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Deadlock Detection in FPGA Design: A Practical Approach
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Abstract: Formal verification of VHSIC Hardware Description Language (VHDL) in Field-Programmable Gate Array

(FPGA) design has been discussed for many years. In this paper we provide a practical approach to do so. We

present a semi-automatic way to verify FPGA VHDL software deadlocks, especially those that reside in automata.

A domain is defined to represent the VHDL modules that will be verified; these modules will be transformed into

Verilog models and be verified by SMV tools. By analyzing the verification results of SMV, deadlocks can be found;

after looking back to the VHDL code, the deadlocking code is located and the problem is solved. VHDL verification

is particularly important in safety-critical software. As an example, our solution is applied to a Multifunction Vehicle

Bus Controller (MVBC) system for a train. The safety properties were tested well in the development stage, but

experienced a breakdown during the long-term software testing stage, which was mainly caused by deadlocks in

the VHDL software. In this special case, we managed to locate the VHDL deadlocks and solve the problem by the

FPGA deadlock detection approach provided in this paper, which demonstrates that our solution works well.

Key words: Field-Programmable Gate Array (FPGA); VHSIC Hardware Description Language (VHDL); verification;

deadlocks; Multifunction Vehicle Bus Controller (MVBC)

1 Introduction

VHSIC Hardware Description Language (VHDL) is a
hardware description language used in many embedded
systems. While there are many formal methods for
verifying VHDL, there is no widely used VHDL
verification solution.

During the last two decades, many researchers have
presented approaches to VHDL verification. Bawa
and Encrenaz[1] developed a tool named VPN, which
translates a subset of VHDL’87 into a formal model
based on Interpreted and Timed Petri Nets (ITPN).
Borrione et al.[2, 3] proposed to introduce mechanically
supported formal reasoning in the design flow, by
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producing a model of VHDL behavioral specifications
in the logic of the ACL2 theorem prover. Formal
specification and verification of transfer-protocols for
system design has been specified by Bickford and
Jamsek[4] and Drgehorn et al.[5] extended them, making
it easier to verify systemwide properties. Braibant and
Chlipala[6] presented formal verification of hardware
synthesis, which was a big step forward for VHDL
verification.

The practice presented in this paper is about
transforming VHDL into Verilog models, and then
verifying the Verilog by using model-checking tools,
such as CadenceSMV and NuSMV[7]. Bounded model-
checking tools, such as SAT, are first used to perform
time-saving verification and then the verification result
is analyzed to find deadlocks. After finding these
deadlocks, corresponding code lines are located in the
VHDL sources. By debugging these source lines, the
deadlock problem is solved.

Finding deadlocks in verification results is currently
the only manual procedure in our approach. We see
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no value to making this procedure fully automatic;
since the verification results are logs of the verification
procedure, attempting an automatic analysis of textual
logs may be less efficient than doing it manually. The
main contributions of this paper are:

(1) An analysis of the issue whose main work is
to identify possibly buggy source-code files, and
seek out all automata. After finding the automata,
we draw transition diagrams to help identify
deadlocks in them.

(2) A general solution to locating deadlock codes by
the use of server software verification tools such
as Veritak, Cadence SMV, and the like.

(3) A discussion of lessons we learned when
executing VHDL verification, including
resolving compatibility problems, understanding
verification outputs, and finding buggy code
lines.

The rest of the paper is organized as follows. Section
2 describes the Multifunction Vehicle Bus Controller
(MVBC) case that is verified and resolved. Section
3 shows the general solution and algorithm to verify
VHDL code and find deadlocks. Section 4 shows the
details and results of our experiments. Finally, Section
5 presents related work and concludes.

2 MVBC

High-speed trains are important in daily life, and
represent a vital part of the economy for many
countries. The Multifunction Vehicle Bus (MVB) is
an important part of train communication networks.
MVB controllers play a vital role in the digital operation
of trains, affecting operations such as speeding up,
braking, closing train doors, and so on[8]. We created
our own MVB controller[9], using VHDL and C. The
hardware part, that is, the layer used to design the
chip logic, is in pure VHDL. VHDL is widely used
in hardware manufacturing, but there is no VHDL
verification tool; so little effort is made to verify VHDL
code during development.

In this example, after the MVBC code was finished
and released to the train manufacturer for testing,
the manufacturer reported a big issue after dozens
of days of testing. The issue is that some Central
Control Unit (CCU) devices’ lifecycles in the train
head and tail timed out. The problem is obviously
in the hardware programming of the MVBC, but the
failure rarely occurs in daily running, so it is hard
to reproduce this issue by testing. We decided to use

software verification technologies to locate the problem
and propose solutions to this issue. The main focus
of locating buggy code is deadlocks in the VHDL
automata.

The problem is that some CCU devices’ lifecycles
in the train head and tail timed out and this is all we
know. The details of this issue in this article are omitted
since they are not the main point; the issue report we
received simply described lifecycle timeouts. It is a
hardware device problem, and any unit of the hardware
may have caused the problem. Before starting to find
a solution, we established a strategy of approaching
the matter by beginning at bottom-level hardware and
proceeding to top-level hardware automata. Firstly,
electrical and communication testing were performed
on these devices; all the devices worked well. Different
types of data transmission were also tested; the results
showed that these devices were in good condition.

Secondly, the device monitor log was analyzed and
the analysis suggested that the main cause may be
deadlocks in some modules’ automata.

In summary, the approach described above is used
to locate deadlocks in VHDL automata, which is
similar to analyzing timing properties[10]. The next
section discusses detailed deadlock detection in Field-
Programmable Gate Array (FPGA) design.

3 Deadlock Detection in FPGA Design

3.1 Verification domain construction

The issue circumstances are analyzed to locate buggy
modules. The procedures and techniques used to locate
buggy modules vary from one situation to another,
because different software products may have different
architectures, so one single bug may be related to one
or more modules.

Locating buggy modules strongly depends on one’s
understanding of the target system. If a person has no
strong understanding of the target system, or the bug is
so deep inside the system that it is difficult to determine
which module is suspicious, we can take the whole
system as the verification domain.

Though the procedure of locating suspect modules
cannot be automated or unified, the verification
domain can still be constructed formally. The VHDL
verification domain is defined as D D fM; V; A; P g,
where D is the verification domain, M represents the
set of the suspect modules to be verified, V is the set
of Verilog models transformed from M; A stands for
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automata found in M , and P is the set of properties
to be verified.

From a VHDL module M , a Verilog model V can
be easily obtained. There is no direct verification
techniques for VHDL, but there are techniques for
Verilog, and there are also tools performing the
transformation.

The VHDL definition of automata is usually of the
form shown in Fig. 1.

Automaton A in verification domain D is used to
locate suspicious code lines from verification results.

Verification properties are Computation Tree
Logic (CTL) or Linear Temporal Logic (LTL)
assertions[11, 12]. In practical verification one or
more properties can be verified at the same time, and
one can add more properties to P according to the
verification result.

3.2 VHDL code transformation

The Veritak tool is used to transform a VHDL module
into a Verilog model. The input is VHDL source files,
i.e., files with extension .vhd, and the output is Verilog
files, i.e., files with extension .v.

The transformation procedure is fully automatic and
supported by a sophisticated tool, but there may be
transformation failures that should be paid attention to,
especially when these Verilog files are sent to SMV

NEXT STATE DECODE: process
(s0, data, data enable, sd,ssc ack,
port buffer, MF out1)

begin
next s0 <= s0;
case (s0) is

when ”0000” =>

if data enable = ’1’ then
next s0 <=”1000”;

end if;
when ”0001” =>

if (ssc ack=’1’) then
next s0 <= ”0010”;

end if;
when ”1000” =>

next s0 <= ”0001”;
when others =>

next s0 <= ”0000”;
end case;

end process;
/* other process code; */

Fig. 1 Example of code snippets that implement automata.

solvers. These failures can be of the following types:
(1) Missing component. A sign of missing modules,

leading to dependencies not being included in
the verification domain factor M . It is trivial to
resolve this; just add the necessary modules to
M .

(2) Main model undefined. If we define a main
model to instance the core module so that SMV
can verify it, the other modules will be initialized
automatically by Verilog itself.

(3) Redefining. An SMV solver, such as
CadenceSMV, may report this error with
line number and source-file name. It is not a
big problem and we simply note the reported
redefinition.

(4) Unkown error. An SMV solver, such as
CadenceSMV, reports an error without a detailed
description. This is usually caused by some
initialization codes, e.g., reg [3:0] s0 = 4’b0000
in the Verilog files; we note those initialization
codes to continue.

After transformation, the Verilog set P is fulfilled in
the verification domain.

3.3 Verilog verification

CadenceSMV is used to verify the transformed Verilog
model. At this point in the process, the tool is set
to use bounded-model checking for the time-saving
verification procedure.

The property set P contains all the properties that are
going to be verified; they are all CTL or LTL assertions.
Usually one automaton and its corresponding properties
are verified at a time. Since multiple properties can
be verified at one time, P is updated according to
the verification result. We designed a strategy based
on the specification of the depth of the bounded
model checking. First, it is set to 30, then the
verification is performed. If there is no counterexample
report, for non-critical modules, we assume that the
property currently being verified is satisfied. For critical
properties, the depth is set to 50 and the verification
is rerun. If counterexamples are reported, the depth is
firstly reset to 50 to find the longest counterexample for
later analysis. If the reported counterexample is proved
spurious, new assertions are added into P , to remove
the spurious counterexample if possible.

3.4 Results analysis

Counterexample results are analyzed to find loops and
loops found in the verification results are usually ones
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that cause deadlocks. Analyzing the results is simple,
the loops can be found in the output files of SMV.

3.5 Locating deadlocks

After finding loops, we go back to the VHDL code to
find deadlocks. The deadlocks reside in the automata A

corresponding to the verification model V .

4 Learned Lessons

4.1 Verification domain construction

The verification domain is constructed by analyzing the
control flow and data flow of the project, and locating
one or more suspicious modules. After analysis of the
issue description, all the sources of suspicious modules
are checked, and the domain factor M is finalized to a
list of 12. They are:

(1) decoder, the core module of the signal receiver;
(2) monitorarminterface, the monitor of the arm chip

interface;
(3) monitorreceiver, the monitor of the signal

receiver;
(4) monitorsenderstate, the monitor of the signal

sender state;
(5) Receive FIFO Controller, which manages the

FIFO rule of the signal receiver;
(6) ShiftRegister, the core module of the signal

sender;
(7) mf send control unit, the main frame sending

control unit;
(8) TM ACCESS CTRL, the telecom memory

access control module;
(9) bigmux, the receiver signal distribution module;
(10) cmf ssc combine, which stores the main frame

and determines whether it is the signal source
or destination;

(11) trafficstorecontroller, the controller of storing
signals;

(12) receiver controller 2out, the controller of signal
receiver.

All these modules are subject to having deadlocks
that could cause the issue described in the last section,
so each of them will be verified by our solution.

4.2 Noteworthy procedure

For a well-constructed verification domain D D fM; V;

A; P g, verification source V should be accurate and
acceptable to SMV solvers. As discussed above in
Section 3.2, the transformed Verilog files may cause
failures when verified by SMV tools, so some fixes are

made according to the three types described above. One
example of fixing initialization code is illustrated in Fig.
2.

LTL and bounded model checking are used to verify
the fixed Verilog files. For LTL assertions, “infinitely
often”, i.e., GF, are often used. Besides normal assertion
code, it is recommended that the verifier records
circumstances that are useful for later recording and
referencing. Here is a global assertion that is always
assumed to be true and used for verifying other
properties:
mutex0: assert G F (((main controller with sram inf1.
tm ack =’1’) &&(main controller with sram inf1.tm
free =’0’)) U ((main controller with sram inf1.tm ack
=’0’) && (main controller with sram inf1.tm free
=’1’))).

This assertion is a description of the signal ACK,
which is the acknowledgement signal of the receiver of
the CCU. We assume that the signal ACK can infinitely
often be 1, and it is freed until it has a response.

All the other verification cases are based on this
global assertion. One example of LTL assertions with
comments is shown in Fig. 3.

Bounded Model Checking Depth is the SAT depth
we specified for this verification. As discussed above, it

Fig. 2 Example: initialization code fix.

Verification NO.02
Bounded Model Checking Depth: 30
Verification Module: ShiftRegisters.v
Verification Property: the initial state can infinitely often
go back to initial state
Additional Settings: endstore signal can infinitely often be 1
Verification Result: Passed
Result Analysis: given the setting that endstore signal can
not infinitely often be
0 (mutex2), the verification is passed;
refer to verification NO.01, it is clear that as long as signal
endstore always be 0 sometime,
variable state will go into deadlock.
mutex1: assert G F (main controller.utranceiver.state =’000’);
mutex2: assert G F (main controller.utranceiver.endstore =’1’);
using mutex0, mutex2 prove mutex1;
assume mutex0, mutex2;

Fig. 3 Example of LTL assertion.
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will be changed according to the verification results.
The Verification Module shows the Verilog model

to be verified. It has the same name as its VHDL
module. Verification Property is the verbal description
of the property to be verified; for detecting deadlocks,
we usually use the phase that the initial state can
infinitely often return to to demonstrate that there are no
deadlocks as long as the automata can always return to
their initial state in the future. Additional Settings adds
new assertions to get rid of spurious counterexamples
confirmed by the hardware team. Verification Result
shows the result as either “Passed” or “Failed”. Result
Analysis analyzes the verification result and discusses
the following verification settings, either making a short
summary of passed cases or providing new deeper
verification settings for the current model.

It is interesting to know that the SMV tool we used,
CadenceSMV, has poor support for verification result
diagrams, e.g., exporting trace files or result view files
does not work. We have to check output files, files with
extension .out, to find deadlocks. The analysis of these
failed verification results is completely manual. In the
output files, there are lines saying “loop begins here” by
finding loops and the state variable in the automata, and
we can draw transition diagrams of the automata.

Here is an example of the analysis procedure. By
performing the procedure introduced above, we find a
deadlock in the module cmf ssc combine; the state in
the automata runs into a loop on 0001, i.e., 1000, 0001,
1000, 0001, 1000, 0001, � � � , the transition diagram and
corresponding code are shown in Fig. 4.

As shown in Fig. 4, the transition from 1000 to 0001
always happens, while the transition from 0001 to 1000
is subject to conditional commands. From the source

Fig. 4 Example: Automata deadlock and source code in cmf
ssc combine.

code above, we can say that due to the incompleteness
of these lines of code, when ssc ack and data enable
both equal “0”, there will always be no state transition,
and the automaton runs into a deadlock.

4.3 Verification results

All the verification cases for all 12 suspicious modules
are executed one by one and the verification results are
shown in Table 1.

As shown in Table 1, we verified 12 modules—
8 passed, 3 skipped, and 1 failed. For the modules
that passed, verification cases are rerun at depth 50
to make sure of their correctness; those marked as
“Skipped” mean no automata were found in them, so
no verification will be carried out. cmf ssc combine is
the only module that failed verification.

5 Conclusions and Future Work

The verification solution works. As shown in the result,
we found several deadlocks in the MVBC project.
Some of them are confirmed to be impossible in the
actual runtime environment, but the cmf ssc combine
module is found to be the root cause of the issue.

Though confirmed as “impossible”, the deadlocks

Table 1 Verification results.

No. Module Result Depth Deadlock length Comment
1 decoder Passed 30/50 0 N/A
2 monitorarminterface Skipped 0 0 No automata
3 monitorreceiver Skipped 0 0 No automata
4 monitorsenderstate Skipped 0 0 No automata
5 Receive FIFO Controller Passed 30/50 0 N/A
6 ShiftRegister Passed 30/50 0 N/A
7 mf send control unit Passed 30/50 0 N/A
8 TM ACCESS CTRL Passed 30/50 0 N/A
9 bigmux Passed 30/50 0 N/A
10 cmf ssc combine Failed 30/20/50/05 2/2/9/4 Deadlock found
11 trafficstorecontroller Passed 30/50 0 N/A
12 receiver controller 2out Passed 30/50 0 N/A
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are not what the hardware team thinks they are. The
deadlocks may not happen if all the hardware is in good
condition, but they may occur in the future if some
part of the circuit is not working, e.g., some pin is not
soldered well or worn out. So it is still required that
all the deadlocks be removed. It is the hardware team’s
responsibility to make sure the circuit works perfectly,
but the software team is also obliged to prevent potential
problems. Only in this way will the verification solution
be meaningful.

At the same time, verification is currently limited to
locating deadlocks in VHDL automata. However, many
other parts of the code can be troublesome, so we plan
to extend our verification to those parts in the future.

We currently use SAT and bounded-model checking
to verify these automata, so we have to specify the depth
of the SAT solver manually, according to our individual
experience. This is not reliable and may vary from
person to person. What’s more, we find that it is time-
consuming to design the overall verification strategy
and depth dependency. To solve this problem, we plan
to use Binary Decision Diagram (BDD), in addition, to
verify the existing automata and we believe that this will
make it more convincing and convenient, and we may
find more potential risks in the VHDL software.
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