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Safety Verification of Semi-Algebraic Dynamical Systems via Inductive

Invariant

Hui Kong*, Fei He, Xiaoyu Song, Ming Gu, Hongyan Tan, and Jiaguang Sun

Abstract: To verify the safety of nonlinear dynamical systems based on inductive invariants, key issues include
defining the most complete inductive condition and discovering an inductive invariant that satisfies the specified
inductive condition. In this paper, to lay a solid foundation for future research into the safety verification of semi-
algebraic dynamical systems, we first establish a formal framework for evaluating the quality of continuous inductive
conditions. In addition, we propose a new complete and computable inductive condition for verifying the safety of
semi-algebraic dynamical systems. Compared with the existing complete and computable inductive condition,
this new inductive condition can be easily adapted to achieve a set of sufficient inductive conditions with different
level of conservativeness and computational complexity, which provides us with a means to trade off between the
verification power and complexity. These inductive conditions can be solved by quantifier elimination and SMT

solvers.
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1 Introduction

Hybrid systems!!-?]

with  interacting

are models for systems
discrete and  continuous
dynamics. Embedded systems are often modeled
as hybrid systems because they involve both digital
control software and analog plants. In recent years, as
embedded systems have become more ubiquitous, an
increasing number of persons have begun to research
hybrid system theory. Reachability problems or safety
verification problems are among the most challenging
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problems in verifying hybrid systems. The biggest
obstacle to hybrid system safety verification results
mainly from the continuous dynamics. Therefore,
addressing the problem of safety verification of
continuous dynamical systems is essential to the safety
verification of hybrid systems.

Inductive invariant based methods play an important
role in the verification of continuous dynamical
systems. An inductive invariant of a continuous
dynamical system is an invariant ¢ that holds at the
initial states of the system, and is preserved by the
continuous transitions. A safety property is an invariant
V¥ (usually not inductive) that holds at all the reachable
states of the system. The standard technique for proving
a given property V is to generate an inductive invariant
¢ that implies . Therefore, the problem of safety
verification is converted to the problem of inductive
invariant generation and hence avoiding the explicit
computation of the reachable set of the system.

The key issues in generating inductive invariant for
continuous dynamical system are how to define an
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inductive condition that is as complete as possible and
how to efficiently discover the inductive invariant that
satisfies the inductive condition. However, these two
aspects usually contradict each other. On the one hand,
a complete inductive condition defines a largest set
of inductive invariants and hence owns the strongest
verification power. In other words, the completeness
of an inductive condition guarantees the existence
of an inductive invariant as long as the system is
indeed safe. On the other hand, a complete inductive
condition usually has the problem of computability or
complexity, which means that we may not be able to
find the invariant even if it does exist. Currently, the
only complete and computable continuous inductive
condition was proposed by Liu et al.’! However, this
complete condition has very limited applicability due
to its high computational complexity, although it is
computable in theory.

In this paper, we propose a new complete and
computable continuous inductive condition. Our
interest lies in a special class of dynamical systems
which are specified in polynomials and polynomial
inequalities, called  semi-algebraic  dynamical
systems. The basic idea of our complete inductive
condition is as follows. We assume that the inductive
invariant is in the form of the polynomial inequality
@(x) < 0. From the geometric point of view, the point
set {x € R"| ¢(x) < 0} forms an over approximation
for the reachable set of the system and the point
set {x € R"| ¢(x) = 0} forms the boundary of the
over-approximation. In order for the trajectories
of the system not to get across the boundary
from the region of ¢(x) < 0, we require that the
trajectories that reach the boundary should: (1)
either continue to move following the boundary,
(2) or move inwards the region of ¢(x) < 0. These
two requirements can be specified in the higher-
order Lie derivatives of ¢(x) with respect to the
vector field f respectively as: (1) A2, E}(p =0,2)
AV AL E}ga = 0/\£}<p < 0). Furthermore, based
on a theoretical result in Ref. [3], the above formulae
consisting of an infinite number of sub-formulae can be
reduced to finite-form formulae: (1) /\fvi'lw ﬁ}(p =0,
2) \/jvi{” (/\lj;l1 }(p =0A E}(p < 0), where Ny, is
constant depending on f and ¢. Finally, by choosing
a polynomial ¢(c, x) of fixed degree as the template
for the inductive invariant, where ¢ is the unknown
coefficients to be decided, we can obtain a set of 3V
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formulae, which can be solved by using quantifier
elimination and SMT solver.

The main contributions of this paper are as
follows. First, we establish a formal framework for the
properties of continuous inductive conditions, which
helps formalize the discussion of the quality of a
continuous inductive condition. Second, we propose
a new complete and computable continuous inductive
condition. Compared with the existing complete
and computable continuous inductive condition, our
condition can be easily adapted to achieve a set of
sufficient inductive conditions with different levels of
conservativeness and computational complexity, which
provides us with a means to trade off between the
verification power and the complexity.

2 Preliminaries

2.1 Continuous dynamical systems

Definition 1 (Continuous dynamical system) A
continuous dynamical system is a 3-tuple (X, f, Init},
where

e X is a set of real-valued variables and X = RIX! is
the set of all valuations of the variables X;

e f: XX is a vector field which specifies the
continuous dynamics of the system. Note that f is
assumed to be local Lipschitz continuous;

e InitC X is the initial set.

A continuous dynamical system defines a set of
trajectories following which the system continuously
evolves. The formal definition of a trajectory is as
follows.

Definition 2 (Trajectory) Given a continuous
dynamical system S = (X, f, Init), a trajectory starting
from a state x¢ € Init is a set of states Tr( f, xo):

Tr(f, x0) 2 {x : [0, +00) = RF¥ | 1 = £,x(0) = xo}.

For simplicity, we write it as x (xq, ).

Based on this definition, we can formally present
the definition of the reachable set of a continuous
dynamical system.

Definition 3 (Reachable set) Given a continuous
dynamical system S, the reachable set, which is denoted
by Reach(S), is the set of all the trajectories starting
from the initial set Init:

Reach(S) = U Tr( f, xo0).
X €lnit

2.2 Semi-algebraic dynamical systems

A polynomial formula is a Boolean combination of
multiple polynomial inequalities g;; > O joined by the
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connectives {V, A, =, =}, where > € {Z=, >, =, <,
<, #}. Each polynomial formula, say @(x), can be
converted into a normal form:
o(x) =\/ A\ 4j(x) >0
i€l jeJ;
where ¢;;(x) € R[x] and >> € {>, =}.

Definition 4 (Semi-algebraic set) A set S C R
is a semi-algebraic set if it can be expressed in the
following form:

S = {x eRM ()} (1
where @(x) is a polynomial formula.

Note that in this paper, we usually use the polynomial
formula @(x) to represent the semi-algebraic set S.

Definition 5 (Semi-algebraic dynamical system) A
continuous dynamical system S = (X, f, Init) is called
a semi-algebraic dynamical system if the vector field f
is a polynomial vector in R[x]" and the initial set Init is
a semi-algebraic set.

2.3 Lie derivative

An important concept that is frequently used in
defining continuous inductive conditions is the Lie
derivative. Given a scalar function ¢(x) and a
continuous dynamical system C = (X, f, Init), the Lie
derivative Lr¢ of ¢ with respect to the vector field f is
essentially the first derivative of ¢ with respect to time

t, d—(f, which reflects the change rate of ¢(x) over time

t following the trajectories of the system S. Similarly,
n

the higher-order derivatives —f can be represented by

the higher-order Lie derivatives C}’,(p(x). Let ¢(x) be a
polynomial over the ring R[x], then the gradient of ¢ is
an n-dimension polynomial vector over R[x]", which is

defined as follows:
d

Vo & d d

Y = (ﬁfﬂ,ﬁ%'“ ,Efﬂ)-
Therefore, the higher-order Lie derivatives can be
defined inductively as follows:

p(x), n=0;
Lhg = 2
Vv f izt @
where a - b £ Z?:l a;b; is the inner product of the
vectora = (ay,ds, - ,ay) and b = (by,by,--- , by).

2.4 Polynomial ideal theory

Let K be a real closed field and K[x] denote the
polynomial ring with coefficients in K, where x =
(x1,-++,x,) and n = |x|, then an ideal is a subset of
K[x] with the following properties.

Definition 6 (Ideal) A subset I of K[x] is called an
ideal if

(Hoel;

() if p(x),q(x) € I, then p(x) +q(x) € I;

B3)if p(x) € I, q(x) € K[x], then p(x)g(x) € 1.

The ideal generated by a set P = {pi(x),---,
Pm(x)} is expressed as

m
(P1(x). . pm (X)) =D pi()qi (0)]gi (x) € K[x]}.
i=1
A typical problem in polynomial ideal theory is
the decision of ideal membership, that is, for a
given polynomial p(x) € K[x], we need to decide
whether p(x) € [I. Grobner Basis theory provides
us with a general method to solve the membership
problem!*!. Specifically, a polynomial p(x) € K[x]
belongs to [ if the normal form of p(x) with respect
to the Grobner Basis of 7 is 0.

3 Formal Evaluation Framework for
Continuous Inductive Conditions

In recent years, various inductive conditions have
been proposed for the safety verification of hybrid
systems. The soundness and completeness of
the inductive conditions are the main concerns of
researchers. First, soundness is essential to an inductive
condition in that it guarantees that the inductive
invariant satisfying the inductive condition is indeed
able to prove the safety property. However, some of the
existing inductive conditions turn out to be unsound
due to the neglects in some extreme cases. In addition,
completeness means that the inductive condition
defines an invariant set which is large enough to include
all the inductive invariants that are able to prove the
safety property. Because a complete and (efficiently)
computable inductive condition is very hard to find, it
is possible to find as complete inductive conditions as
possible under the premise of computability. However,
for any two given inductive conditions, there is
currently no available method to decide which one is
“closer” to being complete. In this section, we aim
to establish a formal evaluation framework to assess
the soundness of an inductive invariant condition and
the relative conservativeness of two given inductive
conditions.

We first present the formal definition of the safety
verification problem of continuous systems.

Definition 7 (Safety Verification Problem (SVP))
Given a continuous dynamical system S and a safety
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property, denoted by a set of states Safety C R, the
safety verification problem is to decide that whether
Reach(S) C Safety.

Definition 8 (Continuous inductive invariant)
Given a continuous dynamic system & = (X, f, Init),
a set Inv C R is said to be a continuous inductive
invariant of S iff

Ay : (Initialization) Init C Inv;
A, : (Induction) U xgemmy Tr(f, x0) S Inv.

In the above definition, the condition 4; means that
the initial set Init is a subset of the set Inv and the
condition A, means that no trajectory starting from Inv
will escape from Inv. Therefore, a combination of the
conditions A; and A, implies that no trajectory starting
from Init will escape from Inv, i.e., Reach(S) C Inv.

This is a general definition of continuous inductive
invariant. In this paper, we focus on the inductive
invariant for safety verification and we therefore need
to take into account the safety property. We will discuss
this in the following section. In addition, an inductive
invariant is called a semi-algebraic inductive invariant
if it can be expressed as a semi-algebraic set.

Definition 9 (Continuous inductive condition) For
any given continuous dynamical system S, a continuous
inductive condition is a Boolean combination of
multiple constraints which defines a set of continuous
inductive invariants on S.

In this paper, we write Inv = p if an inductive
invariant Inv satisfies the inductive condition
p. Correspondingly, the invariant set corresponding to
p, denoted by V(p), is the following set:

V(p) £ {Inv | Inv |= p}.

Proposition 1 (Deduction rule of safety
verification) For a given continuous dynamical
system S, a safety property Safe can be verified by
an inductive invariant Inv according to the following
inference rule:

A1 : (Initialization) Init C Inv;
A, (Induction) Uxpemy Tr(f; Xo0) € Inv;
Az :  (Property) Inv C Safety

Reach(S) C Safety

Proof The proof of the above deduction rule
is trivial. Because A; and A, together imply that
Reach(S) < Inv, then according to A3, we can
conclude that Reach(S) C Safety. |

Remark 1 In the deduction rule, we take into
account the safety property (i.e., As) for the purpose
of safety verification. Therefore, we hereafter refer

Tsinghua Science and Technology, April 2014, 19(2): 211-222

to a constraint satisfying the conjunction of A,-A;
as the continuous inductive condition for SVP, or
continuous inductive condition.

Definition 10 (Soundness) For any given continuous
dynamical system S and safety property Safe, a
continuous inductive condition for SVP p is said to be
sound iff:

Vinv:Inv = p = Inv|E A A A A As.

The definition of soundness tells us that any inductive
invariant that satisfies the inductive condition must
satisfy A;—A3 and hence proves the safety of the
system. However, soundness is not a trivial property
for inductive conditions, there exists some widely used
inductive conditions which have been proved to be
unsafel>° Therefore, an inductive condition has to
undergo a strict proof to guarantee its soundness.

Definition 11 (Completeness) For any given
continuous dynamical system S and safety property
Safe, a continuous inductive condition p is said to be
complete with respect to S and Safe iff:

Vinv: Inv = A1 A A A A3 = Tnv = p.

The definition of completeness states that any
inductive invariant that satisfies A;—A3 must satisfies
p- A complete inductive condition defines a largest set
of inductive invariants which can consist of a variety
of functions such as logarithmic functions, exponential
functions, trigonometric functions, and polynomial
functions. Because the algebraic computation on
transcendental functions is complicated, it is very
difficult to define a complete inductive condition based
on transcendental functions. Therefore, we prefer to
achieve a “relaxed completeness” by confining the
inductive invariant to a specific form, e.g., a polynomial
formula.

Definition 12 (Weak completeness) For any given
continuous dynamical system S and safety property
Safe, a continuous inductive condition p is said to be
weakly complete with respect to S and Safe iff there
exists a set of inductive invariant ¢ such that

Vinv: Inv € ¢ Alnv = A} A Ay A A3 = Tnv E p.

Generally, we choose to construct semi-algebraic
inductive invariants for semi-algebraic dynamical
systems and the inductive invariant set ¢ is adopted as
R[x] or Q[x].

Oftentimes, we need to decide which one of a
pair of inductive conditions is more powerful in
verifying safety properties of continuous dynamical
systems. Therefore, we propose the concept of relative
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conservativeness.

Definition 13 (Relative conservativeness) Given
two different continuous inductive conditions p; and p,
for a continuous dynamical system, we say that p; is
less conservative than p, if V(02) € V(p1).

According to the definition of
conservativeness, a less
condition defines a larger set of inductive invariants,
which means that it may have more potential to
have a member which is able to verify the safety
property. From another point of view, relative
conservativeness reflects the extent to which
an inductive condition is relatively prone to be
complete. Therefore, defining an inductive condition
with lower relative conservativeness is challenging.

relative

conservative inductive

4 A Complete Inductive Condition for
Continuous Dynamical Systems

4.1 Basic form of semi-algebraic continuous
inductive condition

In recent years, various methods based on continuous
inductive invariants have been proposed for safety
verification of continuous dynamical systems. The
key problem in discovering continuous inductive
invariants is defining a sound and complete continuous
inductive condition and how to efficiently computing
a continuous inductive invariant that satisfies the
continuous inductive condition. Unfortunately, it
is hard to achieve these objectives simultaneously,
because the interest of completeness often contradicts
the requirement for computability, that is, a
continuous inductive invariant with a sufficiently low
conservativeness often encounters either computability
problem or complexity problem. Therefore, the most
common strategy is to achieve computability by
sacrificing completeness.

Currently, the only sound and weakly complete as
well as computable inductive condition was proposed
by Liu et al.B! In this inductive condition, there is
an important constant Ny, which depends closely
on the vector field f and the template of inductive
invariant ¢(x). Usually, Ny, is a large number, which
often causes the condition to be unsolvable because
of its high computational complexity. In the following
subsection, inspired by the work of Liu et al.Bl, we
present a new sound and weakly complete as well as
computable continuous inductive condition. Compared
with the condition in Ref. [3], our continuous inductive
condition is much more flexible in that it can be easily

adapted to achieve a set of sound and computable
continuous inductive conditions with different levels of
conservativeness.

It is difficult to compute a continuous inductive
invariant for a general continuous dynamical system
is very hard. However, for a given semi-algebraic
dynamical system, some continuous
conditions and the corresponding computational

inductive

methods are proposed. Given a semi-algebraic
dynamical system S = (X, f,I(x)) and a safety
property Safe(x), where [I(x) and Safe(x) are
polynomial formulae, the most common approach
is to find a semi-algebraic inductive invariant (x) < 0
(or ¢(x) > 0) that satisfies the constraints A;—A3 in
Proposition 1. In general, the inductive condition on the
polynomial ¢(x) has the following form:

By :  (Initialization) [I(x) = ¢(x) < 0;

By, (Induction) InductOn(¢(x));
¢(x) <0 = Safe(x).
Obviously, the formulae B; and B3 are equivalent to
A1 and A3 respectively. Therefore, the key problem lies
in defining a formula B, that is at least sufficient for,
if not equivalent to, the formula A,. According to the
formula A,, let Inv £ ¢(x) < 0, then the formula
Uxpemy Tr(f, x0) € Inv means that when starting from
any point xo in the region of ¢(x) < 0, the system
will never evolve into the region ¢(x) > 0 following
the vector field f, as shown in Fig. 1. Therefore,
our objective is to define a formula InductOn(¢(x))
that satisfies that for any trajectory x(xg,?) of S, the
following formula holds:

Vxo € R vz e [0, 00) : p(x0) < OAInductOn(p(x))
= ¢(x(x0,7)) <0 (3)

B3 :  (Property)

42 A sound and weakly complete inductive
invariant condition

A semi-algebraic inductive invariant Inv £ ¢(x) <
0 represents a closed field, and the boundary of this

Fig. 1 Semi-algebraic inductive invariant ¢(x) < 0. No
trajectory can get across the boundary ¢(x)=0.
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field is the set of points satisfying ¢(x) = 0, written
as Jlnv. Given a semi-algebraic dynamical system
S = (X, f.1(x)) and a trajectory = 2 x(xo, ) starting
within the closed field Inv, a general idea for preventing
7 from escaping from the closed field Inv is that & stops
immediately moving outwards once it reaches a point
Xz = x(xg, T) at the boundary dInv, which means that
when ¢(x;) = 0, 7 has only two options to continue:
O:: moving forward following the tangent line to the
boundary at the point x;, or

0,: moving inwards at the point x;.
These above two options can be specified formally with
respect to the higher-order Lie derivatives (2).

Let

k
¢()A/\Ef(p—0 )
i=1
k k—
w2 oD A kg <0 (5)

then the move options O; and O, for w can be
formalized as Fr, and Gr,,, respectively:

Fro 2 0 (6)
> k
Gro 2\ o) @
k=1

Based on the previous formal definition on the possible
moving direction of r, we have the following sound and
complete inductive condition:

By 2Vx:9(x) =0 = Fry V Gy

To be readily understandable, we present the
above sound and complete inductive condition as
the following theorem and prove the soundness and
completeness respectively.

Theorem 1 Given a semi-algebraic dynamical
system SDS = (X, f,I(x)) and a safety property
Safe(x) (where [I(x) and Safe(x) are polynomial
formulae denoting semi-algebraic set), a polynomial
inequality ¢(x) < 0 (where ¢(x) € R[x]) satisfies the
condition A1 A Az A A3 if and only if ¢(x) satisfies the
inductive condition By A By, A B3.

Proof (Soundness) By contradiction. Assume that
¢(x) is a polynomial function satisfying By A Br,A
B3; meanwhile, there exists a trajectory m = x(xg,1)
(hereafter written as x(¢) for short hereafter) that can
reach a point x(§) such that ¢(x(£¢)) > 0, where xg =
x(0) € I(x) (i.e., =(A1 A Az A A3)). Since p(xg) <
0 and @(x(§)) > 0, according to the continuity of
@(x(t)), there exists at least one time instant 7 € [0, ),
and a real value § > 0 such that
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Ci: o(x;) = 0, where x; = x(1),
Cr:Vte(r,t+6):@x())>0.
However, this contradicts the formula By,,. According
to Bf,, ¢(x;) = 0 implies that either Fr, or Gy,
holds, which is equivalent to stating that one of the

following two formulae holds:

d
Di:Vn e [l,00): % 0;

d a
Dy:3n e [1,00) : AIZ) w(x’) =0A g0(;“)<0.

To capture the local profile of @(x(t)), we present
Taylor Expansion of ¢(x (t)) at the point x;,

1 d"p(x,
w(X(t))—fp(xr)JrZ R e

According to Formula (8), there exists an infinitesimal
€ > Osuch thatforall ¢ € (t, 7 + €),
1 p(x(1)) = p(x;) = 0, if Dy holds;
& _ 1 d"o(x;) n

20 9(x(1)) = @(xo) + mdt—”(l —7)" 4+ O0((t —

7)") < 0, if D, holds.

This means that ¢(x(z)) < O holds for all ¢ € (r,7 +
€), which contradicts the formula C,. Therefore, the
soundness of the inductive condition is proved.

(Weak Completeness) By contradiction. Assume that
there exists a semi-algebraic inductive invariant Inv £
@(x) < 0 that satisfies the safety property Safe(x) but
not the inductive condition By A By, A Bz. According
to our assumption and Definition 8, the formula A, A
—By, must hold. To derive a contradiction, we will
prove that A, A =By, is unsatisfiable.

The following equivalence relation is easily proved.

—Br, & 3x; e R 3k € Zy 1 o(x) = OA
k—1
N Lyo=0nLsp>0 ©)
i=1
Let x (x¢, ) be a trajectory satisfying A A—By,,. Since
=By, holds, according to Formulae (8) and (9), there
exists an infinitesimal € > 0 such that

Vt € (0,¢) : p(x(x¢,2)) >0 (10)
However, since ¢(x;) = 0, then x; € Inv. According
to the formula A,, we know that Tr( f, x;) C Inv, that
is,

vVt € (0,00) : p(x(x7,2)) <0 an

Therefore, Formulae (10) and (11) contradict each other,

which means that A> A =By, is unsatisfiable. Hence,
we can conclude that the completeness holds. |

In Theorem 1, we present a sound and complete
inductive condition which essentially defines a set S
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of inductive invariants for a specific semi-algebraic
dynamical system. On the one hand, for being sound, it
guarantees that any inductive invariant in S can assure
the safety property of the system. On the other hand, for
being complete, it guarantees that any semi-algebraic
inductive invariant of the form ¢(x) < 0 verifying the
safety property is contained in S.

However, the inductive condition in Theorem 1
is incomputable because its definition consists of
an infinite number of sub-formulas. To make it
computable, we need to achieve its finite form. As
mentioned in Section 4.1, the continuous inductive
condition proposed by Liu et al. involves an important
constant Ny, which results from the fact that there
exists a computable upper bound Ny, for a specific pair
of (f, ¢) such that (see Ref. [3])

VieN:op(x)=0ALrp#0 = i <Np, (12)
In fact, the upper bound Ny, applies here as
well.  According to the above definition of Ny, we
can easily derive an equivalent form of F, and Gy,

F o 2 ¢]((5Z1.w)’
_ Ny
Gro =\ ¥y
k=1
Correspondingly, an equivalent form of By,,:
Bry, 2 9(x) =0 = Fryp VGry.

Based on the above definition, we obtain a finite form
of the sound and complete inductive condition B; A
B f.0 N Bs. A benefit of a complete inductive condition
is that it provides us with a largest set of inductive
invariants and hence possesses the strongest power to
verify the safety property. However, in most cases, it
may not be feasible to make use of the strongest power
of a complete inductive condition because of its high
computational complexity, or sometimes it may not be
necessary to waste the strongest power on a non-critical
safety property (i.e., the unsafe region is far away from
the reachable set). Therefore, the ability to dynamically
adjust the verification power of an inductive condition
without loss of soundness is very appealing. However,
this is not possible for the inductive condition in Ref. [3]
because its soundness is based on the combination of
Ny, sub-formulae as a whole and eliminating any one
of the sub-formulae may result in an unsound inductive
condition. By comparison, our inductive condition is
adaptable and is introduced in the following subsection.

4.3 The sufficient conditions

In fact, keeping any (non-zero) number of the
disjuncts in F fo V af,q, will produce a sound but
not necessarily complete inductive condition. In other
words, Ef,w can be easily customized to achieve a
set of sound inductive conditions by compromising
completeness. For example, if we keep only the
disjunct F fp» We can obtain the sound inductive
condition ¢(x) =0 = F f.o(x), which means that
once a trajectory reaches the boundary of ¢(x) < 0, it
will continue to follow the boundary permanently. In
practice, this assumption is so perfect that there
rarely exists an inductive invariant that satisfies this
requirement. However, by adding to F f.o a disjunct
of af,(p, we can easily achieve a relaxed inductive
condition that allows a trajectory to return from the
boundary of ¢(x) < 0 to its interior. From this example,
we can see the flexibility of the condition B f. in the
inductive invariant discovery.

As mentioned in Section 4.2, although completeness
is essential in verifying some critical safety properties,
the sufficient condition is more practical in many cases
for the sake of efficiency. We now present the general
form of the sufficient condition derived from B -

Let
keU

o=V ¥,
S £ [LNf«p],
Z £ {T,F},
I'2£25x 8\ (4,F) (13)

where T = TRUE, F = FALSE. Then, the general form
of a sufficient inductive condition can be written as
B}Zje) EVx:p(x)=0 = (0 = Fr,) Vg}{(p

(14)
where (U,0) € I'.

By setting the pair of (U, 0) to different values, we
can derive from E}%G) a set of different inductive
conditions. Moreover, the conservativeness of the
resulting inductive condition depends closely on the
pair of (U, #). For convenience of presentation, we
define a binary relation over I:

(U1,01) < (U2,92) <— U, CU, A (91 — (92)
It is easy to prove that the binary relation is a partial

order relation. Based on this partial order relation, we
have the following proposition.
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Proposition 2 Given any two pairs of y; and y»,
where y; = (U;,6;) € I',i =1,2,if y; < y, holds,
then the inductive condition B; A ﬁ}ﬁf{p A B3 is less
conservative than B; A B}fl A Bs.

Proof According to Definition 13, it suffices to

prove that any function ¢(x) satisfying B}ﬁ‘(p also

satisfies B}ﬁ,z Since y; =< y» holds, it is easy to prove
that gﬁ; == aUé hold. Hence, E}fl(p == Eyip
holds. |

As mentioned earlier, a less conservative inductive
condition defines a larger set of inductive invariants
and hence is more prone to include an element
capable of verifying the safety property. According
to Proposition 2, to minimize the conservativeness
of an inductive condition, we only need to make
the tuple (U,0) as large as possible, i.e., make
the right-hand side of the formula BY? include
as many disjuncts as possible. However, an increase
of the tuple (U,6) leads to an increase of the
computational complexity. In particular, the resulting
inductive condition could be intractable when the
constant Ny, is too big. Therefore, we have to
make a trade-off between the conservativeness and
computational complexity. Our strategy for solving
this problem is to choose an increasing sequence
y1 < -+ < yp, as candidates for (U, 0), where y; € I,
1 <i < m. Starting from the smallest element in the
sequence, we gradually reduce the conservativeness of
the inductive condition B, /\By’ FoN B3 until an inductive
invariant is found, or the largest element (S, T) has
been attempted.

In the following section, we introduce a method to
compute an inductive invariant based on our inductive
condition.

5 Computational Method for Constructing
Inductive Invariant

It is very difficult to construct inductive invariants
for general dynamical systems. Fortunately, for some
existing inductive conditions, several computational
methods are available for semialgebraic dynamical
systems. The most representative methods include
the fixed-point method based on saturation!’!, the
constraint-solving methods based on semidefinite
programming™! and Quantifier Elimination (QE)!®

well as the Grobner Basis method!®“!. Considering the
feature of our inductive condition, we choose the QE-

based constraint-solving method as our computational
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method to discover inductive invariants for semi-

algebraic dynamical systems.

For a given semi-algebraic dynamical system S =
(X, f, I(x)), the basic idea of the QE-based constraint-
solving method is as follows:

(1) Choosing a parametric polynomial inequality
¢(c,x) < 0 of fixed degree k as the template
for the inductive invariant function, where x is
a vector of variables and ¢ is a vector of the
unknown real coefficients of monomials. Usually,
the parametric polynomial is chosen as a complete
polynomial, i.e., a polynomial consisting of all the
monomials of degree k or less:

plc.x)= Y.
i1+-+in<k

(2) Computing the constant Ny, based on the template

15)

i i
CijinXy =0 Xy

¢(c, x) and choosing an increasing sequence y; =<

- < vy from I' as the candidates for (U, 8). In
the below, we will introduce how to compute Ny,
using Grobner Basis;

(3) Picking in turn each element y; of the above
candidate sequence from the least one to the
greatest one to perform the following steps until
an inductive invariant is found or until the greatest
element has been attempted;

(4) Performing the QE over the constraint o £ 3¢
Vx:(B1 A E}/{w A B3)p(x)>e(c,x)» Where ¢(x) =
¢(c, x) means the substitution of ¢(c, x) for the
occurrences of ¢(x). Note that we only eliminate
the universal quantifier in this step and the output of
QE over « is an equivalent existentially quantified
formula S(c);

(5) Attempting to discover an inductive invariant
by solving the formula B(c) using an SMT
solver. Note that 8(c) defines a set of inductive
invariants and our objective is to choose one
element from the invariant set with the aid of an
SMT solver.

In the above computing method, one important thing
to note is the computation of the constant Ny, in Step
2. In Ref. [3], Liu et al. presented a computational
method based on the following definition:

Nfy £ min{i| i g € (L9, Li)y  (16)

The key problem in computing Ny, is the
determination of ideal membership. The Grobner
Basis theory provides us with a method to determine
whether a constant-coefficient polynomial belongs to
an ideal generated by a group of constant-coefficient

polynomials. However, the problem here is that
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E;Ego(c, X) is a parametric polynomial (with ¢ as its
coefficients) for all k € Z_ and the ideal is generated by
a group of parametric polynomials {L’?(p|k =0---i}as
well, hence, the value of Ny, is a variable depending
on the specific assignment of c. Nevertheless, there
exists an upper bound N, for the values of Ny, over all
possible assignments of ¢ (see Ref. [3]). In other words,
the existence of the upper bound N, results from the fact
that the parametric polynomials {Ej’i(p|k € Z4} over
R[x] are actually constant-coefficient polynomials over
RJc, x], which implies the existence of a constant N,
satisfying Formula (12). To obtain the value of N, we
only need to check the ideal membership over R|c, x]
instead of over R[x]. Currently, many tools have the
support packages for checking the ideal membership
based on the Grobner Basis, such as the mathematic
software tools Maple and Mathematic.

Another two important computations are QE in Step 4
and solving the existentially quantified formula in Step
5. Currently, a number of well-known tools are available
for these purposes, such as QEPCAD, Redlog for QE,
and Z3, Yices, and OpenSMT for solving quantifier-free
formulae. In our case study, we use QEPCAD and Z3
as computing tools. In the following section, we use an
example to demonstrate the application of our method
to the safety verification of a semi-algebraic dynamical
system.

6 Case Study

Consider the two-dimensional system S,

=t (a7)
y xX=y
we want to verify that starting from the initial set
3\ 1
e eRlc-2+(r+3) <3
system will never evolve into the unsafe set X, =
5\> 4
(x,y) € R?|(x — 6) + (y + Z) < g} .
In order to verify the above safety property, we first
choose ¢(x,y) = a + bx + cy < 0 as the template for
the inductive invariant, where a, b, and ¢ are the real-
valued coefficients to be decided. Based on the given
template, we can easily compute the constant Ny, = 2
by Formula (16). Then, we can construct the set I”
by Formula (13), from which an increasing candidate
sequence for y; can be selected. In our case study,
the selected candidate sequence y; (i = 1,2,3) is as

Xo = , the

follows:
(1}, F) = ({12}, F) < ({121, 7).

Note that y3 = ({1,2},T) is the largest parameter
which results in a complete inductive condition.

According to the definition of the inductive condition
B A E}ﬁ"q) A Bs, we can obtain the following first order
logical formulae:

3\ 2

e By.Ja,b,c:Vx,y:(x—3)?%+ (y + 5) <

— a+bx+cy<O.

52
. 33-30,b702Vx,y:(X—6)2+(y+1) <
= a+bx+cy>0.

=

(S

o BY 1i=123
(1) y1. da,b,c : Vx,y ta+bx+cy =0 =
b+c)x+B—-c)y <0.
(2) y2.da,b,c : Vx,y ta+bx+cy =0 =

((b+c)yx+b—c)y <0Ov({(b+c)x+(b—c)y
0Abx +cy <0)).

3) y3. da,b,c : Vx,y ta+bx+cy =0 =
(b+c)x+b—c)y <0v((b+c)x+(b—c)y =
OAbx+cy <O VvV(b+oyx+b—-c)y =
0Abx +cy =0)).

In the next step, we perform the QE over the above
first order logical formulae and we obtain the following
existentially quantified formulae:

e By.3a,b,c:8c%—36bc —12ac + 35b% + 24ab +
4a? > OA3c—5b—2a > OA(a > 0V3c—5b—2a >
0).

e B3.3a,b,c :561¢?—6000bc—1000ac +14336h% +
4800ab + 400a? > 0 A 25¢ — 112b — 20a < 0.

o BY 1i=123
(Dyr.3a,b,c:c2+2bc—b>=0A((a>0Ab >

OAc>0V(@>0Ab<0Ac<0)V(a<
OADZ0Ac<0)V(@a<O0OAb<OAC>D0).

(@) y2.3a,b,c:c?+2bc—b>=0A((a>0Ab >
OAc>0)V(@>0Ab<0Ac<0)V(ae<
OAbZ0Ac <0 V(@a<OAb<OAC>D0)).

() ys.3a,b,c:c?>+2bc—b>=0A((a =0Ab >
OAc>0)VvV(@=20Ab<0Ac<0)V(a<
OAbZ0ACc <O V(@<OAD<LOAC>0)).

Notice that the above existentially quantified
formulae show that the conditions E}fl(p and 2\?}2(0

are equivalent, which means that E;?w has the same

verification power as B;’ﬂw. Hence, we can reduce
the candidate sequence of inductive conditions to
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By A B\ A Bs,and By A B2 A Bs.

Next, we need to solve these two inductive conditions
with Z3 in turn. In fact, it finally turned out that the
condition By A E}lw A B3 is sufficient to verify the safety
property and hence the strongest verification possessed
by the complete inductive condition By A E}’Z’(p A B3 can
be saved here. Comparably, the inductive condition in
Ref. [3] cannot be used this way, it has to be used in the
most complex form for the safety verification each time,
which usually is not cost-effective for complex systems.

In order to get a deep insight into the difference
between the two candidate inductive conditions, we
tried to solve the condition B; A E}?{p A B3 similarly. The
result is that we obtained an identical solution for these
two conditions:

127
a=———
16
b=1,
c=—v2—-1.
Then, the expression of ¢ is ¢(x,y) = —% +x —

(v/2+1)y. The phase portrait of the system (17) and the
zero level set of ¢(x, y) (i.e., {(x,y) € R%|p(x,y) =
0}) are shown in Fig. 2.

In Fig. 2, we can see that the reachable set Reach
completely lies above the line of ¢(x, y) = 0, which
means that ¢(x,y) < 0 for any (x, y) € Reach. On

Fig. 2 Phase portrait of the system (17) and the inductive
invariant ¢(x,y) < 0. The solid patches from left to right
are the initial set X, and the unsafe set X,,, respectively. The
enclosed area Reach, which starts from X, is the reachable
set of the system and the area above the line of ¢(x, y)=0 is
the set of points satisfying the inductive invariant ¢(x,y)<0.
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the other hand, the unsafe set X, lies under the line of
¢(x,y) = 0 and hence guarantees that ¢(x,y) > 0
for any (x,y) € X,. Therefore, the system is verified
to be safe due to the existence of an inductive invariant

p(x,y) <O0.
7 Related Work

Some methods have been proposed for the
construction of inductive invariants for linear hybrid
systems. Jirstrand!'"! presented a method based on
convex optimization and linear matrix inequalities
for constructing ellipsoidal invariants and quadratic
cone invariants for piecewise linear systems. Different
from the optimization method, Rodriguez-Carbonell
and Tiwari!'' proposed to generate algebraic invariant
(i.e., P(x) = 0) for linear hybrid systems based on
Grobner Basis and abstract interpretation.

In recent years, researchers have focused more
on nonlinear hybrid systems, especially on algebraic
or semi-algebraic hybrid systems, as they have a
higher universality. In Refs. [9, 12], Sankaranarayanan
et al. presented a computational method based on
the theory of ideal over polynomial ring and QE
for automatically generating algebraic invariants
for algebraic hybrid systems. Similarly, Tiwari and
Khanna!® proposed a technique that is based on the
theory of ideal over polynomial ring to generate the
inductive invariant for nonlinear polynomial systems. In
Refs. [5, 13], Prajna et al. proposed a new inductive
invariant called Barrier Certificate for verifying
the safety of semialgebraic hybrid systems and the
computational method they applied is the technique of
the sum-of-squares decomposition of semidefinite
Platzer and Clarke!”
generalized concept called differential invariant which

polynomials. proposed a
is a Boolean combination of multiple polynomial
inequalities and they introduced a fixedpoint algorithm
to compute the differential invariant for semi-algebraic
hybrid systems. Gulwani and Tiwaril® proposed an
inductive invariant that is similar to the differential
invariant except that they defined a different inductive
condition and they used an SMT solver to solve the
constraint derived from the inductive condition. Taly
and Tiwari!'* presented several simple but incomplete
inductive conditions for different classes of inductive
invariants. Sloth et al.l'! proposed a new Barrier
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Certificate for a special class of hybrid systems
which can be modeled as an interconnection of
subsystems. Liu et al.’! proposed a new sound and
relatively complete invariant condition for verifying
hybrid systems and the generation of the invariant is
based on the method of QE. In Ref. [16], we proposed a
new inductive condition, called Exponential Condition,
for the safety verification of hybrid systems and we use
the semi-definite programming method to discover the

inductive invariant.

8 Conclusions and Future Work

Addressing the safety
continuous dynamical systems is essential to advance

verification problem of

the development of the theory of hybrid system
safety verification. In this paper, we first established
a formal framework for the properties of continuous
inductive conditions, which helps to formalize the
discussion of the quality of continuous inductive
conditions. In addition, we proposed a new complete
continuous inductive condition. Compared with the
existing complete and computable continuous inductive
condition, our condition can be easily adapted to
achieve a set of sufficient inductive conditions with
different levels of conservativeness and computational
which provides us with a means to
trade off between the verification power and the

complexity,

complexity. Using a case study, we showed the
applicability of our method.

Currently, the method is limited to linear semi-
algebraic inductive invariant because of the high
computation complexity in quantifier elimination. In the
future, we aim to identify more efficient computational
method. Moreover, we will extend our method to the
safety verification to hybrid systems.
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