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Abstract. Three-way merging is an essential infrastructure in version
control systems. While the traditional line-based textual methods are
efficient, syntax-based structured approaches have shown advantages in
enhancing merge accuracy. Prior structured merging approaches visit ab-
stract syntax trees in a top-down manner, which is hard to detect and
merge shifted code in the general sense. This paper presents a novel
methodology combining a top-down and a bottom-up visit of abstract
syntax trees, which manipulates shifted code effectively and elegantly.
This merge algorithm is order-preserving and linear-time. Compared
with four representative merge tools in 40,533 real-world merge scenar-
ios, our approach achieves the highest merge accuracy and 2.4 x as fast
as a state-of-the-art structured merge tool.

Keywords: Version control systems · Three-way merging · Structured
merging · Shifted code.

1 Introduction

Thanks to the wide application of version control systems such as Git and SVN,
three-way merging has become an indispensable task in contemporary software
development. A three-way merge scenario (base, left , right) consists of three ver-
sions of a program, where the two variants left and right are both evolved in-
dependently, possibly by different developers, from their ancestor base. A three-
way merge algorithm integrates the changes made by the variants and produces
a merged version called a target. When the two variants (i.e., branches) intro-
duce changes that are contradicted, according to three-way merge principles, a
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conflict shall be reported, leaving the developers to manually resolve them. The
three-way merge principles conservatively describe whether the changes could
be correctly integrated.

Unstructured merge is a mature merging approach that regards programs
as a sequence of lines of plain text. Since the context-free syntax is neglected,
merge accuracy is yet unsatisfying—studies [17,16] have shown the presence of
false conflicts (i.e., the conflicts that should have been avoided), which increases
the user burden of manual resolution. To enhance merge accuracy, structured
merge, representing programs as abstract syntax trees (ASTs), has gained signif-
icant research interest in recent decades [16,15,2,1,5,23,24]. A structured merge
algorithm takes a set of mappings between different program versions as input
and computes a merged version as output. The mappings are obtained by AST
differencing (also known as AST matching) algorithms [7,9,6].

To compute a target AST, a structured merge algorithm needs to traverse
the input ASTs (i.e., base, left , and right). Prior approaches [16,15,2,1,5,23,24]
all use a top-down order, which is quite natural and intuitive as it follows the
structure of ASTs. Such a top-down AST comparison is usually restricted to be
level-wise—only AST nodes at the same level (or depth) get compared, which
makes it hard to detect if one piece of code is shifted into another, namely shifted
code [14]. To identify shifted code in a top-down manner, one could search for
the largest common embedded subtree. This problem, however, is known to be
NP-hard and difficult to approximate for general cases [22]. A more scalable
approach is to employ syntax-aware looking ahead matching [14], but: looking
ahead is only enabled for a few types of AST nodes; the maximum looking-ahead
distance is short for efficiency considerations. Their work focuses on the AST
matching problem; how to correctly merge shifted code remains an issue.

Thinking oppositely, we find a bottom-up traversing order a better option.
The key to detecting shifted code is to allow node mappings across AST lev-
els, which is natural and easier via a bottom-up manner. Meanwhile, top-down
merging cannot handle across-level mappings, which means bottom-up merging
is needed as the follow-up of the matching phase. Sometimes, the bottom-up visit
alone incurs redundant computations. As an extreme example, if left is the same
as base, meaning no changes are introduced on left , then by three-way merge
principles, right introduces unique changes and should be the target version—
there is no need to further inspect any of their descendants as in a bottom-up
manner. We fix this issue by bringing in top-down merging.

Combining a top-down pruning pass and a bottom-up pass, we present a
novel three-way structured merge algorithm, where the trivial merge scenarios
are processed in the former pass, and other nontrivial merge scenarios, which
may involve shifted code, are carefully operated in the latter pass. Because our
algorithm is non-backtracking, the time complexity is linear.

Like in JDime [16], we distinguish if the children of an AST node list can
be “safely permuted” (i.e., the permutation preserves semantics). If not, the list
is called ordered (e.g., a sequence of statements) and a good merge algorithm
should preserve the original occurrence order of the children in the merged ver-
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sion, which we call order-preservation. We reduce this problem into computing
a topological sort of a directed graph (that encodes required constraints), which
is solvable by linear-time graph algorithms such as Kahn’s algorithm [13].

We implemented our approach as a structured merge tool called Mastery6. To
measure its usability and practicality in real scenarios, we extract 40,533 merge
scenarios from 78 open-source Java projects. We identified that shifted code
occurs in 38.54% merge scenarios, and conduct experimental comparisons with
four representative tools: JDime (structured), jFSTMerge (tree-based semistruc-
tured), IntelliMerge (graph-based semistructured), and GitMerge (unstructured).
Our results show: (1) Mastery achieves the highest merge accuracy of 82.26%; (2)
Mastery reports the fewest 9.09% conflicts and the fewest 6,791 conflict blocks,
excluding radical IntelliMerge; (3) Mastery is about 2.4× as fast as JDime, and
about 1.3× as fast as jFSTMerge. Our tool and evaluation data are publicly
available: https://github.com/thufv/mastery/.

To sum up, this paper makes the following contributions:

– We present a novel structured merge algorithm that visits ASTs in both a
top-down and a bottom-up manner. The top-down pruning pass avoids a
mass of redundant computations. The bottom-up pass makes it possible to
handle shifted code elegantly and efficiently.

– We show that the proposed merging algorithm is linear-time and the ordered
merging algorithm is order-preserving.

– We conduct comprehensive experiments on real-world merge scenarios. Re-
sults show that Mastery is competitive with state-of-the-art merge tools in
the aspects of merge accuracy, the number of conflicts, and efficiency.

2 Preliminary

AST nodes In structured merging, programs are represented as abstract syntax
trees (ASTs), parsed from source files. An AST is a labeled rooted tree with
four types of nodes, each annotated with the name of its production rule in the
grammar, called its label (lbl).

Node v ::= Leaf(lbl, x) (leaf)
| Ctork(lbl, v1, . . . , vk) (k-ary constructor)
| UList(lbl, {v1, . . . , vn}) (unordered list)
| OList(lbl, [v1, . . . , vn]) (ordered list)

A k-ary constructor node has exactly k children as its arguments. For instance,
an if-statement—consisting of a Boolean condition, a true branch, and a false
branch—is represented as a 3-ary constructor node. An arbitrary number of
children is allowed in a list node, which is further divided into unordered—
children can be safely permuted—and ordered (the opposite). For instance, a
class member declaration list is unordered, while a statement list is ordered. In
case of merge conflicts, we introduce conflicting nodes in target ASTs.

6 Merging abstract syntax trees in a reasonable way.

https://github.com/thufv/mastery/
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Fig. 1: A merge scenario with shifted code. (Shifted mappings are depicted as
dashed arrows.)

Table 1: Three-way merge principles (dual cases omitted).

Type Version base Version left Version right Target T Explanation

1 Node e e e′ e′ left-change
2 Node e eL eR conflict inconsistent change
3 List e ∈ base e ̸∈ left e ∈ right e ̸∈ T left-deletion
4 List e ̸∈ base e ∈ left e ̸∈ right e ∈ T or conflict left-insertion

AST Matching Amerging algorithm relies on a set of mappings between different
versions of the programs to compute the merged version. The set of mappings
between two ASTs T1 and T2 are represented by a matching set M = {(ui, vi)}i,
where each pair (ui, vi) consists of two nodes ui ∈ T1 and vi ∈ T2. The mappings
shall be injective—two nodes cannot be matched to the same node on the other
AST simultaneously. Moreover, the matched nodes shall have the same label.

Definition 1 (Shifted code). Given two mappings (u′, v′), (u, v) ∈ M, if u
is a child of u′, whereas v is not a child (i.e., direct descendant) but a later
descendant of v′, then (u, v) is said a shifted mapping. Meanwhile, the code
fragment corresponding to the subtree of v is called a shifted code.

For example, on the merge scenario shown in Fig. 1: in left , the code fragment
of InfixExpr is a shifted code and is shifted into a CastExpr; in right , the code
fragment of ExprStmt is a shifted code and is shifted into a ForStmt.

Three-way Merge Principles A three-way merge algorithm must abide by a cou-
ple of principles, as presented in Table 1. To avoid repetition, the dual cases of
rows 1, 3, and 4 are not displayed. The first two rules are applicable for all types
of nodes. If a node is modified by exactly one of the variants, then the change
is unique and itself gives the target (row 1). If a node is concurrently modified
by both variants inconsistently, a conflict is reported, as the algorithm has no
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Case 1: Leaf

Case 2: Constructor

Case 3: Unordered List
(Unordered Merging Alg. 3)

Case 4: Ordered List
(Ordered Merging Alg. 4)
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invoke

Fig. 2: High-level workflow of our merge algorithm.

adequate information to decide which one to take (row 2). The last two rules
are applicable for only (ordered and unordered) list nodes. If an element of base
presents in exactly one of the variants, then it is regarded as being removed and
will be excluded from the target list (row 3). In contrast, if a new node is intro-
duced in exactly one of the variants, it will be inserted into the target list (row
4). For ordered lists, conflicts may occur if the insertion position is ambiguous.

3 Merge Algorithm

Given a three-way merge scenario (base, left , right), our merge algorithm accepts
two matching sets (obtained by an AST matching algorithm) as input—ML the
matches between base and left , and MR the matches between base and right .
The algorithm generates a new tree, namely a target AST, as the merge result.

3.1 Algorithm Overview

Merging is performed on the matched nodes only, as unmatched nodes are as-
sumed to have no relation. In the case of three-way merging, the two variants
should match the base version. Formally, a merge scenario (b, l, r) is said proper
if (b, l) ∈ ML and (b, r) ∈ MR. The merge algorithm only needs to manipu-
late proper merge scenarios. Non-proper merge scenarios can be safely omitted
because they are regarded as deletions and thus do not appear in the target.

Fig. 2 presents the high-level workflow of our merge algorithm. It consists of
a top-down pass followed by a bottom-up one. In the top-down pass (see § 3.2 for
details), input ASTs get traversed in pre-order, and any trivial merge scenario—
any two of the three versions are equal—is processed immediately. Meanwhile,
we collect other non-trivial proper merge scenarios in the list S.

In the bottom-up pass, the merge scenarios in S get processed in the reverse
order, i.e., in post-order. Since matched nodes have the same label, the three
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Algorithm 1: Top-down pruning pass

1 Function TopDownVisit(b: Node):
2 S ← [];
3 if ∃l ∈ left , r ∈ right : (b, l) ∈ML ∧ (b, r) ∈MR then
4 if b = r then R(b)← l; return [];
5 if b = l or l = r then R(b)← r; return [];
6 S += (b, l, r);

7 foreach child c of node b do
8 S ++= TopDownVisit(c);

9 return S;

versions in a proper merge scenario must be homogeneous—they must all be
leaf nodes, constructor nodes, unordered list nodes, or ordered list nodes.

The first case, all nodes are leaf nodes, is the base case of our merge algorithm.
This case is straightforward by three-way merge principles: We either take the
only-changed variant as the target (by row 1 of Table 1) or report a conflict due
to the inconsistent changes (by row 2).

The other cases are recursive cases where sub-scenarios need to be merged
recursively. Merging constructor nodes of the same label and arity gives a con-
structor node of that label and arity too, and each child node is recursively
merged from the sub-scenarios formed by the children at the corresponding in-
dex. Merging list nodes gives list nodes too, and it contains elements recursively
merged from certain sub-scenarios drawn from the elements in the input lists
(see § 3.4 and § 3.5 for details).

A challenging problem in solving the recursive cases is that: a sub-scenario
(b, l, r) may not be proper, say b and l do not match. Even though it is rational
to assume b matches some descendant of l (or else we simply report a conflict),
which happens when l has shifted code. We encode this condition as a relevant-to
relation: u is relevant to v, written u ≃ v, iff there exists a descendant w ∈ v such
that u matches w. With this notion, the assumption we make on a sub-scenario
(b, l, r) is given by b ≃ l∧ b ≃ r. Merging such a sub-scenario requires us to take
shifted code into account. We will present this algorithm in § 3.3.

The merge result of the merge scenario (b, l, r) is recorded in a map R so that
the algorithm can query it later on demand. Instead of using the entire merge
scenario (b, l, r) as the index (or key) for the map R, realizing that any node b of
base appears in at most one merge scenario (by the injectivity of the matching
sets), we simply use b as the index. In the end, the target AST of the top-most
merge scenario (base, left , right) is obtained by querying R(base).

3.2 Top-Down Pruning Pass

In the top-down pass, we visit base in a descendant recursive manner by invoking
TopDownVisit (Alg. 1). This function returns all non-trivial merge scenarios that
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Algorithm 2: Shifted Code Merging

1 Function IssueShifted(b: Node, l: Node, r: Node):
2 let l′, r′ be nodes s.t. (b, l′) ∈ML, (b, r

′) ∈MR;
3 if l′ = l ∧ r′ = r then return R(b);
4 if l′ ̸= l ∧ r′ = r then return l[R(b)/l′];
5 if r′ ̸= r ∧ l′ = l then return r[R(b)/r′];
6 if l[R(b)/l′] = r[R(b)/r′] then return l[R(b)/l′];
7 return Conflict(l, r);

need processing later in the bottom-up pass. We use a list S to collect them.
For short, we use two notations: S += e for appending an element e to S, and
S ++= S′ for appending all elements in S′ to S. Upon traversing, if any trivial
merge scenario is encountered, we immediately store the target AST in R and
prune any further visit of its sub-scenarios by returning an empty list (lines 4 –
6). Otherwise, we proceed to collect merge scenarios recursively (lines 8 – 9).

3.3 Shifted Code Merging

Shifted code may exhibit in any type of node (except leaf node) in merge scenar-
ios. Alg. 2 presents a unified algorithm for dealing with shifted code. It requires
b ≃ l∧ b ≃ r. Merging is performed according to where the shifted code involves:

(no shifting) If (b, l, r) is proper, then we simply query R (line 3).
(left-shifting) If b matches r but not l, then there exists a l′ such that it is
shifted into l. To integrate this shifting, we first make a copy of l and replace l′

with the merge result of (b, l′, r′) i.e., R(b) (line 4). The notation u[w/v] gives
an updated tree by replacing a subtree v with w on u.
(right-shifting) Line 5 is symmetric to the above case.
(consistent-shifting) If both variants involve shifted code, the only circumstance
we can safely merge is when they yield the same result (line 6).
(inconsistent-shifting) Otherwise, report a conflict (line 7).

Consider the example in Fig. 1. When merging the merge scenario consist-
ing of the three Assignments, CastExpr from left , InfixExpr from base and
InfixExpr from right form the arguments b, l, r in Alg. 2. The result is com-
puted by taking the subtree of CastExpr and replacing its subtree of InfixExpr
with the target one (by line 4). In merging the top-most merge scenario, the
result is computed from the subtree of ForStmt by replacing its child ExprStmt

with the target of ExprStmts (by line 5). In this way, the shifted changes made
by the two variants are integrated.

3.4 Unordered Merging

Let B, L, and R respectively be the set of elements of three unordered list nodes
that form a merge scenario. The goal of unordered merging is to compute a set
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Algorithm 3: Unordered merge

1 Function Unordered(B: Set, L: Set, R: Set):
2 T ← ∅;
3 foreach b ∈ B do
4 if ∃l ∈ L, r ∈ R : b ≃ l ∧ b ≃ r then
5 T ← T ∪ {IssueShifted(b, l, r)};
6 mark l, r as “visited”;

7 else if ∃l ∈ L : b ≃ l then // right case is symmetric
8 if b ̸= l then T ← T ∪ {Conflict(l, ε)};
9 mark l as “visited”;

10 T ← T ∪ {e | e ∈ L ∪R, e is not “visited”};
11 return T ;

of elements T—without worrying about the order—that should appear in the
target list. These elements are classified as follows:

(shifting) If an element b ∈ B satisfies b ≃ l ∧ b ≃ r for some l ∈ L and r ∈ R,
then the merge result is obtained by invoking IssueShifted(b, l, r).
(left/right-insertion) If an element of L or R is not related to any element of
B, then by row 4 of Table 1 it is an insertion.
(left/right-deletion-change conflict) If an element b satisfies, for example (dual
case is similar), b ≃ r for some r ∈ R, then it is a left-deletion (thus not included
in T ) when b = r; and a left-deletion-change conflict when b ̸= r.

The above is realized as Alg. 3: First, traverse the elements in B and collect
any shifting (line 4) or left-deletion-change conflict (line 7, right-deletion-change
conflict is symmetric) in T . Meanwhile, mark every relevant left/right element as
“visited” (lines 6 and 9). Then, all elements yet not marked must be left/right-
insertions: thus insert them into T (line 10).

3.5 Ordered Merging

Merging ordered lists is more complex than merging unordered lists in that the
elements of the target list must be in an order preserving the original occurrence
order of associated elements in the merge scenario; and it is necessary to decide
whether such an order uniquely exists—if not, to fit the merge algorithm into
a conservative setting, conflicts shall be reported as well. For example, the con-
flicting scenario depicted in Fig. 3 is due to the ambiguity that whether Stmt2
should precede Stmt3 (note that both should be included in T as insertions).

Order-preserving Before presenting the merge algorithm, we first need a formal
interpretation of “preserving the original occurrence order”. Since the occurrence
order is a partial order relation, it is natural to regard the three ordered lists in
the merge scenario (B,L,R) as three ordered sets ⟨B,�B⟩, ⟨L,�L⟩ and ⟨R,�R⟩.
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Fig. 3: A conflicting merge scenario of three statement-lists (B,L,R) with the
target T . A dashed edge between two statements indicates they are matched.

The occurrence order relation is denoted by �X (for X ∈ {B,L,R}), formally
defined as X[i]�X X[j] ⇐⇒ i < j.

Let S be the set of elements that should appear in the target list T , computed
by Unordered(B, L, R). We encode the relationship as partial functions πB :
B ⇀ T , πL : L ⇀ T and πR : R ⇀ T , associating an element in the input merge
scenario with the corresponding element in the target list. For example, if t∗ ∈ S
is a left-insertion, then t∗ is a copy of some l∗ ∈ L, thus we let πL(l

∗) = t∗.

Definition 2 (Order-preserving). We say an ordered list T is an order-
preserving w.r.t. (B,L,R) if T is a permutation of S = Unordered(B, L, R)
such that πB, πL, and πR are monotone. A partial function f : X ⇀ Y is said
monotone if for every x1, x2 ∈ X such that f(x1) and f(x2) are both defined,
x1 �X x2 entails f(x1)�Y f(x2).

In the above, the monotonicity condition precisely encodes our requirement of
“preserving the original occurrence order”.

Algorithm The main goal of the algorithm (Alg. 4) is to solve an order-preserving
list and to decide the uniqueness of such lists. We compute an order-preserving
list via constraint-solving—the constraints encode the monotonicity condition
for the target list T by Def. 2. Technically each constraint has the form e1 � e2,
meaning “e1 precedes e2 in T”. We propose an algorithm GenConstraints to
produce them by traversing the elements of B, L, and R in their occurrence
order, following the same structure of Alg. 3, e.g., we generate the constraint
“πB(b1)� πB(b2)” for b1 �B b2.

Let Φ be the set of computed constraints (line 2). We represent the constraints
as a directed graph (line 3) GΦ = ⟨V,E⟩, where: (1) the set of vertices are
the elements of Unordered(B, L, R), i.e., V = S, and (2) for each constraint
(e1 � e2) ∈ Φ, let (e1, e2) ∈ E be an edge of GΦ. It is well-known from graph
theory that: there is a one-one correspondence between a topological sort of GΦ

and a satisfying solution of Φ, which further implies that: there is a one-one
correspondence between an order-preserving list and a topological sort of GΦ.

We compute an order-preserving list using classic topology sort algorithms
such as Kahn’s algorithm [13]. Following Kahn’s algorithm, we facilitate a loop
(lines 6 – 14) to compute a topological sort and save it to a list Y . The auxiliary
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Algorithm 4: Ordered merge

1 Function Ordered(B: List, L: List, R: List):
2 Φ← GenConstraints(B, L, R);
3 Represent Φ as a directed graph GΦ = ⟨V,E⟩;
4 Y ← [];
5 Z ← {u | u ∈ V, indeg(u) = 0};
6 while Z ̸= ∅ do

7 if |Z| ≥ 2 then return “conflict”;
8 remove the sole vertex u from Z;
9 Y += u;

10 foreach (u, v) ∈ E do
11 E ← E \ {(u, v)};
12 if indeg(v) = 0 then
13 Z ← Z ∪ {v};

14 V ← V \ {u};
15 if V ̸= ∅ then return “cyclic”;
16 return Y ;

set Z (line 5) maintains all vertices with zero in-degree (i.e., without incoming
edge). To further enable the uniqueness checking, we make the following exten-
sion: Each time the loop is entered, we check if Z has multiple elements. If so,
choosing either vertex of Z gives a topological sort—in other words, the topolog-
ical sort is not unique—so we report a conflict (line 7, highlighted). Otherwise,
we follow the original Kahn’s algorithm in lines 8 – 14. The loop repeats until Z
is emptied. Suppose V is nonempty even when the loop exits, GΦ must be cyclic
and has no topological sort at all (based on the property of Kahn’s algorithm),
where a conflict exhibits as well.

The correctness of our ordered merge algorithm is stated as the following
theorem:

Theorem 1. Alg. 4 returns an order-preserving list (without conflict) if and
only if the order-preserving list w.r.t. input merge scenario uniquely exists.

The ordered merge algorithm is linear because both Kahn’s algorithm and the
generation of constraints are linear. Moreover, the other algorithms mentioned
before are also linear, thus:

Theorem 2. The time complexity of the entire structured merge algorithm is
linear (to the size of the input merge scenario).

4 Implementation

We implemented the proposed approach as a structured merge framework, Mas-
tery, written in Java. This framework consists of four modules:
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1. a parser that translates input source files into ASTs;
2. a tree matcher that generates mappings between different program versions,

using an adapted GumTree [7] algorithm;
3. a tree merger that computes the target AST, following the algorithms pre-

sented in § 3;
4. a pretty printer that outputs the formatted code from the merged AST.

Mastery currently supports merging Java programs. We use JavaParser 7 to
build ASTs from source code and pretty print source code from ASTs.

5 Evaluation

We extract 40,533 merge scenarios from 78 Java open-source projects hosted on
GitHub, and then conduct a series of experimental evaluations to answer the
following research questions:

RQ1: How often does shifted code occur in real-world merge scenarios?
RQ2: What is the merge accuracy of Mastery when compared to state-of-the-
art merge tools?
RQ3: How many merge conflicts are reported by these tools?
RQ4: What is their performance from the perspective of runtime?

5.1 Experimental Setup

To select realistic and representative merge scenarios as our evaluation dataset,
we seek the top-100 most popular open-source Java projects hosted on GitHub8;
exclude any non-software-project (e.g., tutorials). On the remaining 78 projects,
we extract merge scenarios via an analysis of their commit histories:

1. On all merged commits, we extract its two parents and their base commit
from the Git history. The three source files with the same name extracted
from the three commits each form a merge scenario (base, left , right), where
base is from the base commit and the two variants are from the parent
commits. The file (with the same name) in the merged commit is marked as
the expected version, i.e., the ground truth of the merged result.

2. If any two of base, left , and right are equivalent, the target version of this
merge scenario is obvious. To better examine the differences between the
merge tools, we elide such trivial merge scenarios and instead only collect
the merge scenarios where the three versions are pairwise distinct, judged
by the git diff command.

3. Some source files cannot be correctly parsed, e.g., they include unresolved
conflicts. We have to elide them too because structured approaches assume
the input files to have valid syntax, checked by JavaParser.

7 https://javaparser.org/
8 According to the following list, until July 12, 2021:
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/Java.md.

https://javaparser.org/
https://github.com/EvanLi/Github-Ranking/blob/master/Top100/Java.md
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Fig. 4: Distribution of shifted code in each project. The projects are sorted by
their number of merge scenarios in ascending order. We split them into two
subfigures according to if the number of merge scenarios is less than 500 (left)
or not (right).

4. In total, we collect 40,533 merge scenarios across 78 Java projects.

We compare Mastery with four state-of-the-art merge tools:

– JDime [16], a state-of-the-art structured merge tool,
– jFSTMerge [5], a well-known tree-based semistructured merge tool,
– IntelliMerge [20], a refactoring-aware graph-based semistructured merge tool,
– GitMerge, the default merging algorithm in Git.

All experiments were conducted on a workstation with AMD EPYC 7H12
64-Core CPU and 1TB memory, running Ubuntu 20.04.3 LTS.

5.2 Frequency of Shifted Code (RQ1)

To calculate the frequency of shifted code, we use the state-of-the-art AST dif-
ferencing tool, GumTree [7], to compute the matching sets among base, left , and
right . Note that we don’t need any merge tool for this evaluation. We detect
shifted mappings from these matching sets according to Def. 1. Fig. 4 presents
how many merge scenarios in each studied project involve shifted code, meaning
at least one shifted mapping is detected. Among the 40,533 merge scenarios,
we find 15,620 merge scenarios involve shifted code—the frequency is 38.54%.
In those merge scenarios, we detect 90,982 shifted mappings—on average 2.24
shifted mappings per merge scenario.

5.3 Taxonomy of Results

To understand the behavioral performance of the merge tools, we classify a
merged result (for each merge scenario of each tool) into one of the following
four categories:
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Table 2: Distribution of the merged results.

Tool
Expected Unexpected Conflicting Failed

Number Accuracy Number Percentage Number Percentage Number Percentage

Mastery 33342 82.26% 3504 8.64% 3686 9.09% 1 0.00%
JDime 32789 80.89% 2446 6.03% 4610 11.37% 688 1.70%

jFSTMerge 30063 74.17% 3837 9.47% 6627 16.35% 6 0.01%
IntelliMerge 9774 24.11% 24555 60.58% 3442 8.49% 2762 6.81%
GitMerge 30643 75.60% 791 1.95% 9099 22.45% 0 0.00%

– expected : the merged file and the expected version (the ground truth) are
syntactically equivalent, i.e., their ASTs are isomorphic to each other (allow-
ing permutations of elements in an unordered list node);

– unexpected : the merged file is conflict-free and is nonequivalent to the ex-
pected version;

– conflicting : there is at least one conflict block in the merged file;
– failed : either the tool crashes or the execution exceeds the time limit 300 s.

Table 2 lists the merge results of the five tools. JDime and IntelliMerge failed
on a considerable number of scenarios, mainly caused by their implementation
bugs. IntelliMerge tends to produce more unexpected results because it adopts
a radical merging algorithm that may violate the three-way merge principles
when a deletion happens. For GitMerge, only 1.95% results are unexpected. To
understand this phenomenon, we have to notice that all projects use GitMerge
as default. If GitMerge does not report any conflict, the merged codes will usu-
ally become the ground truth in our evaluation, without being reviewed by the
developers. Thus, the expected version is a kind of biased ground truth in favor
of GitMerge. This finding is consistent with a previous work [20].

5.4 Merge Accuracy (RQ2)

The merge accuracy is calculated as the percentage of expected results. As shown
in Table 2, Mastery achieves the highest accuracy of 82.26% among all tools.
Comparing to JDime, Mastery gains 1.37% higher accuracy. Among the 1,398
scenarios where Mastery’s results are expected whereas JDime’s are not, we find
48.78% involves shifted code—10.25% higher than the overall frequency.

The scenarios where GitMerge produces unexpected or conflicting results are
of special interest to us—in these merge scenarios, the expected versions (i.e.,
the merged versions in Git histories) must have been reviewed by the developers.
If we consider only these 9,890 scenarios, the accuracy of the five tools except
GitMerge are:

Mastery JDime jFSTMerge IntelliMerge
32.17% 31.94% 17.26% 6.98%

Mastery still achieves the highest accuracy.



14 F. Zhu et al.

0

5000

10000

15000

20000

Mastery JDime jFSTMerge IntelliMerge GitMerge

Fig. 5: Numbers of conflict blocks.

Scenarios (sorted by size)
100

101

102

Ti
m

e 
(s

)

IntelliMerge
jFSTMerge
JDime
Mastery

Fig. 6: Time cost of merging.

5.5 Reported Conflicts (RQ3)

In addition to the numbers of conflicting merge scenarios listed in Table 2, we also
count the numbers of conflict blocks (or conflict hunks) as depicted in Fig. 5. Es-
pecially, IntelliMerge’s radical strategy ignores three-way merge principles, mak-
ing it achieve the lowest in both metrics. The other four tools all follow the
three-way merge principles. Among them, Mastery reports the fewest 6,791 con-
flict blocks and the fewest 3,686 conflicting scenarios. Among the 1,650 scenarios
where JDime’s results are conflicting whereas Mastery’s are not, we find 51.82%
involves shifted code—higher than the overall frequency.

5.6 Runtime Performance (RQ4)

As unstructured GitMerge is inherent particularly efficient, we only compare the
runtime performance among semistructured and structured tools. Ignoring the
failed runs, Fig. 6 shows the runtime on merge scenarios sorted by the size (i.e.,
total file size in unit of byte) of merge scenarios in ascending order. Since the
runtime of each tool has considerable ups and downs even on the merge scenarios
of a similar size, for clearer illustrating, we plot each point as the average of
adjacent 100 merge scenarios. The average times for the four tools are:

Mastery JDime jFSTMerge IntelliMerge
10.33 s 24.06 s 13.21 s 4.34 s

Mastery is about 2.4 x as fast as JDime, and about 1.3 x as fast as jFSTMerge,
which shows Mastery, as a structured merging tool, has competitive efficiency to
semistructured merging tools.

5.7 Discussions

Threats to Validity We find the following threats to our ground truth:

1. The expected version may not exactly be the merged version but the one
postponed by a few commits, a.k.a. supplementary commits. Our dataset
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extraction process does not consider such supplementary commits. As a fu-
ture direction, it is interesting to investigate how to obtain better ground
truth taking the supplementary commits into account (such as [12,11]).

2. Because GitMerge is the default merging tool that developers use, if GitMerge
reports no conflicts, its merging results will usually become the ground truth
without any careful review, even if they are indeed wrong.

3. By empirical inspection, we found developers introduce additional changes
in some merging scenarios, rather than only collaborating on the changes
from left and right .

The ideal ground truth is to only merge changes in left and right cor-
rectly without introducing additional changes, and conflict blocks get reported if
the changes are indeed semantically contradicted. Unfortunately, manual efforts
seem inevitable approaching this ideality.

Limitations Among the 438 merge scenarios where Mastery produces unex-
pected results while JDime produces expected results, we manually studied 10
random samples. We found that: In 4 merge scenarios, the expected versions
introduce additional changes by developers or break three-way merge principles
in other ways. Mastery produces the desired merge results w.r.t. three-way merge
principles. The other 6 scenarios failed due to our limited support for two-way
merging, where a merge scenario consists of only the two variants but not the
base version. JDime realizes some heuristic two-way merging strategies, which
can handle these merge scenarios better. These strategies can be realized in
Mastery in the future.

6 Related Work

Structured Merge Westfechtel [21] and Buffenbarger [3] pioneered in proposing
merge algorithms that exploit structures of programs.

JDime [16] is a state-of-the-art tool for merging Java programs at AST level.
In their AST representation, ordered and unordered lists are distinguished, and
they propose distinct algorithms for merging them. We further distinguish or-
dered list nodes from constructor nodes (§ 2), as a list node can have an arbitrary
number of children while a constructor node cannot. Their algorithm is in a top-
down and level-wise manner, and is unable to merge shifted code.

Later, two extensions of JDime are proposed. One is an auto-tuning tech-
nique that switches between structured and unstructured merge algorithms for
better efficiency [15]; the other is a syntax-aware looking ahead mechanism for
identifying shifted code and renaming in the AST matcher [14]. To be scalable,
the lookahead mechanism has restrictions on the types of nodes when lookahead
is enabled (an if- or try-statement), and the maximum search distance of looka-
head (3 or 4). Note that in their work, the lookahead mechanism is not applied
to merging. Unlike them, our merge algorithm efficiently handles shifted code in
a general sense (i.e., without the above restrictions).
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Asenov et al. [2] propose an algorithm for matching and merging trees using
their textual encoding, which enables the usage of standard line-based version
control systems. To yield precise matching, external information, for example,
unique identifiers across revisions, is required. Unfortunately, they are directly
unavailable. Furthermore, they have to perform expensive tree matching algo-
rithms.

Semistructured Merge Apel et al. [1] invented semistructured merge—a novel way
of combining unstructured and structured approaches—that aims to balance the
generality of unstructured merge and the precision of structured merge. Since
semistructured approaches represent only part of the programs (typically high-
level structures) as ASTs and keep the rest (low-level structures, e.g., method
bodies) as plain text, they are not as precise as fully-structured approaches. An
empirical study [4] on over 40,000 merge scenarios reveals that semistructured
merge reports more false positives than structured merge.

Shen et al. [20] propose a graph-based refactoring-aware semistructured merg-
ing algorithm for Java programs, which is implemented as a tool IntelliMerge.
The major difference between refactoring and shifted code is that refactoring
must preserve semantics while shifted code usually does not.

Conflict Resolution Mens [17] thinks the resolution of conflicts caused by incon-
sistent changes made by variants is a major problem in version control. Since the
resolutions of those conflicts are ambiguous, developers have the responsibility
to resolve them manually. To alleviate manual efforts, Zhu and He [23] propose a
synthesis-based technique that can automatically suggest candidate resolutions.
In a real-time collaborative environment, it is also possible to simply prevent
any presence of conflicts using locks [10,19,18,8].

7 Conclusion & Future Directions

We present Mastery, a three-way structured merge framework based on the
methodology of combining the top-down and bottom-up visits of ASTs. This
framework benefits from both the efficiency of handling trivial merge scenarios
via a top-down pass and the effectiveness of handling non-trivial merge scenarios
via a bottom-up pass, which makes it possible to handle shifted code elegantly.
In the future, we plan to support more programming languages in our frame-
work and further improve the tree matching and merging algorithms based on
our evaluation findings.
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