀 ′, i.e., (𝑏1 = 0, 𝑏2 = 1, 𝑏3 = 1). Since 𝑥 ≠ 3 ∧ 𝑦 >

4 ∧ 𝑥 ≥ 5 is also satisfiable, then 𝜙 is satisfiable.
Note that if the SAT solver assigns 𝑏2 to true at first, then

𝑀 ′ is found in the first iteration. It is evident that a more
reasonable decision order of these unassigned Boolean vari-
ables may significantly improve the efficiency of SMT solv-
ing by reducing redundant search space. Heuristics such as
VSIDS[38] and CFG-based method[14] are elaborated for
selecting the next unassigned variable and deciding its value.
In this paper, we utilize the knowledge of the interference
relation and derive a reasonable decision order to guide the
SMT solving of concurrent program verification.

2.2 Multi-Threaded Program and Memory Model
A concurrent program comprises multiple threads running
in parallel. There are two kinds of variables in a concur-
rent program, i.e., local variables that are accessible by a
specific thread only, and shared variables that are accessible
by all threads. An event is either a read or a write access to
a variable. An event is called global if it accesses a shared
variable. In the following, we consider only global events.
Denote var (𝑒), guard (𝑒) and clk(𝑒) as the accessed variable,
guard condition and timestamp of event 𝑒 , respectively. Two
events 𝑒1 and 𝑒2 access the same variable if var (𝑒1) = var (𝑒2).
Considering branches, assumption statements, etc, guard (𝑒)
encodes the guard condition of the occurrence of event 𝑒 . As
in [45], we use an integer-valued timestamp to specify the
order of the event: an event 𝑒1 happens before another event
𝑒2 iff clk(𝑒1) < clk(𝑒2).

A memory model determines the execution order of mem-
ory access events. Sequential Consistency (SC) [36] is the
most simple and commonly assumed memory model. In SC,
the execution order of events from the same thread must
follow the order of instructions, i.e., reordering between
neighboring access events is not allowed. On the contrary, a
Weak Memory Model (WMM) allows certain memory access
orders to be inconsistent with the instruction order. More
specifically, this paper mainly considers two WMMs, i.e.,
Total Store Order (TSO) [43], widely employed in x86 and
SPARC architectures, where permutation to a write event

ଶଵ ଵ ଶ

ଶ ଶ

ଵ ଷ

ସ ଷ

ଵ ସ

ଵ ଵ

ଶ ଶ

Figure 2. A three-threaded program and its SSA form.

followed by a read event is allowed if two events refer to dif-
ferent memory addresses; and Partial Store Order (PSO) [47],
which further relaxes the order between two write events
that manipulate different memory addresses.

3 Interference Relation for Concurrent
Program Verification

In this section, we first use the simple example in Figure 2
(left) to introduce the symbolic encoding of multi-threaded
programs. Then we show the importance of interference
relation in verifying multi-threaded programs.

3.1 Symbolic Encoding
As usual, we adopt the static single assignment (SSA) [45]
style during encoding. The SSA form of the example program
is shown in Figure 2 (right). In this paper, we also use SSA
to represent the corresponding access event.
With SSA form, the verification condition for the correct-

ness of the program can be encoded as an SMT formula,
i.e.,

Φ = Φ𝑝𝑟𝑜𝑔 ∧ Φ𝑒𝑟𝑟 , (1)

where Φ𝑝𝑟𝑜𝑔 encodes the program and Φ𝑒𝑟𝑟 encodes the error
condition. The program is correct with respect to the given
property iff the verification condition Φ is unsatisfiable.

Following the modeling approach in [6], a multi-threaded
program can be encoded using SSA statements and partial
orders, i.e.,

Φ𝑝𝑟𝑜𝑔 = Φ𝑠𝑠𝑎 ∧ Φ𝑝𝑜 ∧ Φ𝑟 𝑓 ∧ Φrf_some ∧ Φ𝑤𝑠 ∧ Φ𝑓 𝑟 , (2)

where Φ𝑠𝑠𝑎 , Φ𝑝𝑜 , Φ𝑟 𝑓 , Φrf_some, Φ𝑤𝑠 and Φ𝑓 𝑟 will be explained
in the following (see Figure 3 for detailed encodings of the
example program).

SSA Statements. Φ𝑠𝑠𝑎 encodes the program statements in
SSA form.

Program Order. Φ𝑝𝑜 encodes the program order for each
thread. If two events 𝑒1 and 𝑒2 have the program order, then
𝑒1 and 𝑒2 must belong to the same thread and 𝑒1 happens
before 𝑒2, i.e, clk(𝑒1) < clk(𝑒2).

WMM relaxes some order restrictions of events from the
same thread, so Φ𝑝𝑜 may be different under WMM. In partic-
ular, TSO relaxes the program order between a write event
𝑤 to a read event 𝑟 if var (𝑤) ≠ var (𝑟). The program order

PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea Hongyu Fan, Weiting Liu, and Fei He

𝛷௦௦: 𝑥ଵ = 0 ∧ 𝑦ଵ = 0 ∧ 𝑥ଶ = yଵ + 1 ∧ 𝑚ଵ = 𝑦ଷ ∧ 𝑦ସ = xଷ + 1 ∧ 𝑛ଵ = xସ

𝛷 ∶ 𝑡ଵ ∶ 𝑐𝑙𝑘 𝑦ଶ < 𝑐𝑙𝑘 𝑥ଶ 𝑐𝑙𝑘 𝑥ଶ < 𝑐𝑙𝑘 𝑦ଷ 𝑐𝑙𝑘 𝑦ଷ < 𝑐𝑙𝑘 𝑚ଵ

𝑡ଶ ∶ 𝑐𝑙𝑘 𝑥ଷ < 𝑐𝑙𝑘 𝑦ସ 𝑐𝑙𝑘 𝑦ସ < 𝑐𝑙𝑘 𝑥ସ 𝑐𝑙𝑘 𝑥ସ < 𝑐𝑙𝑘(𝑛ଵ)

𝑚𝑎𝑖𝑛 ∶ 𝑐𝑙𝑘 𝑥ଵ < 𝑐𝑙𝑘 𝑦ଵ 𝑐𝑙𝑘 𝑦ଵ < 𝑐𝑙𝑘 𝑚ଶ 𝑐𝑙𝑘 𝑚ଶ < 𝑐𝑙𝑘(𝑛ଶ)

𝛷 ∶ 𝑟𝑓ଵ,ଷ
௫ → 𝑥ଷ = 𝑥ଵ ∧ 𝑐𝑙𝑘 𝑥ଵ < 𝑐𝑙𝑘 𝑥ଷ 𝑟𝑓ଶ,ଷ

௫ → 𝑥ଷ = 𝑥ଶ ∧ 𝑐𝑙𝑘 𝑥ଶ < 𝑐𝑙𝑘(𝑥ଷ)

 𝑟𝑓ଵ,ସ
௫ → 𝑥ସ = 𝑥ଵ ∧ 𝑐𝑙𝑘 𝑥ଵ < 𝑐𝑙𝑘 𝑥ସ 𝑟𝑓ଶ,ସ

௫ → 𝑥ସ = 𝑥ଶ ∧ 𝑐𝑙𝑘 𝑥ଶ < 𝑐𝑙𝑘 𝑥ସ

𝑟𝑓ଵ,ଶ
௬

→ 𝑦ଶ = 𝑦ଵ ∧ 𝑐𝑙𝑘 𝑦ଵ < 𝑐𝑙𝑘 𝑦ଶ 𝑟𝑓ସ,ଶ
௬

→ 𝑦ଶ = 𝑦ସ ∧ 𝑐𝑙𝑘 𝑦ସ < 𝑐𝑙𝑘(𝑦ଶ)

 𝑟𝑓ଵ,ଷ
௬

→ 𝑦ଷ = 𝑦ଵ ∧ 𝑐𝑙𝑘 𝑦ଵ < 𝑐𝑙𝑘 𝑦ଷ 𝑟𝑓ସ,ଷ
௬

→ 𝑦ଷ = 𝑦ସ ∧ 𝑐𝑙𝑘 𝑦ସ < 𝑐𝑙𝑘(𝑦ଷ)

𝛷_௦ ∶ (𝑟𝑓ଵ,ଷ
௫ ∨ 𝑟𝑓ଶ,ଷ

௫) ∧ (𝑟𝑓ଵ,ସ
௫ ∨ 𝑟𝑓ଶ,ସ

௫) ∧ (𝑟𝑓ଵ,ଶ
௬

∨ 𝑟𝑓ସ,ଶ
௬

) ∧ (𝑟𝑓ଵ,ଷ
௬

∨ 𝑟𝑓ସ,ଷ
௬

)

𝛷௪௦ ∶ 𝑤𝑠ଵ,ଶ
௫ → 𝑐𝑙𝑘 𝑥ଵ < 𝑐𝑙𝑘 𝑥ଶ ¬𝑤𝑠ଵ,ଶ

௫ → 𝑐𝑙𝑘 𝑥ଶ < 𝑐𝑙𝑘 𝑥ଵ

 𝑤𝑠ଵ,ସ
௬

→ 𝑐𝑙𝑘 𝑦ଵ < 𝑐𝑙𝑘 𝑦ସ ¬𝑤𝑠ଵ,ସ
௬

→ 𝑐𝑙𝑘 𝑦ସ < 𝑐𝑙𝑘(𝑦ଵ)

𝛷 ∶ 𝑟𝑓ଵ,ଷ
௫ ∧ 𝑤𝑠ଵ,ଶ

௫ → 𝑐𝑙𝑘 𝑥ଷ < 𝑐𝑙𝑘 𝑥ଶ 𝑟𝑓ଶ,ଷ
௫ ∧ (¬𝑤𝑠ଵ,ଶ

௫) → 𝑐𝑙𝑘 𝑥ଷ < 𝑐𝑙𝑘 𝑥ଵ

𝑟𝑓ଵ,ସ
௫ ∧ 𝑤𝑠ଵ,ଶ

௫ → 𝑐𝑙𝑘 𝑥ସ < 𝑐𝑙𝑘 𝑥ଶ 𝑟𝑓ଶ,ସ
௫ ∧ ¬𝑤𝑠ଵ,ଶ

௫ → 𝑐𝑙𝑘 𝑥ସ < 𝑐𝑙𝑘 𝑥ଵ

𝑟𝑓ଵ,ଶ
௬

∧ 𝑤𝑠ଵ,ସ
௬

→ 𝑐𝑙𝑘 𝑦ଶ < 𝑐𝑙𝑘 𝑦ସ 𝑟𝑓ସ,ଶ
௬

∧ (¬𝑤𝑠ଵ,ସ
௬

) → 𝑐𝑙𝑘 𝑦ଶ < 𝑐𝑙𝑘 𝑦ଵ

𝑟𝑓ଵ,ଷ
௬

∧ 𝑤𝑠ଵ,ସ
௬

→ 𝑐𝑙𝑘 𝑦ଷ < 𝑐𝑙𝑘 𝑦ସ 𝑟𝑓ସ,ଷ
௬

∧ (¬𝑤𝑠ଵ,ସ
௬

) → 𝑐𝑙𝑘 𝑦ଷ < 𝑐𝑙𝑘 𝑦ଵ

𝛷 ∶ 𝑚ଶ == 0 ∧ 𝑛ଶ == 0

Figure 3. Symbolic encoding of the example program

of 𝑡1 under TSO is:

𝑡1 : clk(𝑦2) < clk(𝑥2) clk(𝑦2) < clk(𝑦3)
clk(𝑦3) < clk(𝑚1) clk(𝑥2) < clk(𝑚1)

PSO further relaxes the program order between a write event
𝑤 to a read/write event 𝑒 if var (𝑤) ≠ var (𝑒), so program
order of 𝑡1 under PSO is:

𝑡1 : clk(𝑦2) < clk(𝑥2) clk(𝑦2) < clk(𝑦3) clk(𝑦3) < clk(𝑚1)

Program order under TSO (PSO) of 𝑡2 and𝑚𝑎𝑖𝑛 threads are
similar to 𝑡1, we don’t show them for brevity. Note that
program order between write event 𝑦1 and read event𝑚2
in𝑚𝑎𝑖𝑛 thread is not relaxed since this order restriction is
preserved by thread_create and thread_join functions.

Read-From Order. Φ𝑟 𝑓 encodes the read-from relation. For
a shared variable 𝑥 , a read-from relation links a write event
𝑥𝑖 to a read event 𝑥 𝑗 if var (𝑥𝑖) = var (𝑥 𝑗); and: (1) 𝑥 𝑗 loads
the value stored by 𝑥𝑖 ; (2) 𝑥𝑖 happens before 𝑥 𝑗 , called a read-
from order, represented as clk(𝑥𝑖) < clk(𝑥 𝑗); (3) the guard
condition of 𝑥𝑖 must be true. A Boolean variable is introduced
to represent a read-from relation:

𝑟 𝑓 𝑥𝑖,𝑗 → (𝑥 𝑗 = 𝑥𝑖 ∧ clk(𝑥𝑖) < clk(𝑥 𝑗) ∧ 𝑔𝑢𝑎𝑟𝑑 (𝑥𝑖))

If the read event 𝑥 𝑗 happens, it must get its value from one
write event that accesses the same variable. We use Φrf_some
to encode such constraints:

guard (𝑥 𝑗) →
∨

𝑣𝑎𝑟 (𝑥𝑖)=𝑣𝑎𝑟 (𝑥 𝑗)
𝑟 𝑓 𝑥𝑖,𝑗

Write-Serialization Order. Φ𝑤𝑠 encodes a total order over
the write events to the same memory address, called the
write-serialization order. If 𝑥𝑖 and 𝑥𝑘 have this order, then
var (𝑥𝑖) = var (𝑥𝑘), and clk(𝑥𝑖) < clk(𝑥𝑘). A Boolean variable
is introduced to represent a write-serialization relation:

𝑤𝑠𝑥
𝑖,𝑘

→ clk(𝑥𝑖) < clk(𝑥𝑘) ¬𝑤𝑠𝑥
𝑖,𝑘

→ clk(𝑥𝑘) < clk(𝑥𝑖)

From-Read Order. Φ𝑓 𝑟 encodes the from-read order. If a
read event 𝑥 𝑗 gets its value from a write event 𝑥𝑖 , then for
any other write 𝑥𝑘 to the same address, it cannot happen

between 𝑥𝑖 and 𝑥 𝑗 , because otherwise 𝑥𝑘 overwrites 𝑥𝑖 , and
𝑥 𝑗 should get its value from 𝑥𝑘 but not 𝑥𝑖 . In other words:

𝑟 𝑓 𝑥𝑖,𝑗 ∧𝑤𝑠𝑥
𝑖,𝑘

→ clk(𝑥 𝑗) < clk(𝑥𝑘)

Finally, the error condition Φ𝑒𝑟𝑟 is the negation of the
safety property. Figure 3 details the symbolic encoding of the
example program. The verification condition of the example
program is the conjunction of all above constraints.

3.2 Interference Relation
Two accesses interfere [45] if they access the same address
and at least one of them is a write access. According to the
access types (read or write), there are three kinds of inter-
ference relations, i.e., read-from relation, write-serialization
relation and from-read relation.
Rethinking of the encoding formula (Equation (2)) of the

multi-threaded program, it can be divided into three parts,
i.e.,

Φ𝑝𝑟𝑜𝑔 = Φ𝑠𝑠𝑎 ∧ Φ𝑝𝑜 ∧ Φitf

where Φitf = Φ𝑟 𝑓 ∧ Φrf_some ∧ Φ𝑤𝑠 ∧ Φ𝑓 𝑟 . The first conjunct
Φ𝑠𝑠𝑎 represents the data and control flow per thread; the
second, Φ𝑝𝑜 , depicts the program order per thread; and the
third, Φitf, captures the interference between threads.

RegardΦ𝑝𝑟𝑜𝑔 as a first-order formula over a set of variables.
After Boolean abstraction (see Section 2), there are four kinds
of Boolean variables occurring in B(Φ𝑝𝑟𝑜𝑔):

• SSA variables, i.e., the variables for representing the
program statements, assignment statements, and guard
conditions in the program, denoted as 𝑉𝑠𝑠𝑎 .

• ordering variables, i.e., the variables for representing
the ordering constraints betweenmemory access events,
denoted as 𝑉𝑜𝑟𝑑 .

• read-from variables, i.e., the variables for representing
the read-from relations, denoted as 𝑉𝑟 𝑓 ;

• write-serialization variables, i.e., the variables for rep-
resenting write-serialization relations, denoted as 𝑉𝑤𝑠 .

For example, Boolean variables which represents the pro-
gram statement 𝑥2 = 𝑦1 + 1 or assignment statement 𝑥3 = 𝑥1
(in Figure 3) are included in𝑉𝑠𝑠𝑎 ; and a Boolean variable that

Interference Relation-Guided SMT Solving for Multi-Threaded Program Verification PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea

ଵ

ଵ

ଶ

ଷଶ

ଷ

ଵ

ସ

ସ

ଵ

ଶ

ଶ

(a) program order only

ଵ

ଵ

ଶ

ଷଶ

ଷ

ଵ

ସ

ସ

ଵ

ଶ

ଶ

ସ,ଶ
௬

ଶ,ଷ
௫

(b) an invalid execution

ଵ

ଵ

ଶ

ଷଶ

ଷ

ଵ

ସ

ସ

ଵ

ଶ

ଶ

ଵ,ଷ
௬

ଵ,ଶ
௫

ଵ,ସ
௬

ଵ,ସ
௫

(c) another invalid exe-
cution

ଵ

ଵ

ଶ

ଷଶ

ଷ

ଵ

ସ

ସ

ଵ

ଶ

ଶ

ଵ,ଷ
௬

ଵ,ଶ
௫

ଵ,ସ
௬

ଵ,ସ
௫

(d) the execution in (c)
under TSO

Figure 4. Event order graph of the example program

denotes clk(𝑥1) < clk(𝑥3) is included in 𝑉𝑜𝑟𝑑 . The read-from
and write-serialization variables are also called interference
variables. Let 𝑉itf = 𝑉𝑟 𝑓 ∪𝑉𝑤𝑠 be the set of interference vari-
ables, and 𝑉 = 𝑉𝑠𝑠𝑎 ∪𝑉𝑜𝑟𝑑 ∪𝑉itf be the set of all variables.
An assignment of 𝑉 is a mapping from variables in 𝑉 to

values. The assignment is said complete if every variable in𝑉
is assigned a value, and partial if only part of variables in 𝑉
are assigned. DPLL(T) is essentially a search procedure that
starts with an empty assignment and tries to find a complete
assignment that satisfies the verification condition.

3.3 Interference Relation is Important
A concrete concurrent execution of a multi-threaded program
is a complete assignment of 𝑉 . A symbolic concurrent exe-
cution is a partial assignment that assigns values to part of
variables in𝑉itf. A concrete concurrent execution determines
not only the order among memory accesses, but also their
concrete values; whereas a symbolic concurrent execution
specifies only the order among memory accesses. The above
definitions are equivalent to those in [6, 44].
Symbolic concurrent execution can be represented as an

event order graph (EOG), where each node represents an
event, and each edge represents an order between two events.
For readability purposes, we use the grey and white nodes
in the graph to represent the write and read events, the solid
and dashed edges to represent the program and interference
order, respectively. Program order regulates the primary or-
dering constraints among the events in the program, which
are determined at the beginning of SMT solving. For exam-
ple, Figure 4a shows the EOG of the example program with
program order under SC. Partial valuation to interference
variables determines interference order, which gives more or-
dering constraints among events on the EOG and establishes
a symbolic concurrent execution. It has been proven [44]
that a symbolic concurrent execution is valid if there ex-
ists a total order among the events of the execution, i.e., the

corresponding EOG contains no cycle. If the current partial
assignment to𝑉itf produces a cycle on the EOG, the DPLL(T)
needs to backtrack and try other assignments to 𝑉itf.
Figure 4b shows an invalid symbolic concurrent execu-

tion because there is no total order among the events, i.e.,
a cycle (𝑦2 → 𝑥2 → 𝑥3 → 𝑦4 → 𝑦2) occurs. The cycle
is caused by two interference variables 𝑟 𝑓 𝑥2,3 and 𝑟 𝑓

𝑦

4,2, and
the DPLL(T) needs to resolve this conflict. Figure 4c shows
another invalid symbolic concurrent execution. According
to the read-from order clk(𝑦1) < clk(𝑦3) (by rf 𝑦1,3) and the
write-serialization order clk(𝑦1) < clk(𝑦4) (by ws𝑦1,4), a from-
read order clk(𝑦3) < clk(𝑦4) is derived. Similarly, another
from-read order clk(𝑥4) < clk(𝑥2) is also derived. Appar-
ently, the current assignment to 𝑉itf is invalid since the EOG
contains a cycle, i.e., 𝑥2 → 𝑦3 → 𝑦4 → 𝑥4 → 𝑥2. The cycle is
caused by interference variables rf 𝑥1,4, rf

𝑦

1,3, ws
𝑥
1,2 and ws𝑦1,4,

DPLL(T) also needs to backtrack and resolve this conflict.
Consider Figures 4b and 4c; the invalidity can be detected

earlier only if the interference variables are assigned. Actu-
ally, for any invalid execution, the corresponding EOG must
contain (at least) a cycle, and there must be some interfer-
ence variables from which this cycle can be derived. Besides,
most of the valid symbolic concurrent executions that violate
safety properties are also caused by thread interference (see
Figure 4d). Therefore, prioritizing interference variables in
DPLL(T) can help the SMT solver quickly decide whether
the current assignment leads to an invalid execution or not.
Moreover, consider the example program; if 𝑟 𝑓 𝑥1,4 is as-

signed true, both the ordering variable representing clk(𝑥1) <
clk(𝑥4) and the SSA variable representing the assignment
statement 𝑥4 = 𝑥1 will further be propagated to true. We say
interference variables dominate some ordering constraints
variables in𝑉𝑜𝑟𝑑 and some SSA variables in𝑉𝑠𝑠𝑎 . To some ex-
tent, the valuation of interference variables drives the search
direction of the DPLL(T). Therefore, applying this knowl-
edge and prioritizing interference variables can help the

PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea Hongyu Fan, Weiting Liu, and Fei He

DPLL(T) propagate more related Boolean variables instead
of searching redundant search space.

In summary, interference variables characterize the inter-
leaving semantics of the concurrent programs, which may
be quite useful if they are specially treated in SMT solving.

3.4 Interference Relation is Neglected
It is widely accepted that reasonable heuristics for choosing
the next decision variable might significantly improve the
performance of SMT solving [24]. However, for concurrent
program verification, the default DPLL(T) is unaware that
interference variables are important; and it treats all variables
in 𝑉 equally.

Consider the from-read order constraint 𝑟 𝑓 𝑥2,3∧(¬𝑤𝑠𝑥1,2) →
(clk(𝑥3) < clk(𝑥1)) in Figure 3. During Boolean abstraction,
it is first transformed into a clause, i.e, (¬𝑟 𝑓 𝑥2,3) ∨𝑤𝑠𝑥1,2 ∨ 𝑏1,
where𝑏1 is a Boolean variable representing clk(𝑥3) < clk(𝑥1).
Although 𝑏1 is dominated by 𝑟 𝑓 𝑥2,3 and 𝑤𝑠

𝑥
1,2, DPLL(T) may

first assign 𝑏1 to 𝑡𝑟𝑢𝑒 , then continues to perform propaga-
tions and decisions until the conflict that clk(𝑥3) < clk(𝑥1)
betrays program order is found.

The default selection strategy (e.g., VSIDS [38, 42], random,
unit clause[18]) for the next unassigned variable may cause
the solver to explore redundant search space. Moreover, most
program variables and all clock variables are non-Boolean
variables. For example, a 32-bit integer-types variable can be
represented by a bit-vector with a bit width of 32; if such a
variable is assigned, the DPLL(T) has to keep making numer-
ous decisions and propagations on each bit of the vector to
derive a value of this variable. Additionally, handling non-
Boolean variables often involves theory solvers, which are
complicated and time-consuming.

Besides, if a symbolic concurrent execution is invalid, all
its corresponding concrete concurrent executions are invalid.
Note that a valuation to 𝑉itf determines a symbolic concur-
rent execution. Instead of treating all variables in 𝑉 equally,
prioritizing interference variables can drive the search di-
rection of the DPLL(T), helping the SMT solver backtrack
earlier when the current assignment is already invalid. In
this way, the redundant search space is pruned, and the SMT
solving efficiency is improved. To this end, we propose an
interference relation-guided SMT solving approach.

4 Interference Relation-Guided SMT
Solving

In this section, we detail how to produce the decision order
and how to utilize this decision order in SMT solving.

4.1 Decision Order Generation
An SMT-based program verifier is composed of two parts: a
frontend that parses the program and encodes the verifica-
tion condition as an SMT formula; and a backend (an SMT
solver) that solves the verification condition formula.

During the frontend encoding verification condition for-
mula, the interference variables are denoted in a special fash-
ion. Each RF variable is named as rf _𝑟𝑡_𝑟𝑖_𝑤𝑡_𝑤𝑖 where 𝑟𝑡 ,
𝑤𝑡 represent the IDs of threads to which the read and write
events belong, respectively; 𝑟𝑖 ,𝑤𝑖 represent the intra-thread
locations on which the read and write events occur, respec-
tively. We also name WS variables with a similar recipe.

DPLL(T) is essentially a depth-first search process; at each
search step, it needs to choose a variable and make an assign-
ment. We intend to define a partial order ⪯ on𝑉 to prioritize
variables selected for the assignment. Once the SMT formula
is passed to the backend, the SMT solver recognizes the in-
terference variables by their names and constructs a decision
order on 𝑉 .

Our first insight is that the interference variables are more
important than other variables. We thus have:

HEURISTIC 1. Interference variables are prior to other vari-
ables, i.e., ∀𝑣1 ∈ 𝑉itf,∀𝑣2 ∈ 𝑉 \𝑉itf, 𝑣1 ⪯ 𝑣2.

By applying this native HEURISTIC 1, interference vari-
ables are prior to other variables in 𝑉 when DPLL(T) selects
the next unassigned variable. Moreover, we further utilize
the knowledge of the concurrent program to arrange this
decision order in detail.

There are two kinds of interference variables, i.e., the read-
from (RF) variables, and the write-serialization (WS) vari-
ables. We observe that: (1) RF variables can dominate some
valuations of SSA variables, while WS variables can not; (2)
many WS orders are implied by program order; boolean vari-
ables for representing these WS orders can thus be directly
propagated during DPLL(T). Therefore, we suggest giving
the RF variables higher priorities than the WS variables, i.e.,

∀𝑣1 ∈ 𝑉𝑟 𝑓 ,∀𝑣2 ∈ 𝑉𝑤𝑠 , 𝑣1 ⪯ 𝑣2

Additionally, A RF variable links a read event and a write
event that access the same memory address. If these two
events belong to the same thread, we call the RF variable
internal; otherwise, it is external. Let𝑉𝑟 𝑓 𝑒 and𝑉𝑟 𝑓 𝑖 be the sets
of external and internal RF variables, respectively. Once a
read-from order clk(𝑤) < clk(𝑟) is assigned, all events that
happened before𝑤 should also happen before 𝑟 . Meanwhile,
all events that happen after 𝑟 should also happen after𝑤 . If
𝑤 and 𝑟 are from the same thread, this read-from order is
implied by the program order and has nothing to do with
the interleaving semantics of concurrent programs. Instead,
if 𝑤 and 𝑟 are from different threads, this read-from order
captures the interference relation and reduces uncertainties
caused by thread interleaving. The reason why concurrent
programs are error-prone is thread interference. Therefore,
we give higher priority to external RF variables, i.e.,

∀𝑣1 ∈ 𝑉𝑟 𝑓 𝑒 ,∀𝑣2 ∈ 𝑉𝑟 𝑓 𝑖 , 𝑣1 ⪯ 𝑣2

Moreover, thread interference causes that the value ob-
tained by a read event may come from many possible write

Interference Relation-Guided SMT Solving for Multi-Threaded Program Verification PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea

events. The more writes to a shared variable, the greater im-
pact of the thread interferences on this variable. Let #𝑤𝑟𝑖𝑡𝑒 (𝑣)
be the number of write events that the read event 𝑟 may
read from. Intuitively, let 𝑟1 and 𝑟2 be the read events cor-
responding to the RF variables 𝑣1 and 𝑣2, respectively; if
#𝑤𝑟𝑖𝑡𝑒 (𝑣1) > #𝑤𝑟𝑖𝑡𝑒 (𝑣2), 𝑣1 is assigned higher priority when
DPLL(T) selects the next unassigned variable.
Algorithm prior_to(𝑣1, 𝑣2) explains how we construct the

decision order in detail. This algorithm takes two interfer-
ence variables 𝑣1 and 𝑣2 as parameters and returns true if
𝑣1 is prior to 𝑣2, and false otherwise. It mainly handles the
following 4 cases:

• RF variables are prior to WS variables. If 𝑣1 ∈ 𝑉𝑟 𝑓 and
𝑣2 ∈ 𝑉𝑤𝑠 , then this algorithm returns true.

• External RF variables are prior to internal RF variables.
If 𝑣1 ∈ 𝑉𝑟 𝑓 𝑒 and 𝑣2 ∈ 𝑉𝑟 𝑓 𝑖 , then true is returned.

• If 𝑣1, 𝑣2 are both RF variables, let 𝑛1 be #write(𝑣1) and
𝑛2 be #write(𝑣2); if 𝑛1 > 𝑛2, then 𝑣1 is prior to 𝑣2.

• Otherwise, the algorithm returns false.
Finally, it terminates with a new decision order generated.

4.2 Enhanced DPLL(T)
DPLL(T) selects the next unassigned variable in decide() pro-
cedure (see Algorithm 1). Therefore, we guided the SMT
solving by enhancing the decide() procedure using the gen-
erated decision order. Figure 5 shows a high-level overview
of our enhanced-DPLL(T). Assuming no conflicts are found
after propagation_and_check(), if there are any unassigned
interference variables in 𝑉itf, the enhanced-DPLL(T) selects
the first variable following the decision order ⪯ and assigns
it with a random Boolean value. Otherwise, it selects and
assigns the next variable using the default heuristics [38, 42]
implemented in the SMT solver.
Our approach is a series of domain-specific heuristics

for the recognition and priority decision of interference
relations; these heuristics are devised for SMT solving of
multi-threaded program verification. Meanwhile, the default
heuristics (e.g., conflict-driven clause learning, VSIDS, unit-
clause propagation) are also enabled in our approach. In the
enhanced-DPLL(T), we first try to use our heuristics to select
the next unassigned interference variable. If all our heuris-
tics cannot apply, i.e., values of all interference variables are
decided or propagated, we follow the default heuristics to
select the next variable.

5 Experimental Evaluation
This section details the experimental results and analysis of
our interference relation-guided SMT solving tactic.

Implementation. We implemented our approach1 on top
of CBMC and Z3, where CBMC is a powerful and flexible
bounded model checker for C\C++ programs, and Z3 is a

1Artifact is available at: https://thufv.github.io/research/ppopp22-artifact

found
conflict

propagate
and check

SMT formula Φ input

success

fail

(𝑣, 𝑣𝑎𝑙𝑢𝑒)

(𝑣, 𝑣𝑎𝑙𝑢𝑒)

unsat decide

choose from 𝑉௧

choose the next
unassigned variable

no
conflict

if all assigned

if all assigned

choose from 𝑉

sat

resolve
conflict

backtrack

Figure 5. Enhanced DPLL(T)

well-known and widely-adopted SMT solver. In this paper,
we modify CBMC to 1) extract information about interfer-
ence variables; and 2) encode this information into the SMT
formula. We use CBMC to generate SMT formulas under
different memory models. All the generated SMT formulas
are in the SMT-LIB-v2.6 format. The interference relation-
guided SMT solving strategy is implemented in Z3. In the
following, we call our implementation Zpre and make Z3
with its default solving strategies (e.g., VSIDS, conflict-clause
learning) the baseline.

Benchmarks. We collected benchmarks from the Concur-
rencySafety category of SV-COMP 2019. These benchmarks
have been widely accepted since they are comprehensive,
credible, and have already been preprocessed for verification.
Many studies perform their experiments on these bench-
marks to demonstrate the effectiveness of their method.

The ConcurrencySafety category contains 12 subcategories
and 1084 C programs, namely ldv-linux (9), ldv-races (12),
pthread (38), atomic (11), C-DAC (4), complex (5), divine (16),
driver-races (21), ext (53), lit (11), nondet (6), and wmm (898),
where the number followed to each subcategory represents
the number of programs it contains. Programs in ldv-linux
and complex contains complicated data structures, CBMC
fails to generate correct SMT files of these programs since Z3
reports parse errors and throws exceptions, so we exclude
all 14 programs of these two subcategories, and we get 1070
programs in total.

Experimental Setup. Bounded model checking (BMC)[15]
is efficient in finding bugs. A program can be converted to
a loop-free one by replacing every loop with a nested (to
a specific loop unrolling bound) if-statement. Let 𝑘∗ be the
minimal unrolling bound that violates the given property. If
the current unrolling bound 𝑘 < 𝑘∗, then the corresponding
SMT formula is unsatisfiable, and the original program is
correct under unrolling bound 𝑘 . If 𝑘 ≥ 𝑘∗, then the SMT
formula is satisfiable, and the original program violates the
given property. In this paper, we set the loop unrolling bound
from 1 to 6 and use CBMC to generate different SMT formu-
las for each multi-threaded program. We set a time limit of

https://thufv.github.io/research/ppopp22-artifact

PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea Hongyu Fan, Weiting Liu, and Fei He

0.1

1

10

100

1000

0.1 1 10 100 1000

O
u

r
A

p
p

ro
ac

h
/s

Figure 6. Zpre vs. Z3 in SC

0.1

1

10

100

1000

0.1 1 10 100 1000

O
u

r
A

p
p

ro
ac

h
/s

Figure 7. Zpre vs. Z3 in TSO

0.1

1

10

100

1000

0.1 1 10 100 1000

O
u

r
A

p
p

ro
ac

h
/s

Figure 8. Zpre vs. Z3 in PSO

5 minutes for generating the SMT formulas. Through our
experience, if the generation cannot be finished in 5 minutes,
the size of the generated SMT file is usually beyond 1GB,
which is too hard to solve for the current SMT solvers. More-
over, if the original program contains no loops, the generated
SMT files with different unrolling bounds are the same. After
eliminating duplications, we finally obtained – 1673 SMT
files in SC, 1651 SMT files in TSO, and 1643 SMT files in PSO.
The file size ranges from several KB to hundreds of MB. In
the following, an SMT instance is also called a verification
task.
All the experiments are conducted on a computer with

Intel(R) Core(TM) i7-8700 CPU @3.20 GHz and 32GB mem-
ory, and the operating system is ArchLinux-5.11.10. The time
limit for solving each SMT instance is set to 1800 seconds.

5.1 Experimental Results
Overall Results. Figures 6, 7, and 8 display the SMT solving
time (CPU time) of Z3 and Zpre on all the verification tasks
under SC, TSO, and PSO memory models, respectively. Each
point in the panel corresponds to a verification task, with the
𝑋 and 𝑌 coordinates representing the SMT solving time of
the Z3 and Zpre, respectively. Note that both 𝑥- and 𝑦-axis
take logarithmic coordinates, and each point below/above
the diagonal line represents a superior/inferior case of our
approach against the Z3.

Considering the both-solved cases, Table 1 shows the over-
all results of Z3 and Zpre under different memory models.
The column Sat (Unsat) reports the accumulated CPU time
and speedup of satisfiable (unsatisfiable) cases, and the col-
umn All reports these statistics on all cases. The unit of all
time data is second; the speedup greater than 1.0x means
that our tactic is faster than Z3 with respect to the selected
memory model and the group of SMT instances.

Results under SC. In SC memory model, our tactic is supe-
rior to Z3 in most cases since most of the points in Figure 6
are below the diagonal. Considering 1589 both-solved cases,
Z3 spends 14344.3s whereas Zpre costs 9596.9s – our tactic

0%

20%

40%

60%

80%

100%

ldv-
races

pthread atomic C-DAC divine driver-
races

ext lit nondet wmm

Sp
ee

du
p

ov
er

 Z
3

Speedup Ours Baseline

Figure 9. Time of subcategories in SC: Z3 vs. Zpre

is 1.49x times faster than the Z3 to resolve the same number
of SMT instances under SC.

Table 1. Overall results: Z3 vs. Zpre

MM (Z3/Zpre, #Speedup)

Sat Unsat All

SC (8420/6312, 1.34x) (5924/3194, 1.85x) (14344/9507, 1.49x)
TSO (7460/3224, 1.76x) (12933/6698, 1.93x) (20393/10922, 1.87x)
PSO (15974/8244, 1.93x) (7502/4348, 1.72x) (23477/12393, 1.89x)

There are 7 points on the right boundary of Figure 6, indi-
cating that there are 7 SMT instances that cannot be solved
by Z3 (within the time limit of 1800 seconds) but can be
solved by Zpre correctly. Specifically, the exact solving time
of Zpre on these 7 SMT instances are 62.1s, 161.9s, 212,6s,
222.9s, 251,7s, 869.8s, and 1741.1s, respectively. If we cancel
the time limit, the reported solving time for Z3 on these 7
SMT instances is 4015.7s, 3718.2s, 7713.1s, 2929.3s, 3179.5s,
7325.1s, and 14154.9s, respectively. Symmetrically, there are
3 points on the uppermost boundary of Figure 6, indicating 3
cases that Zpre time out whereas Z3 does not. The accurate
solving time of Z3 on these 3 cases is 1273.2s, 1416.7s, and
1746.1s, respectively. If we cancel the time limit, the used
solving time for Zpre on these 3 cases is 2583.7s, 2997.3s,
3435.6s, respectively.

Figure 9 shows the SMT solving time of each subcategory
in SC, where the blue line represents Z3 and the orange line

Interference Relation-Guided SMT Solving for Multi-Threaded Program Verification PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea

1.36 2.11 1.27 2.86 2.55 1.35 1.59 1.27 2.29 2.15
0%

20%

40%

60%

80%

100%

0

1

2

3

4

ldv-
races

pthread atomic C-DAC divine driver-
races

ext lit nondet wmm

Sp
ee

du
p

ov
er

 Z
3

Speedup Ours Baseline

Figure 10. Time of subcategories in TSO: Z3 vs. Zpre

1.03 1.94 1.02 2.30 2.48 1.95 1.82 1.58 2.70 2.55
0%

20%

40%

60%

80%

100%

0

1

2

3

4

ldv-
races

pthread atomic C-DAC divine driver-
races

ext lit nondet wmm

Sp
ee

du
p

ov
er

 Z
3

Speedup Ours Baseline

Figure 11. Time of subcategories in PSO: Z3 vs. Zpre

represents Zpre. We also draw histograms at the bottom of
Figure 9 to indicate the speedup of our approach on each
subcategory. In Figure 9, the speedup varies from 1.01x to
3.09x times. On some non-trivial and representative subcate-
gories, e.g., pthread, divine, ext, lit, and wmm, our method is
superior to Z3 with a speedup of 1.35x, 1.37x, 1.46x, 1.62x,
and 3.09x, respectively.

Results under TSO and PSO. In TSO/PSO memory model,
our tactic is still superior to Z3, witnessed by most points in
Figure 7 and Figure 8 being below the diagonal.
Considering the 1592 both-solved cases under TSO, Z3

takes 20393.4s, whereas Zpre only costs 10922.7s – our tactic
is 1.87x times faster than the Z3 to resolve the same number
of SMT files. On the right boundary of the Figure 7, there
are 5 points timed out in Z3, but Zpre can solve them. The
accurate time of Zpre is 293.2s, 101.4s, 1306.8s, 61.5s, and
127.8s. If we cancel the time limit for Z3 and perform SMT
solving on these 5 tasks, the corresponding solving time is
2377.9s, 1997.5s, 5408.9s, 2030.3s, and 13692.0s. Our tactic is
significantly faster than Z3 on these 5 cases in TSO. Symmet-
rically, 2 tasks are timed out in Zpre but can be solved by Z3
with 683.4s and 1687.4s. Again, if we cancel the time limit,
the reported solving time of Zpre on these 2 cases is 2903.5s
and 2991.2s. In these 2 cases, our approach are inferior to
the default SMT solving strategy.

In PSO, the time consumptions of Z3 and Zpre on the 1588
both-solved cases are 23477.4s and 12393.0s, respectively –
Zpre is 1.89x times faster than Z3. There is one task on the
right boundary of Figure 8 that timed out in Z3, but can be

Table 2. The number of decisions, propagations, and
conflicts of Z3 vs. Zpre

MM (Z3/Zpre, #Ratio)

Decisions (107) Propagations (109) Conflicts (106)

SC (6.09/4.24, 1.43x) (1.84/1.17, 1.57x) (4.51/1.94, 2.30x)
TSO (7.22/5.19, 1.39x) (4.91/2.88, 1.70x) (6.12/5.12, 1.20x)
PSO (10.61/8.87, 1.20x) (2.67/1.44, 1.85x) (2.81/2.00, 1.40x)

solved by Zpre with 485.3s. If we cancel the time limit, Z3
solved this task with 2753,7s. Systematically, there is one
case timed out in Zpre but can be solved by Z3 with 834.4s.
Cancel the time limit; Zpre spent 2119.3s to solve this task.
In this case, our approach is not as efficient as the default
SMT solving. However, the overall results in PSO indicate
that Zpre is obviously faster than Z3.
Figure 10 and Figure 11 show the SMT solving time on

each subcategory under TSO and PSO, respectively. On some
non-trivial and representative subcategories, e.g., pthread,
divine, ext, lit, and wmm, our method is significantly superior
to Z3 in TSO with a speedup (in Figure 10) of 2.11x, 2.55x,
1.59x, 1.27x, and 2.15x, respectively. The speedups of our
approach under PSO on the same subcategories (in Figure 11)
are 1.94x, 2,48x, 1.82x, 1.58x, and 2.55x, respectively. The
detailed statistics of different subcategories indicates that
our tactic is applicable to various concurrent programs and
has a obvious improvements over Z3.

5.2 Result Analysis
There is a cluster of points in the bottom left of Figures 6,
7, and 8. These tasks are solved extremely fast by Z3 and
Zpre, and some even slightly faster without our tactic. SMT
solving time on these tasks is short because they are trivial
tasks, or the bug occurs at a low depth, so results by applying
our strategy are dominated by the time taken to recognize
and rearrange interference relations. Overhead of our tactic
makes Zpre inferior to Z3 on these tasks. However, as SMT
files’ size increases, it is clear that our method can bring on
promising speedups.
Additionally, according to Figures 6, 7, and 8, there are

several non-trivial cases on which our method is inferior to
Z3, i.e., using only the default heuristics instead of combining
with our tactic can finish the SMT solving earlier. This is
understandable since our method is also heuristics-based,
and there is no guarantee for our tactic to always make the
best choice. Nevertheless, our method works for most of the
SMT instances.
Table 2 shows the statistics of Z3 and Zpre related to

the search process of DPLL(T), including the numbers of
decisions, propagations, and conflicts on both-solved cases.
According to the second and third columns, Zpre makes
fewer guesses and propagations than Z3 during the search
procedure. Moreover, from the last column in Table 2, Zpre

PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea Hongyu Fan, Weiting Liu, and Fei He

Table 3. Summary of results: Z3 vs. Zpre− vs. Zpre

MM SMT Files #Both-Solved Z3 Zpre− Zpre

Total True False TO CPU_Time(s) TO CPU_Time(s) #Speedup TO CPU_Time(s) #Speedup

SC 1674 1589 659 930 81 14344.3 78 11358.5 1.26x 77 9506.9 1.49x
TSO 1651 1592 632 960 56 20393.4 53 14726.5 1.37x 53 10922.7 1.87x
PSO 1643 1588 482 1106 53 23477.4 53 15557.2 1.51x 53 12393.0 1.89x

also meets fewer conflicts than Z3 during the search proce-
dure. Therefore, applying our approach helps DPLL(T) make
more reasonable choices and reduces the redundant search
space, the solving efficiency is thus improved.

We also implemented our strategy with the naive HEURIS-
TIC 1, calledZpre−. In other words, we prioritize interference
variables over other variables in 𝑉 , but we don’t rank inter-
ference variables in𝑉𝑖𝑡 𝑓 . We made a comparison between Z3,
Zpre−, and Zpre. The experimental results are summarized
in Table 3. Note that as the memory model changes from
SC to TSO and PSO, all the false tasks in SC are still false
in TSO and PSO, and some true tasks flip to false. From the
experimental results, relaxing some ordering constraints in
TSO and PSO causes more safety property violations, espe-
cially when allowing the reordering of two write events that
access different memory addresses.
The experimental results in Table 3 show that our tactic

is more efficient in TSO and PSO than in SC. This is rea-
sonable. In SC, no ordering constraint is relaxed. Assuming
events 𝑎, 𝑏, 𝑐, 𝑑 are from the same thread, we have the pro-
gram order clk(𝑎) < clk(𝑏) < clk(𝑐) < clk(𝑑). However,
weak memory models relax some ordering constraints of
neighboring events. If program order between 𝑏 and 𝑐 is
relaxed, whether there is program order between 𝑎 and 𝑐 , as
well as 𝑏 and 𝑑 should be further analyzed. Moreover, the
effect of fences also bring additional restrictions on neigh-
boring memory events. As a result, in weak memory models,
more program orders need to be explicitly encoded, making
the size of ordering constraints greater than in SC. However,
changing the memory model does not affect the number of
interference variables. Since interference variables are more
important than other variables, compared to the random
decision of DPLL(T), our tactic can show better performance
in weak memory models than in SC.

Summary. Considering the both-solved tasks,Zpre− speeds
up the SMT solving than Z3 by 1.26x times in SC, 1.37x times
in TSO, and 1.51x in PSO; and that number of Zpre over
Z3 is 1.49x in SC, 1.87x in TSO, and 1.89x in PSO, respec-
tively. Zpre is more efficient than Zpre−. The overall result
indicates that the further proposed methods in Section 4.1
can also accelerate the SMT solving for concurrent program
verification. In conclusion, our interference relation-guided
SMT solving tactic is effective and efficient.

Other Attempts. We also tried to combine our tactic with
other strategies such as branching heuristics [14, 38]. Their
method utilizes the control-flow information and prioritizes
branch conditions during the SMT solving. However, bench-
marks from the ConcurrencySafety category mainly focus on
the multi-threading and atomicity, the number of branch-
statements in these programs are small. Experimental results
show that applying branching heuristics has no obvious im-
provement on this benchmark set.

5.3 Threats to Validity
The main threats to our method’s validity are whether the
performance improvements are due to our tactic andwhether
our implementation and experimental results are credible.
We force the decision order of DPLL(T) by applying our

heuristics, so we compare Zpre with the default solving
strategy instantly. The improvements over Z3 must come
from our tactic. Secondly, we detail the time comparison of
each subcategory in three memory models to show Zpre is
effective towards different multi-threaded programs.
Moreover, when generating SMT formulas, we record

thread information explicitly by naming the interference
variables in a special fashion, and we do not modify the anal-
ysis process forcibly. Then we replace the default decision
order of DPLL(T) (Section 4) with our heuristics in Z3. Imple-
mentation in CBMC and Z3 is simple and clear. Benchmarks
are collected from SV-COMP 2019, one of the most represen-
tative and convincing open sources in program verification.
We are thus confident in the effectiveness of our tactic.

6 Related Work
There are numerous researches on improving the perfor-
mance of constraint solving in DPLL-based framework; and
verification of concurrent programs under different memory
models has been extensively studied. We discuss representa-
tive techniques in these two fields in recent years.

6.1 Heuristic of Decision Order
Many previous works focus on branching heuristics during
constraint solving. VSIDS [38, 42] is a famous branching
heuristic in CDCL [40] SAT solving. In VSIDS, each variable
in each polarity has a counter, and the counter increases
if a new conflict clause is inferred. Their method selects
the unassigned literal with the highest counter as the next

Interference Relation-Guided SMT Solving for Multi-Threaded Program Verification PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea

Boolean variable. MOM [23] applies information from the
backtrack search into the decision procedure. Marques-Silva
[39] studies the practical impact of several branching heuris-
tics used in SAT solving. Heuristic in DLIS [37, 41] selects the
literal that appears most frequently in unresolved clauses as
the next Boolean variable. However, all the aforementioned
techniques focus on traditional satisfiable problems and only
catch knowledge within the DPLL(T) framework.

Recently, Chen [14] applies the control-flow information
to SMT solving. Their tactic decides branch condition in ad-
vance during DPLL(T) and prunes redundant search space
significantly since branch condition implies whether a block
of code can be executed. Yin [51] rearranges the decision
order by assigning higher priority to the transition variables
over other variables and applying structural information in
SAT solving. In this paper, we utilize the interference rela-
tion of concurrent programs to guide SMT solving. There
are some other related works on forcing decision order with
heuristics. Gupta [27] proposes a BDD-based analysis pro-
cedure to generate learning clauses and apply them to SAT
solving with several heuristics. One heuristic is that the
Boolean variable in the backtrack point is likely to be useful,
so they assign these Boolean variables that appeared in the
backtrack point with higher priority. Another heuristic is
that they keep track of Boolean variables at those levels to
which the maximum number of backtracks have taken place.
Chao [13] predicts and refines the SAT decision order for
BMC by analyzing all previous unsatisfiable instances, then
deciding these crucial variables in advance in the current
instance.

In recent years, theory-based decision heuristics for DPLL(T)
have been extensively studied. These approaches extract
constraints under some specific theories and utilize these
constraints to prune search space during constraint solving.
Goldwasser [26] traverses the linear arrangement induced
by the predicates in the formula instead of Boolean space in
DPLL(T) on SMT benchmarks. Kuehlmann [34] uses circuit-
based knowledge to guide SAT solving. They present a com-
bination of Boolean reasoning techniques based on BDDs,
structural transformations, and an SAT procedure for prob-
lems derived from circuit structures. Bruttomesso [10] advo-
cates are utilizing structural information like equalities and
arithmetic functions to reason bit-vector theory at a higher
abstraction level rather than the traditional bit-blasting.

6.2 Concurrent Program Verification
Verification of concurrent programs is complicated due to
the vast number of thread interferences and it suffers from
the path explosion. The most efficient techniques to alleviate
this problem include bounded model checking [6, 13, 30, 33],
partial order reduction [2, 22, 31], abstraction refinement [11,
21, 45, 48, 49]. and stateless model checking [2, 5, 12, 29, 32].

Bounded model checking (BMC) limits the depth of loops
or recursive functions to obtain the bounded program, which

is expert in finding property violations. The vast majority
of verification tools for verifying concurrent programs have
employed BMC. Cordeiro [17] develops a lazy approach to
abstract all possible interactions and calls an SMT solver
to conduct constraint solving. Their approach reduces the
state space by abstracting the interleaving from the conflict
generated by the SMT solver. Given an unrolling bound k
and an execution round r, [30] proposes a new technique
named Lazy-Sequentialization to convert the origin program
into a sequential program and simulate thread interaction in
arbitrary order with an arbitrary number of statements. Our
method also applies BMC to generate loop-free programs
under different unrolling bounds. Our front end uses the or-
dering constraints between memory events to build possible
interferences. Moreover, we utilize the interference relation
to guide the search process of SMT solving. Our tactic is
different from the above techniques.

Partial Order Reduction (POR) eliminates redundant traces
by equivalence. Godefroid [25] systematically explores the
state space of a concurrent program by dividing its execu-
tions via a run-time scheduler. DPOR[22] explores arbitrary
interleaving of concurrent threads; it dynamically records
backtrack points that identify alternative transitions that are
not "equivalent" until it explores all alternative traces.
Abstraction divides actual program execution into fewer

predicates, efficiently addressing the state space explosion
problem. The method in [28] applies transition predicate
abstraction to extract environment transitions about thread
interleaving and uses recursion-free horn clauses to state ab-
straction refinement. An SAT-based framework named sched-
uling constraints-based abstraction refinement (SCAR) [50]
adds conflict clauses in abstraction refinement iteratively to
enhance the original formula. They use transitive closures
to check the consistency of order relations efficiently.

Weak memory models (WMM) introduce an extra hurdle
for verifying concurrent programs since it relaxes some or-
dering constraints between memory access events. Many
groundbreaking works extend their approaches from SC
to WMMs. State-of-the-art DPOR techniques [2–5, 29, 32]
are elaborated to achieve maximal possible reduction for
stateless model checking under WMMs. Tomasco [46] ex-
tends Lazy-Sequentialization to TSO and PSO. They replace
memory accesses under WMMs with abstract operations on
shared memory under SC and verify their validity. Yin [48]
extends their SCAR technique from SC toWMMs by relaxing
some order restrictions when building EOG.

7 Conclusions
In this paper, we presented an interference relation-guided
tactic to accelerate SMT solving for multi-threaded program
verification. Our tactic forces a decision order on interference
variables and utilizes this decision order to guide the search
process of DPLL(T). We implemented these heuristics in a

PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea Hongyu Fan, Weiting Liu, and Fei He

prototype tool named Zpre and conducted experiments to
compare Zpre with Z3 in SC, TSO, and PSO. Experimental
results indicate that our tactic is effective and efficient.

Acknowledgments
This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant No. 62072267 and
Grant No. 62021002, the National Key Research and Devel-
opment Program of China under Grant No. 2018YFB1308601,
and the Guangdong Science and Technology Department
under Grant No. 2018B010107004.

References
[1] [n.d.]. Software Verification Competition Benchmarks. https://gitlab.

com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp19/.
[2] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos

Sagonas. 2014. Optimal Dynamic Partial Order Reduction. In Pro-
ceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (San Diego, California, USA). As-
sociation for Computing Machinery, New York, NY, USA, 373–384.
https://doi.org/10.1145/2535838.2535845

[3] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt
Jonsson, Carl Leonardsson, and Konstantinos Sagonas. 2015. State-
less Model Checking for TSO and PSO. CoRR abs/1501.02069 (2015).
arXiv:1501.02069

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl
Leonardsson. 2016. Stateless Model Checking for POWER. In Com-
puter Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.).
Springer International Publishing, Cham, 134–156.

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus
Lång, Tuan Phong Ngo, and Konstantinos Sagonas. 2019. Optimal
Stateless Model Checking for Reads-from Equivalence under Sequen-
tial Consistency. Proc. ACM Program. Lang. 3, OOPSLA, Article 150
(Oct. 2019), 29 pages. https://doi.org/10.1145/3360576

[6] Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial
Orders for Efficient Bounded Model Checking of Concurrent Software.
In Computer Aided Verification, Natasha Sharygina and Helmut Veith
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 141–157.

[7] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010.
Fences in Weak Memory Models. In Computer Aided Verification,
Tayssir Touili, Byron Cook, and Paul Jackson (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 258–272.

[8] Clark Barrett and Cesare Tinelli. 2018. Satisfiability Modulo Theories.
Springer International Publishing, Cham, 305–343. https://doi.org/10.
1007/978-3-319-10575-8_11

[9] M. Berzish, V. Ganesh, and Y. Zheng. 2017. Z3str3: A String Solver
with Theory-aware Heuristics. In 2017 Formal Methods in Computer
Aided Design (FMCAD). 55–59. https://doi.org/10.23919/FMCAD.2017.
8102241

[10] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Se-
bastiani. 2007. A Lazy and Layered SMT(BV) Solver for Hard Industrial
Verification Problems. In Proceedings of the 19th International Confer-
ence on Computer Aided Verification (Berlin, Germany). Springer-Verlag,
Berlin, Heidelberg, 547–560.

[11] Franck Cassez and Frowin Ziegler. 2015. Verification of Concurrent Pro-
grams Using Trace Abstraction Refinement. In Logic for Programming,
Artificial Intelligence, and Reasoning, Martin Davis, Ansgar Fehnker,
Annabelle McIver, and Andrei Voronkov (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 233–248.

[12] Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nis-
hant Sinha, and Kapil Vaidya. 2017. Data-Centric Dynamic Partial
Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (Dec.
2017), 30 pages. https://doi.org/10.1145/3158119

[13] Chao Wang, HoonSang Jin, G. D. Hachtel, and F. Somenzi. 2004. Re-
fining the SAT decision ordering for bounded model checking. In
Proceedings. 41st Design Automation Conference, 2004. 535–538.

[14] Jianhui Chen and Fei He. 2018. Control Flow-Guided SMT Solving for
ProgramVerification. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (Montpellier, France).
Association for Computing Machinery, New York, NY, USA, 351–361.
https://doi.org/10.1145/3238147.3238218

[15] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001.
Bounded Model Checking Using Satisfiability Solving. Form. Meth-
ods Syst. Des. 19, 1 (July 2001), 7–34. https://doi.org/10.1023/A:
1011276507260

[16] L. Cordeiro and B. Fischer. 2011. Verifying multi-threaded software
using smt-based context-bounded model checking. In 2011 33rd Inter-
national Conference on Software Engineering (ICSE). 331–340. https:
//doi.org/10.1145/1985793.1985839

[17] Lucas Cordeiro and Bernd Fischer. 2011. Verifying Multi-Threaded
Software Using Smt-Based Context-Bounded Model Checking. In Pro-
ceedings of the 33rd International Conference on Software Engineering
(Waikiki, Honolulu, HI, USA). Association for Computing Machinery,
New York, NY, USA, 331–340. https://doi.org/10.1145/1985793.1985839

[18] Martin Davis, George Logemann, and Donald Loveland. 1962. A Ma-
chine Program for Theorem-Proving. Commun. ACM 5, 7 (July 1962),
394–397. https://doi.org/10.1145/368273.368557

[19] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of
Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 337–340.

[20] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo
Theories: Introduction and Applications. Commun. ACM 54, 9 (Sept.
2011), 69–77. https://doi.org/10.1145/1995376.1995394

[21] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J.
Parkinson, and Viktor Vafeiadis. 2010. Concurrent Abstract Predicates.
In ECOOP 2010 – Object-Oriented Programming, Theo D’Hondt (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 504–528.

[22] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order
Reduction for Model Checking Software. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (Long Beach, California, USA). Association for Computing
Machinery, New York, NY, USA, 110–121. https://doi.org/10.1145/
1040305.1040315

[23] Jon W. Freeman. 1995. Improvements to propositional satisfiability
search algorithms.

[24] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliv-
eras, and Cesare Tinelli. 2004. DPLL(T): Fast Decision Procedures. In
Computer Aided Verification, Rajeev Alur and Doron A. Peled (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 175–188.

[25] Patrice Godefroid. 1997. Model Checking for Programming Languages
Using VeriSoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (Paris, France). As-
sociation for Computing Machinery, New York, NY, USA, 174–186.
https://doi.org/10.1145/263699.263717

[26] Dan Goldwasser, Ofer Strichman, and Shai Fine. 2008. A Theory-Based
Decision Heuristic for DPLL(T). In Proceedings of the 2008 International
Conference on Formal Methods in Computer-Aided Design (Portland,
Oregon). IEEE Press, Article 13, 8 pages.

[27] A. Gupta, M. Ganai, Chao Wang, Zijiang Yang, and P. Ashar. 2003.
Learning from BDDs in SAT-based bounded model checking. In Pro-
ceedings of Design Automation Conference. 824–829.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp19/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/svcomp19/
https://doi.org/10.1145/2535838.2535845
https://arxiv.org/abs/1501.02069
https://doi.org/10.1145/3360576
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.23919/FMCAD.2017.8102241
https://doi.org/10.1145/3158119
https://doi.org/10.1145/3238147.3238218
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/263699.263717

Interference Relation-Guided SMT Solving for Multi-Threaded Program Verification PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea

[28] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. 2011.
Predicate Abstraction and Refinement for Verifying Multi-Threaded
Programs. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Austin, Texas,
USA). Association for Computing Machinery, New York, NY, USA,
331–344. https://doi.org/10.1145/1926385.1926424

[29] Jeff Huang. 2015. Stateless Model Checking Concurrent Programs with
Maximal Causality Reduction. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Port-
land, OR, USA) (PLDI ’15). Association for Computing Machinery, New
York, NY, USA, 165–174. https://doi.org/10.1145/2737924.2737975

[30] Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore
La Torre, and Gennaro Parlato. 2014. Bounded Model Checking of
Multi-threaded C Programs via Lazy Sequentialization. In Computer
Aided Verification, Armin Biere and Roderick Bloem (Eds.). Springer
International Publishing, Cham, 585–602.

[31] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-
tor Vafeiadis. 2017. Effective Stateless Model Checking for C/C++
Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec.
2017), 32 pages. https://doi.org/10.1145/3158105

[32] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.
Model Checking for Weakly Consistent Libraries. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for
Computing Machinery, New York, NY, USA, 96–110. https://doi.org/
10.1145/3314221.3314609

[33] Daniel Kroening and Michael Tautschnig. 2014. CBMC – C Bounded
Model Checker. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, Erika Ábrahám and Klaus Havelund (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 389–391.

[34] Andreas Kuehlmann,Malay K. Ganai, and Viresh Paruthi. 2001. Circuit-
Based Boolean Reasoning. In Proceedings of the 38th Annual Design
Automation Conference (Las Vegas, Nevada, USA). Association for
Computing Machinery, New York, NY, USA, 232–237. https://doi.org/
10.1145/378239.378470

[35] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21, 7 (July 1978), 558–565. https:
//doi.org/10.1145/359545.359563

[36] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Transactions on Com-
puters C-28 9 (September 1979), 690–691.

[37] Chu Min Li and Anbulagan. 1997. Look-ahead versus look-back
for satisfiability problems. In Principles and Practice of Constraint
Programming-CP97, Gert Smolka (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 341–355.

[38] Jia Hui (Jimmy) Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and
Krzysztof Czarnecki. 2015. Understanding VSIDS Branching Heuristics
in Conflict-Driven Clause-Learning, SAT Solvers. CoRR abs/1506.08905
(2015). arXiv:1506.08905

[39] João Marques-Silva. 1999. The Impact of Branching Heuristics in
Propositional Satisfiability Algorithms. In Progress in Artificial Intel-
ligence, Pedro Barahona and José J. Alferes (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 62–74.

[40] Joao Marques-Silva, Ines Lynce, and Sharad Malik. 2009. Conflict-
driven clause learning SAT solvers (1 ed.). Number 1 in Frontiers in
Artificial Intelligence and Applications. IOS Press, Netherlands, 131–
153. https://doi.org/10.3233/978-1-58603-929-5-131

[41] J. P. Marques-Silva and K. A. Sakallah. 1999. GRASP: a search algorithm
for propositional satisfiability. IEEE Trans. Comput. 48, 5 (May 1999),
506–521. https://doi.org/10.1109/12.769433

[42] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. 2001. Chaff: Engineering an Efficient SAT Solver.
In Proceedings of the 38th Annual Design Automation Conference (Las
Vegas, Nevada, USA). Association for Computing Machinery, New

York, NY, USA, 530–535. https://doi.org/10.1145/378239.379017
[43] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Mem-

ory Model: x86-TSO. In Theorem Proving in Higher Order Logics, Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 391–407.

[44] Dennis Shasha and Marc Snir. 1988. Efficient and correct execution of
parallel programs that share memory. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 10, 2 (1988), 282–312.

[45] Nishant Sinha and Chao Wang. 2011. On Interference Abstractions. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (Austin, Texas, USA). Association
for Computing Machinery, New York, NY, USA, 423–434. https://doi.
org/10.1145/1926385.1926433

[46] E. Tomasco, T. L. Nguyen, O. Inverso, B. Fischer, S. L. Torre, and G.
Parlato. 2016. Lazy sequentialization for TSO and PSO via shared mem-
ory abstractions. In 2016 Formal Methods in Computer-Aided Design
(FMCAD). 193–200.

[47] D. Weaver and Tom Gremond. 1994. The SPARC architecture manual :
version 9.

[48] Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2018. Sched-
uling Constraint Based Abstraction Refinement for Weak Memory
Models. In Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering (Montpellier, France). As-
sociation for Computing Machinery, New York, NY, USA, 645–655.
https://doi.org/10.1145/3238147.3238223

[49] Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. 2019. Parallel
Refinement for Multi-Threaded Program Verification. In Proceedings
of the 41st International Conference on Software Engineering (Montreal,
Quebec, Canada) (ICSE ’19). IEEE Press, 643–653. https://doi.org/10.
1109/ICSE.2019.00074

[50] L. Yin, W. Dong, W. Liu, and J. Wang. 2020. On Scheduling Con-
straint Abstraction for Multi-Threaded Program Verification. IEEE
Transactions on Software Engineering 46, 5 (2020), 549–565. https:
//doi.org/10.1109/TSE.2018.2864122

[51] L. Yin, F. He, and M. Gu. 2013. Optimizing the SAT Decision Ordering
of Bounded Model Checking by Structural Information. In 2013 In-
ternational Symposium on Theoretical Aspects of Software Engineering.
23–26. https://doi.org/10.1109/TASE.2013.11

A Artifacts Appendix
The artifact of this paper consists of the source code of our
modified CBMC and Z3, benchmarks, and scripts for per-
forming the evaluation described in Section 5.

A.1 Preparation
For running this experiment, some preparation is required:

• To install dependencies, just run the following com-
mand:

./𝑖𝑛𝑠𝑡𝑎𝑙𝑙_𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠.𝑠ℎ

• Pre-compiled (under Ubuntu 20.04) binaries cbmc
z3 which implement our algorithms are available. If
your want to recompile them, just run the following
command:

./𝑐𝑜𝑚𝑝𝑖𝑙𝑒.𝑠ℎ

then cbmc and z3 will be compiled and copied to the
current folder.

https://doi.org/10.1145/1926385.1926424
https://doi.org/10.1145/2737924.2737975
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/378239.378470
https://doi.org/10.1145/378239.378470
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://arxiv.org/abs/1506.08905
https://doi.org/10.3233/978-1-58603-929-5-131
https://doi.org/10.1109/12.769433
https://doi.org/10.1145/378239.379017
https://doi.org/10.1145/1926385.1926433
https://doi.org/10.1145/1926385.1926433
https://doi.org/10.1145/3238147.3238223
https://doi.org/10.1109/ICSE.2019.00074
https://doi.org/10.1109/ICSE.2019.00074
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1109/TSE.2018.2864122
https://doi.org/10.1109/TASE.2013.11

PPoPP ’22, February 12–16, 2022, Seoul, Republic of Korea Hongyu Fan, Weiting Liu, and Fei He

A.2 Getting Started
This section shows how to set up the artifact quickly in a
small subset of benchmarks (in benchmarks/ folder).

• To conduct the evaluation, just run the following com-
mand:

./𝑟𝑢𝑛.𝑠ℎ
it will finish within 30 minutes.

Firstly, run.sh calls cbmc to generate SMTfiles from the bench-
marks/ folder, which contains a small subset of benchmarks
(randomly selected from solvable examples). Three new fold-
ers – smt_sc/, smt_tso/, and smt_pso/ will be created; they
contain the generated SMT files under SC/TSO/PSO memory
models.
Secondly, run.sh calls z3 to perform SMT solving with

default/partial-pre/all-pre solving strategies. Three new fold-
ers – results-sc/, results-tso/, and results-pso/ will be generated;
they contain log files under SC/TSO/PSO memory models.

Finally, three excel files – sc.xlsx, tso.xlsx, and pso.xlsx will
be generated; they correspond to the solving time of z3 with
different strategies under SC/TSO/PSO memory models.

A.3 Full Experiment
This section shows how to set up the artifact in all the bench-
marks (in benchmarks_all folder):

• To conduct the evaluation, just run:
./𝑟𝑢𝑛.𝑠ℎ ./𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘𝑠_𝑎𝑙𝑙

it will take dozens of hours to finish this experiment.
The detailed procedure is the same as inGetting Started. 16GB
memory and 80GB free disk are needed to run the complete
experiment.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 SMT and DPLL(T)
	2.2 Multi-Threaded Program and Memory Model

	3 Interference Relation for Concurrent Program Verification
	3.1 Symbolic Encoding
	3.2 Interference Relation
	3.3 Interference Relation is Important
	3.4 Interference Relation is Neglected

	4 Interference Relation-Guided SMT Solving
	4.1 Decision Order Generation
	4.2 Enhanced DPLL(T)

	5 Experimental Evaluation
	5.1 Experimental Results
	5.2 Result Analysis
	5.3 Threats to Validity

	6 Related Work
	6.1 Heuristic of Decision Order
	6.2 Concurrent Program Verification

	7 Conclusions
	Acknowledgments
	References
	A Artifacts Appendix
	A.1 Preparation
	A.2 Getting Started
	A.3 Full Experiment

