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Abstract. Software systems are often built without developing any
explicit model and therefore research has been focusing on automatic
inference of models by applying machine learning to execution logs. How-
ever, the logs generated by a real software system may be very large and
the inference algorithm can exceed the capacity of a single computer.

This paper focuses on inference of behavioral models and explores
to use of MapReduce to deal with large logs. The approach consists of
two distributed algorithms that perform trace slicing and model synthe-
sis. For each job, a distributed algorithm using MapReduce is developed.
With the parallel data processing capacity of MapReduce, the problem of
inferring behavioral models from large logs can be efficiently solved. The
technique is implemented on top of Hadoop. Experiments on Amazon
clusters show efficiency and scalability of our approach.

Keywords: Model inference · Parametric trace · Log analysis ·
MapReduce

1 Introduction

Software behavioral models play an important role in the whole life cycle of
software systems. Through models, software engineers may gain a deep under-
standing of how a system behaves without dealing with the intricacies of the
implementation. Although good software engineering practices suggest that mod-
els should be developed first and then used to derive an implementation, reality
shows that often models do not exist, or they are inconsistent with the implemen-
tation. In fact, building a proper model is hard and requires both mathematical
skills and ingenuity. Moreover, even if they are developed, they are often not
kept in sync with changes to the implementation.

One promising approach to tackle this problem is to use machine learning to
infer the software behavioral models automatically from execution logs [7,14].
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Many model inference algorithms [4,10,13] have been proposed by recent
research. To infer accurate models, the logs should contain as much detail infor-
mation as possible. However, a log with more information also increases the
difficulty of model inference task. The logs generated by real systems are usually
very large. For example, the production systems in Google generate billions of
log events each day [18], which far exceeds the capacity of a single computer.

It is thus desirable to parallelize the processing of massive logs. In prior
work [11], Lee et al. proposed an algorithm for slicing traces by parametric events.
This algorithm is useful for log processing and model inference. However, one
cannot parallelize this algorithm by simply dividing the trace into N segments
and running N copies of the algorithm on these segments in parallel. Note that
the events in different segments may be correlated and should be sliced together
(Section 3). Processing the segments independently can lead to incorrect results.

To this end, we propose to use MapReduce [9] to deal with large logs in model
inference tasks. Using the MapReduce model, we can effectively distribute the
processing of massive logs to numerous computing nodes, meanwhile ensuring the
related events are always processed together. With the powerful data processing
capacity of MapReduce, the problem of inferring behavioral models from large
logs can be efficiently solved.

In a nutshell, our approach consists of two stages: trace slicing and model
synthesis. The first stage parses and slices the log into different trace slices,
and constructs a prefix tree acceptor as the intermediate result. The second
stage reads the prefix tree acceptor, and synthesizes the behavioral model. Both
stages are realized under the MapReduce framework. We develop a distributed
algorithm for the trace slicing and model synthesis, respectively. With these two
algorithms, we propose a novel MapReduce framework for inferring software
behavioral models.

The main contributions are summarized as follows:

– We propose a distributed trace slicing algorithm using MapReduce;
– We propose a distributed model synthesis algorithm using MapReduce;
– With these algorithms, we developed an inference method that, to the best of

our knowledge, represents a novel attempt to use the MapReduce framework
for inferring software behavioral models;

– We implemented a prototype of our technique. The experimental results
show the promising performance of our approach.

The rest of the paper is organized as follows: Section 2 provides an overview of
our approach. Section 3 introduces some formal definitions of this work. Section 4
and Section 5 introduce our distributed algorithms for trace slicing and model
synthesis, respectively. Section 6 reports the experimental results. Section 7 dis-
cusses the related work and Section 8 concludes this paper.
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2 Approach Overview

2.1 MapReduce

MapReduce [9] is a large-scale parallel data processing framework based on dis-
tributed architectures. It hides the details of data distribution, load balanc-
ing, and failure recovery while providing simple yet powerful interfaces to users.
Hadoop 1 is an open-source implementation of MapReduce.

In MapReduce, the data is stored in a distributed file system (DFS) and the
computation is based on key-value pairs. A MapReduce job consists of three
phases, i.e., map, shuffle and reduce. In the map phase, the input data are parti-
tioned and distributed to a number of mappers. At each mapper, a user-defined
map function is invoked to handle the input data and produce intermediate
results (in the form of key-value pairs). These intermediate results are then par-
titioned and sorted in the shuffle phase. Each partition corresponds to a reducer
in the reduce phase. At each reducer, a user-defined reduce function is invoked
to handle that partition. Note that the MapReduce framework ensures the val-
ues for the same key are passed to a single reduce call. The output of a reducer
is written to the DFS.

When solving a problem on top of MapReduce, one major concern is to design
the distributed algorithm with map and reduce functions. Once the algorithm
is well encoded, one can leverage clusters and parallel computing to speed up
the computation. The interested reader may refer to [12] for more information.

2.2 Behavioral Model Inference

The workflow of a typical behavioral model inference mainly consists of three
steps: log parsing, trace slicing, and model synthesis. First, we rely on a parser to
extract relevant events from the log files as defined in the event specification. The
events are usually associated with some parameters, called parametric events.
A parameter corresponds to an entity in the system. We say an interaction
happens when two or more events with the same parameter are detected in the
log file. After parsing, we get a sequence of parametric events, called a parametric
trace. The parametric trace may contain many independent interactions, and
thus cannot be directly used for model synthesis. A trace slicer then slices the
parametric trace into many slices, each of which corresponds to an interaction
scenario. Finally, a synthesis algorithm is called to infer the behavioral model
from the set of trace slices.

Consider the online shopping system shown in Figure 1 as a running example.
The relevant events and their corresponding parameters are as follows:

– the user userid logins in the system,
– the user userid creates an order with the ID of orderid,
– the item itemid is added to the order orderid,
– the item itemid is removed from the order orderid,

1 http://hadoop.apache.org/

http://hadoop.apache.org/


138 C. Luo et al.

– the user userid pays the order orderid, and
– the user userid cancels the order orderid.

An example parametric trace excerpt for the system is shown in Figure 1a, and
the behavioral model is depicted in Figure 1b.

(a) A parametric trace (b) The behavioral model

Fig. 1. An online shopping system example

2.3 Our Approach

To deal with the large logs generate by the software system, we propose to apply
MapReduce to parallelize the model inference process. As shown in Figure 2, our
approach consists of two stages, i.e., the distributed trace slicing stage and the
distributed model synthesis stage, both of which are realized using MapReduce.
The first stage takes as input a log file, performs the log parsing and trace
slicing, and outputs a prefix tree acceptor (PTA) [13]. The log parsing task
is performed by mappers, while the trace slicing task is executed by reducers.
The second stage takes as input the PTA generated in the former stage, and
infers the behavioral model by a distributed model synthesis algorithm. With
the large-scale data processing capacity of MapReduce framework, the problem
of inferring behavioral models from large log files can be efficiently solved.

Fig. 2. Model inference with MapReduce

Although the basic algorithms for trace slicing [11] and model synthesis [7]
exist, our contribution is to realize a novel MapReduce version of both algorithms
and integrate them seamlessly.
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3 Formal Definitions

This section introduces the formal definitions needed in our framework. Some of
these definitions originate from [11].

Definition 1. An event specification is a pair 〈E ,X〉, where E is a set of base
events, and X is a set of parameters.

An event specification specifies the events of interest and the parameters. The
event specification for the running example is E={login, create order, add item,
remove item, pay order, cancel order}, X = {userid, orderid, itemid}.

Let [A → B] (or [A ⇁ B]) be the sets of total (or partial) functions from A
to B. For any partial function θ ∈ [A ⇁ B], Dom(θ) = {x ∈ A | θ(x) is defined}.
Let ⊥ be the partial function for which Dom(⊥) = ∅.

Definition 2. A parameter instance θ is a partial function from X to VX , i.e.,
θ ∈ [X ⇁ VX ], where VX is a set of parameter values for the parameter set X.
A parameter instance θ is called complete if Dom(θ) = X. Let Y ⊆ Dom(θ), a
restriction θ �Y of θ to Y is a parameter instance such that Dom(θ �Y ) = Y and
for any y ∈ Y , θ �Y (y) = θ(y).

To simplify the notation, we often ignore the parameter names X and use
the parameter values VX to represent the parameter instance, if the mapping
from X to VX is clear from the context. For example, the parameter instance
〈userid 	→ user1, orderid 	→ order1〉 can be simplified as 〈user1, order1〉.
Definition 3. The parametric event definition De is a function from E to 2X ,
i.e., De ∈ [E → 2X ]. A parametric event is e〈θ〉, where e is a base event, θ is a
parameter instance such that Dom(θ) = De(e).

A parametric event definition provides parameter information for each base
event e ∈ E , and we assume parameters for each base event to be fixed as in [11].

Definition 4. A trace is a finite sequence of base events. A parametric trace is
a finite sequence of parametric events. Denote e ∈ τ (or e〈θ〉 ∈ τ) if base event
e (or parametric event e〈θ〉) appears in trace (or parametric trace) τ .

Definition 5. A parameter instance θ′ is called less informative than another
parameter instance θ (written θ′ 
 θ), if for any x ∈ X, θ′(x) is defined implies
θ(x) is also defined and θ′(x) = θ(x).

For example, 〈user1〉 is less informative than 〈user1, order1〉.
Definition 6. Let τ be a parametric trace and θ be a parameter instance, the
θ-trace slice τ �θ of τ is a (non-parametric) trace defined as:

– ε�θ= ε, where ε is the empty trace, and

– (τe〈θ′〉)�θ=

{
(τ �θ)e, if θ′ 
 θ

τ �θ, otherwise
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Intuitively, the θ-trace slice τ �θ first filters out the irrelevant parametric
events to θ, then leaves out the parameter instances and only keeps the base
events. For example, let τ1 be the parametric trace in Figure 1a. For θ1 =
〈user1, order1〉, τ1 �θ1 is the sequence of: login, create order, pay order.

A trace slice corresponds to a parameter instance. However, all parameter
instances appearing in τ1 are incomplete. With the following operator, incom-
plete parameter instances can be combined to form a complete one.

Definition 7. Two parameter instances θ and θ′ are compatible if for any x ∈
Dom(θ) ∩ Dom(θ′), θ(x) = θ′(x). If θ and θ′ are compatible, we define their
combination (written θ � θ′) as:

(θ � θ′)(x) =

⎧⎪⎨
⎪⎩

θ(x) if θ(x) is defined
θ′(x) if θ′(x) is defined
undefined otherwise

For example, the parameter instances 〈user1, order1〉 and 〈order1, item1〉
are compatible, and their combination gives 〈user1, order1, item1〉. However,
the parameter instances 〈user1〉 and 〈user2, order2〉 are incompatible.

The combination of parameter instances may lead to meaningless results.
For example, the parameter instance 〈user1〉 and 〈order2, item2〉 are compati-
ble, but their combination 〈user1, order2, item2〉 is meaningless since user1 and
order2 do not interact in any event. To avoid such meaningless combinations,
we require only connected parameter instances to be combined.

Definition 8. Two parameter instances θ1 and θ2 are strong compatible (writ-
ten θ1 �� θ2), if θ1 and θ2 are compatible, and Dom(θ1) ∩ Dom(θ2) = ∅.
Definition 9. Given a parametric trace τ and a parameter instance θ, we say
θ is τ -connected (or connected if τ is clear from the context), if

– e〈θ〉 ∈ τ , or
– there exist θ1, θ2 such that both θ1 and θ2 are τ -connected, θ1 �� θ2, and

θ = θ1 � θ2.

Considering the running example. The parameter instances 〈user1, order1〉
and 〈order1, item1〉 satisfy the first condition in above definition, and 〈user1,
order1〉� 〈order1, item1〉 = 〈user1, order1, item1〉, thus the parameter instance
〈user1, order1, item1〉 is connected. In the remainder of this paper, we only
consider trace slices for complete and connected parameter instances to avoid
meaningless results as in [11].

4 Distributed Trace Slicing with MapReduce

This section presents our distributed trace slicing algorithm with MapReduce.
The basic idea is to group all related parameter events and send then to the same
reducer to generate correct trace slices. In the following, we first propose a data
encoding mechanism, and then introduce the mapper and reducer functions.
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4.1 Data Encoding

In MapReduce, the transmitted data between mappers and reducers are orga-
nized as key-value pairs. The transmitted data for our problem are basically
parametric events. We thus need a mechanism to set a key for each parametric
event to distribute them to reducers.

The basic idea is to watch a subset of X, and for each parametric event e〈θ〉,
we report the watched value on θ as its key, which is used by MapReduce to
determine to which reducer the parameter event should be passed.

Definition 10. A parameter window X is a subset of X, such that for all e ∈ E,
either X ⊆ De(e) or X ∩ De(e) = ∅. A parameter window X is nontrivial if
X = ∅.

Note that any singleton parameter set is always a well-formed and nontriv-
ial parameter window. Consider the running example, a nontrivial parameter
window can be X = {orderid}.

Definition 11. The key of a parametric event e〈θ〉 (written key(e〈θ〉)) with
respect to the parameter window X is

– the restriction of θ to X , i.e., θ �X , if X ⊆ De(e), or
– ⊥, if X ∩ De(e) = ∅.

For example, with the parameter window X = {orderid}, the key of the first
parametric event login〈user1〉 in Figure 1a is ⊥. And the keys of the remaining
parametric events in Figure 1a are: 〈order1〉, ⊥, 〈order2〉, 〈order1〉, 〈order2〉,
〈order2〉, 〈order1〉 and 〈order2〉, respectively.

With a parameter window X , we divide all parametric events into two disjoint
sets: T1 = {e〈θ〉|X ⊆ De(e)} and T2 = {e〈θ〉|X ∩ De(e) = ∅}. Continue the
previous example, the parametric events labeled 2, 4, 5, 6, 7, 8 and 9 belong to
T1, and the parametric events labeled 1 and 3 belong to T2.

Lemma 1. Let e1〈θ1〉 and e2〈θ2〉 be two parametric events in T1, if
key(e1〈θ1〉) = key(e2〈θ2〉), then e1〈θ1〉 and e2〈θ2〉 must be incompatible. 2

Let hash() be a hash function that takes a key as input and returns the
ID of a reducer. For a parametric event e1〈θ1〉 ∈ T1, let k1 = key(e1〈θ1〉),
we pass the key-value pair (k1, e1〈θ1〉) to the reducer with the ID of hash(k1).
However, parametric events in T2 may be combined with any parametric events
in T1. Thus, for any parametric event e2〈θ2〉 ∈ T2, we pass the key-value pair
(⊥, e2〈θ2〉) to all reducers.

We now discuss how to choose X automatically. Since the parametric events
in T2 need to be passed to all reducers, X should be chosen such that T2 is as
small as possible. However, the optimal X cannot be determined unless we have
processed the entire log. To handle this, we define non-parametric version of T2

as T̂2 = {e|X ∩ De(e) = ∅}, and relax the criteria as follows.
2 Due to space limitation, all proofs can be found in the extended version [15].
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Heuristic 1. The set X should be chosen such that T̂2 is as small as possible.

This heuristic is an approximation, since minimizing T̂2 does not necessarily
mean that T2 is minimized. However, one advantage is that T̂2 can be computed
with the event definition, which is known a priori. Thus, the parameter window
X can be decided before MapReduce computations.

Moreover, for parametric events in T1, we want them to be distributed evenly
to reducers, i.e., we want keys in T1 to be as many as possible. Notice that the
number of different keys is influenced by |X |, we thus have another heuristic.

Heuristic 2. The set X should be as large as possible.

With above heuristics, the parameter window X can be decided with a brute-
force search as follows. We first find all non-trivial parameter windows according
to Definition 10, then apply the first heuristic to maximize T̂2. If there is more
than one candidate X , we then apply the second heuristic to select the one with
the largest size.

4.2 Mapper

The log is split (implicitly by the MapReduce) into blocks, each of which is
passed to a mapper. We call each line in the log a log entry. A log entry records
a parametric event, and the time when it happens. In the remainder of the paper,
we assume each event to be associated with a timestamp. However, for simplicity,
we will consider them only when we need to sort the parametric events.

Figure 3 shows the pseudocode of the Map function, which takes as input a
log entry and outputs a key-value pair. Note that the parameter window X is
provided a priori to all mappers. For each log entry, the Parse function is called
(line 2) to get the parametric event e〈θ〉. If the event is not in E , the Parse
function returns NULL and this log entry is simply skipped (line 4). Otherwise,
the mapper outputs a key-value pair (lines 5-8) based on Definition 11.

Consider the example trace in Figure 1a. Suppose there are two mappers
and two reducers respectively. We assume each key-value pair output by the
mappers is with the same label as the parametric event. Let hash(〈order1〉) = 1
and hash(〈order2〉) = 2. Then the key-value pairs labeled 1, 2, 3, 5, 8 are passed
to Reducer1; the key-value pairs labeled 1, 3, 4, 6, 7, 9 are passed to Reducer2.

4.3 Reducer

Recall that during the shuffle phase, MapReduce merges and sorts key-value
pairs to ensure that values corresponding to the same key are passed to a single
reduce call. Denote values[] the list of parametric events with the key of key.
The Reduce function is called for each pair of key and values[].

The Reduce function is shown in Figure 3. Note that all parametric events
in values[] are with the same key, but their parameter instances may be different.
The Restore function first reorganizes values[] into several lists (lines 3-6), each
list Δtmp(θ) corresponds to a parameter instance θ, and consists of base events
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1: function Map(line)
2: e〈θ〉 ← Parse(line);
3: if e〈θ〉 = NULL then
4: return ;

5: if X ⊆ De(e) then
6: Output(θ �X , e〈θ〉);
7: else
8: Output(⊥, e〈θ〉);

1: function Restore(values[])
2: Δtmp ← ∅;
3: for e〈θ〉 ∈ values[] do
4: if θ 	∈ Dom(Δtmp) then
5: Initialize Δtmp(θ);

6: Insert e into Δtmp(θ);

7: return Δtmp;

1: function Reduce(key, values[])
2: if key = ⊥ then
3: Δ⊥ ←Restore(values[]);
4: return ;

5: Δ ←Restore(values[]);
6: while ∃θ1 ∈ Dom(Δ⊥), θ2 ∈ Dom(Δ)
7: s.t. θ1 	∈ Dom(Δ) ∧ θ1 �� θ2 do
8: Δ(θ1) ← Δ⊥(θ1);

9: Construct(Δ);

1: function Construct(Δ)
2: Ω ← Dom(Δ);
3: while ∃θ1, θ2 ∈ Ω
4: s.t. θ1 �� θ2, (θ1 � θ2 /∈ Ω) do
5: Ω ← Ω ∪ {θ1 � θ2};

6: for complete θ ∈ Ω do
7: Γ ← {Δ(θ′)|θ′ � θ, θ′ ∈ Dom(Δ)};
8: τ �θ← merging event lists in Γ ;
9: Update PTA using τ �θ;

Fig. 3. Distributed trace slicing

only. Here we abuse the notion of Dom(Δ), which denotes the set of parameter
instances θ where the list Δ(θ) is defined, i.e., Dom(Δ) = {θ|Δ(θ) is defined}.
Recall that each event is associated with a timestamp. At line 6, the base event
e is inserted to a proper position in Δtmp(θ) such that Δtmp(θ) is in ascending
order of timestamp.

Note that Δ⊥ is global and shared by multiple calls of the Reduce function.
And the MapReduce framework is configured such that key-value pairs in T2

always come before pairs in T1. As a result, when the Reduce function proceeds
to line 5, Δ⊥ must have already been initialized.

The while loop at line 6 tries to retrieve some lists Δ⊥(θ1) into Δ such that
θ1 can be combined with some θ2 ∈ Dom(Δ). According to Definition 9, if θ1
and θ2 are connected, and θ1 �� θ2, then θ1 � θ2 is also connected, thus the list
Δ⊥(θ1) can be added to Δ (line 7). Note that θ1 may again be strong compatible
to other parameter instances in T2; this process is thus iterative.

The Construct function is called at line 9 to compute trace slices and then
update the intermediate structure PTA. Ω is the set of parameter instances in
Δ. The function tries to combine (lines 3-5) all strong compatible parameter
instances in Ω. This process is iterative, since the newly generated parameter
instance may be combined to the existing ones. Then the trace slice for each
complete and connected parameter instance θ is constructed by merging the
event sequences of θ’s less informative parameter instances (lines 7-9).

Consider Reducer1 of our running example. After line 5 of the Reduce
function, Δ⊥ and Δ are defined as follows. For Δ⊥, Δ⊥(〈user1〉) = login and
Δ⊥(〈user2〉) = login. For Δ, Δ(〈user1, order1〉) = create order, pay order
and Δ(〈order1, item1〉) = add item. Then at line 6, since 〈user1〉 is strong
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compatible with 〈user1, order1〉, the list Δ⊥(〈user1〉) is added to Δ. After the
while loop at line 3 of the Construct function, Ω = {〈user1〉, 〈user1, order1〉,
〈order1, item1〉, 〈user1, order1, item1〉}. Let θ = 〈user1, order1, item1〉, then
τ �θ= login, create order, add item, pay order.

We take the prefix tree acceptor (PTA) as the intermediate structure. Each
reducer keeps a partial PTA, which only maintains trace slices generated at the
reducer. However, since the model inference algorithm (see Section Section 5)
takes as input a complete PTA, we then merge the PTAs in each reducer to form
a complete one after the reduce process terminates. The complete PTA accepts
all trace slices generated, and an example is shown in Figure 4.

Fig. 4. PTA for the running example

5 Distributed Model Synthesis with MapReduce

Once the complete PTA has been generated, as previously shown, many off-the-
shelf model synthesis algorithms [7,16] can be applied to infer the system model.
However, since these are centralized algorithms and the PTA can be a very large
data structure, we further propose a distributed model synthesis algorithm based
on k-tail [7] with MapReduce to improve efficiency.

The most expensive operation of k-tail is to decide which states can be
merged. Our idea is to distribute the most expensive operations to a number
of mappers. With the intermediate results computed by the mappers, the model
construction is comparatively simple, and is performed by a single reducer.

5.1 Data Encoding

To implement the distributed model synthesis algorithm with MapReduce, the
intermediate results must be in the form of key-value pairs. The “value” here
is a state, we thus need a mechanism to set a key for each state. Moreover, as
states with the same key are grouped together by MapReduce, the key should
convey information about the merged state of these states.

We first introduce some notation relevant to the description of the behav-
ioral model. A behavioral model M is defined as a finite-state automaton
M = (Σ,S, s0, σ, F ), where Σ is the set of base events, S is a finite, non-empty
set of states, s0 ∈ S is an initial state, σ is the state-transition function, and
F ⊆ S is the set of non-final states. Let σ∗ : S × Σ∗ → S be the extended
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transition function, i.e., σ∗(s, ε) = s and σ∗(s, eω) =
⋃

s′∈σ(s,e)

σ∗(s′, ω). Denote

the input PTA model as MPTA, and the target finite-state model as MFSM .
Let k be a predefined integer. Let ω ∈ Σ∗ be a word, i.e. a trace of base

events. Let Σ≤k = Σ0 ∪ Σ1 · · · ∪ Σk, then ω ∈ Σ≤k is a word of maximum
length k. Given an automaton M , let f be a function from S × Σ∗ to Boolean,
such that for any state s ∈ S and any word ω ∈ Σ∗, f(s, ω) = 1 iff starting from
s, the word ω is accepted by σ∗ 3.

Definition 12. Let s1, s2 be two states in M , we say s1 and s2 are k-equivalent,
if for any word ω ∈ Σ≤k, f(s1, ω) = 1 iff f(s2, ω) = 1.

The k-equivalence class that contains s is

[s] = {t ∈ S | s and t are k-equivalent}.

All states in a k-equivalent class can be merged. A k-equivalent class in MPTA

corresponds to a state in MFSM . The function f can be lifted to a equivalent
class: ∀ω ∈ Σ≤k, f([s], ω) = f(s′, ω), where s′ can be any state in [s].

Lemma 2. For any two k-equivalent classes [s] and [t], there must exist a word
ω ∈ Σ≤k, such that f([s], ω) = f([t], ω).

We can use the valuations of f([s], ω) for all ω ∈ Σ≤k to characterize [s].
Assume words in Σ≤k to be indexed from 1 to |Σ≤k|. We use following definition
to compute the signature of a state.

Definition 13. Let s be a state in S, the signature sig of s is a Boolean vector
of length |Σ≤k|, such that sig[i] = 1 iff with the i-th word ω in Σ≤k, f(s, ω) = 1
for 1 ≤ i ≤ |Σ≤k|.

By Lemma 2, the signatures of s and t are identical, if and only if they are
in the same k-equivalent class. We thus choose the key of a given state s as the
signature of s.

5.2 Mapper and Reducer

The pseudocode of distributed model synthesis is shown in Figure 5. Let Si be
the set of states distributed to Mapper i. For each state s ∈ Si, Mapper i computes
the signature sig for s, and outputs the signature-state pair.

When all states signatures have been computed, the synthesis of MFSM is
simple, and can be performed by a single reducer. MapReduce sorts all signature-
state pairs and puts the states with the same signature into one list. Let states[]
be the list of states with the same signature sig. The Reduce function is called
for each pair of sig and states[], and simply creates a new state in MFSM in
correspondence to the given signature.

After all signatures have been processed, the PostReduce function is
invoked, which adds transitions to MFSM . For each transition in MPTA from s
to t due to event e, a transition from [s] to [t] labeled e is added to MFSM . The
PostReduce function is called once and returns the synthesized model MFSM .
3 We do not require that a word ends in a final state, as in [8].
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1: function Map(state)
2: compute signature sig of state by Definition 13;
3: Output(sig, state);

4: function Reduce(sig, states[])
5: Create a new state in MFSM w.r.t. sig;

6: function PostReduce
7: for each transition (s1, e, s2) in MPTA do
8: Add a transition ([s1], e, [s2]) in MFSM ;

Fig. 5. Distributed model synthesis

6 Experimental Evaluation

We implemented our approach on top of Hadoop 1.2.1, and conducted exper-
iments on Amazon Elastic MapReduce clusters 4. Each computing node has a
dual-core CPU and 7.5 GB memories. We let each node serve as two mappers
and one reducer simultaneously. The running time spent on both MapReduce
jobs (trace slicing and model synthesis) is measured separately. Each experiment
is performed 3 times, and the average value is reported.

The datasets used in our experiments are synthetically generated as follows.
(1) An automaton is randomly generated as the target model, which contains
50 states and maximally 5 transitions per state. (2) The automaton is randomly
simulated to generate parametric traces. Each parametric trace is with 10 to
100 parametric events. (3) All generated parametric traces are randomly mixed
up. (4) The same number of irrelevant entries are randomly added to the log as
noises. Other parameters are set as: |E| = 15, |X| = 4 and k = 1. The event
definition De is randomly determined, and the parameter value is randomly
chosen from integer domain. The size of the largest log file exceeds 10 GB.

We designed several sets of experiments to evaluate our approach, ranging
from basic performance, speed up to scalability. The experimental results are
reported and discussed below.

Basic Performance. The first set of experiments tests the running time of
our approach for logs with increasing size. Sizes of these logs range from 20
to 100 million events. The cluster size is fixed to 10 nodes. The results are
plotted in Figure 6a. Each column in the graph contains two parts, representing
the running time of trace slicing and model synthesis, respectively. Most of the
running time is spent on trace slicing. The total processing time for the largest
log (the file size exceeds 10GB) is less than 7 minutes.

Speed-Up. In the second set of experiments, we test the speed-up of our app-
roach with increasing number of computing nodes. The log size is fixed to 40
million events, while the cluster size varies from 1 node to 10 nodes. The experi-
mental results are plotted in Figure 6b. We observed that the total running time

4 http://aws.amazon.com/elasticmapreduce/

http://aws.amazon.com/elasticmapreduce/
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(a) Running time with
inreasing log size

(b) Running time with
increasing nodes

(c) Running time with
increasing nodes and log
size

Fig. 6. Experimental results

of our approach decreases considerably when given more computing nodes. This
is well understandable. Moreover, along with the increase of computing nodes,
the speed-up ratio goes down slowly. This is also reasonable, since the commu-
nication cost increases and there are some operations (for example, the Reduce
and PostReduce functions in model synthesis) that cannot be parallelized or
completely parallelized.

Scalability. The third set of experiments tests the scalability of our approach.
We increase the log size (from 20 million to 100 million events) and the cluster
size (from 2 to 10 nodes) by the same factor, and then observe the running time
of our approach. Note that the ratio between log size and cluster size remains
unchanged. The experimental results are shown in Figure 6c. When both log
size and cluster size increase, the total running time increases a little. This
phenomenon is very encouraging, which means our approach scales well.

Threat to Validity. The main threat to validity is the synthetic logs used in the
evaluation. To mitigate this, the log generator is designed as practical as possible
by imitating the practical parameter settings and the noises. Another possible
threat to validity is certain characteristics of logs, e.g., the event definition,
because of the heuristics we used for determining the parameter windows. To
eliminate the bias involved in designing the data sets, we also choose synthetic
logs and randomly generated event definitions in our evaluation.

7 Related Works

The related works fall into two categories: behavioral model inference and trace
checking with MapReduce.

Behavioral Model Inference. A lot of work exists on inferring software behav-
ioral models from execution traces. Ammons et al. [1] first proposed the technique
of specification mining to mine program specifications from program execution
traces. GK-Tail [14] extends the k-tail algorithm and infers extended finite state
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machines. Walkinshaw and Bogdanov [17] considered LTL constraints as addi-
tional input, and used model checking technique to guide the state merging
process. Lo et al. [13] mined temporal invariants from execution traces and used
the invariants to guide the model inference. Synoptic [5] adopted similar idea
and incorporated refinement and coarsening to generate accurate but concise
models. Lee et al. [11] proposed the trace slicing technique to mine paramet-
ric specifications. Ghezzi et al. [10] inferred users’ behavior models from web
application logs. However, to the best of our knowledge, there is no previously
published work on applying MapReduce to model inference.

Trace Checking with MapReduce. Recently, there have been several works
on checking trace compliance against temporal logics using MapReduce. Barre
et al. [2] presented an iterative algorithm for checking Linear Temporal Logic
(LTL) formula over event traces with MapReduce. Bianculli et al. [6] further
improved the work [2] by supporting metric temporal logic with aggregating
modalities. Basin et al. [3] presented a formal log slicing framework for check-
ing policies expressed with metric first-order temporal logic. These works share
some similarities with ours, i.e., log processing with MapReduce. But the major
difference is that our work focus on behavioral model inference from large logs,
rather than checking compliance against temporal logics.

8 Conclusion

In this paper, we presented an approach to infer software behavioral models
from large logs using MapReduce. In our approach, the logs are first parsed
and sliced, then the model is inferred by the distributed k-tail algorithm. Our
approach can also be used as a log preprocessor and combined with existing
model inference algorithms. Experiments on Amazon clusters and large datasets
show the efficiency and scalability of our approach.

We plan to perform case studies on logs generated by real software systems
to further evaluate the performance and applicability of our approach. We also
plan to investigate the parallelization of more precise and robust model inference
algorithms [16] or incorporating temporal invariants [13] during inference phase.
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