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Abstract. LATEX is a widely-used document preparation system. Its
powerful ability in mathematical equation editing is perhaps the main
reason for its popularity in academia. Sometimes, however, even an ex-
pert user may spend much time fixing an erroneous equation. In this
paper, we present EqFix, a synthesis-based repairing system for LATEX
equations. It employs a set of fixing rules and can suggest possible re-
pairs for common errors in LATEX equations. A domain-specific language
is proposed for formally expressing the fixing rules. The fixing rules can
be automatically synthesized from a set of input-output examples. An
extension of relaxers is also introduced to enhance the practicality of Eq-
Fix. We evaluate EqFix on real-world examples and find that it can syn-
thesize rules with high generalization ability. Compared with a state-of-
the-art string transformation synthesizer, EqFix solved 37% more cases
and spent less than half of their synthesis time.

Keywords: Domain-specific languages · Program synthesis · Program
repair · Programming by examples.

1 Introduction

LATEX is a text-based document preparation system widely used in academia
to publish and communicate scientific documents. The powerful typesetting of
mathematical equations makes it a universal syntax for expressing mathematical
equations. This syntax has been integrated into text-based markup languages like
Markdown5, and WYSIWYG (i.e., “What you see is what you get”) document
processors like MS Word6. Even on the web, one can display LATEX equations
beautifully by MathJax7.

⋆ This work was supported in part by the National Natural Science Foundation of
China (No. 62072267 and No. 62021002) and the National Key Research and Devel-
opment Program of China (No. 2018YFB1308601).

⋆⋆ Early revisions of this work were done when this author was in Tsinghua University.
5 https://daringfireball.net/projects/markdown/
6 https://products.office.com/en-us/word
7 https://www.mathjax.org
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Since the syntax of LATEX equations is quite complex, non-expert users may
find it challenging to use. For example, one may expect “x10” by typing “$x^10$”.
This equation indeed compiles; however, its actual output is “x10”, which goes
against the user’s expectation. When such an error occurs, one may resort to
online help forums. However, this process is never trivial. First, the user has to
provide several keywords (for searching) that well describe the error. Second,
even if the user is fortunate to obtain some solutions, they may not necessarily
work for the user’s problem—the user still has to adapt the answers to that
specific problem. The whole process—especially the adaption of the solutions to
one’s own problem—requires not only intelligence but also patience.

Programming by examples (PBE) is believed to be a revolutionary technique
for end-user programming [8,7,10,12,1]. In recent decades, PBE has been adopted
in the area of program repair [17,14]. NoFAQ [2] is a tool that employs error
messages to assist the PBE-based repairing. This tool aims to fix common errors
in Unix commands, from an input-output example that consists of an erroneous
Unix command, an error message prompted by Shell, and a rectified command
specified by experts. Note that the error messages prompted by Unix Shell are
usually instantiated from a set of predefined templates; the stored information
in the messages can thus be easily extracted by patterns.

Inspired by NoFAQ and other PBE techniques, we present EqFix, a system
for automatically fixing erroneous LATEX equations by examples. Note that No-
FAQ cannot be applied to our problem setting for two reasons: First, an equation
error is not necessarily a compilation error, such as “$x^10$” indeed compiles
but produces an unexpected result. For such errors, one needs to specify the
error message on their own. Thus, we cannot assume this message has a fixed
structure (i.e., is instantiated from a template) as in NoFAQ. Second, the Unix
command can be directly tokenized into a sequence of strings (using whitespaces
as the delimiters), which makes it straightforward (by comparing the tokenized
strings in turn) to locate the error position in the text of the Unix command.
However, it is not the same case for equation text. Instead, we have to collaborate
the corresponding error message to tokenize an equation.

To the best of our knowledge, EqFix is the first attempt at equation repair
using PBE techniques. Novice users can use it to automatically fix common
errors in LATEX equations; expert users can contribute corrections for erroneous
equations. We design a domain-specific language (DSL) for formally defining the
fixing rules for erroneous LATEX equations (§ 3). Intuitively, a fixing rule consists
of an error pattern, which specifies what error messages this rule is applicable,
and a transformer which performs the actual fixing via string transformation.
We propose an algorithm for synthesizing fixing rules expressed by our DSL
from input-output examples (§ 4). We also introduce relaxers to describe the
generalization of equation patterns, with which the search space relating to the
faulty parts is expanded so that we can handle more repairing problems.

We evaluated EqFix on a dataset containing 89 groups of real-world examples
(§ 5). Note that NoFAQ is limited to repairing buggy Unix commands; we instead
took the state-of-the-art PBE tool FlashFill as our baseline. We selected the
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longest example in each group as our test case. We found that EqFix solved 72
(80.9%) of the test cases in less time, whereas FlashFill solved only 39 (43.82%).
Our prototype implementation and experiment artifact are publicly available:
https://github.com/thufv/EqFix.

The main technical contributions of this paper are summarized as follows:

– We present EqFix, a PBE-based system for automatically fixing erroneous
LATEX equations.

– We design a DSL for formally expressing fixing rules. We rely on equation
patterns to extract and transfer relevant information between error messages
and equations. The patterns can be generalized by relaxers when necessary.

– We conducted experiments on real-world examples. Results reveal the high
effectiveness and applicability of our approach.

2 EqFix by Examples

We use several real-world examples (in Table 1) to showcase how EqFix re-
pairs LATEX equations. All of the examples were extracted from an online LATEX
forum8. To be clear and short, we neglect the unchanged substrings of long equa-
tions. Each example consists of three components – the input equation eq, the
error message err, and the fixed equation fix. For convenience of reference, we
number these examples from 1 to 8 and refer their components as eqi, erri, fixi,
for 1 ≤ i ≤ 8, respectively. The LATEX output on each equation (if it compiles)
is displayed below the equation text.

Examples #1 – #4 present a scene where a user expects a superscript but
forgets to parenthesize the superscript expression. As shown in #1, given the
input equation “$x^10$” (eq1), LATEX treats only “1” but not the entire number
“10” as the superscript. In this way, it outputs “x10”, which is against the user’s
intent. Note that the input equation eq1 itself is syntactically correct because
the LATEX compiler did not report any error. In this way, the user must spec-
ify an error message by hand to express their intent. To express the error type
conveniently, a set of predefined keywords (Table 2 presents a selected subset)
are provided for selection. In a future direction, via natural language processing,
we may simply accept a natural language sentence as the error message for even
better practicality. Then, the user needs to point out a substring of the erroneous
input equation to show the error location. The error message is a combination of
the keywords and substring of the input equation. Here, in err1, “superscript”
is a predefined keyword indicating some substring of the input equation is ex-
pected to be the superscript, and “10” gives the error location. Then, an expert
may fix9 the input equation as “$x^{10}$”, i.e., surrounding “10” with a pair of
curly brackets. The three components, i.e., (eq1, err1, fix1), compose an input-
output example, with which we can synthesize a (fixing) rule. Each rule consists
of an error pattern for matching the error message and a transformer that will

8 https://tex.stackexchange.com
9 As another option, we may get the fix by online search.

https://github.com/thufv/EqFix
https://tex.stackexchange.com
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Table 1: Motivating examples.

# eq err fix

1 $x^10$ superscript 10 $x^{10}$

x10 x10

2 $y^123+x$ superscript 123 $y^{123}+x$

y123 + x y123 + x
3 $f^(k)$ superscript (k) $f^{(k)}$

f (k) f (k)

4 $y=x+\ldots+x^10$ superscript 10 $y=x+\ldots+x^{10}$

y = x+ . . .+ x10 y = x+ . . .+ x10

5 ${1,2,3$ Missing } inserted ${1,2,3}$

1, 2, 3
6 $S={x_1,\ldots,x_n$ Missing } inserted $S={x_1,\ldots,x_n}$

S = x1, . . . , xn

7 $2\^x$ Command \^ invalid $2^x$

in math mode 2x

8 $\sum\limits_{i=1}\^N t_i$ Command \^ invalid $\sum\limits_{i=1}^N t_i$

in math mode
N∑
i=1

ti

be applied to the input equation to produce a fix. Intuitively, the underlying
fixing strategy of this rule would be “surrounding the superscript with a pair of
curly brackets”.

EqFix can switch between the training mode for synthesizing rules and the
applying mode for repairing erroneous equations, based on a rule library that
saves all the learned rules so far. In the training mode, EqFix takes user-given
examples (typically by expert users) as input. It first searches in its rule library
to obtain a rule that can be refined to be consistent with the new examples. For
instance, the example #2 can be added by refining the fixing rule synthesized
merely by #1. If it is not the case (for instance, consider the examples #5 to
#8), a new rule is synthesized and the rule library gets enlarged.

In the applying mode, EqFix attempts to solve an equation repair problem—
an erroneous equation together with an error message—typically provided by
an end user. To do so, it searches in its rule library for all applicable rules, i.e.,
those whose error patterns can match against the error message, and attempts
to apply them (the transformer of the rule) to the input equation. For instance,
the rule synthesized from examples #1 and #2 is applicable to equation repair
problems #3 and #4: applying this rule on (eq3, err3) and (eq4, err4) gives fix3

and fix4 respectively. Since there can be more than one applicable rule, users
are asked to review the suggested fixes and approve one that meets the intent. If
no rule is applicable, or all suggested fixes are rejected by the user, EqFix fails
on this equation repair problem. In that situation, we expect an expert user to
figure out a correction, which, in association with the erroneous equation and the
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Table 2: Selected keywords supported by EqFix.

Keywords Interpretations

superscript expected as a superscript
subscript expected as a subscript
set expected as a set
function expected as a math function/operator
greek letter expected as a greek letter
fraction numerator expected as the numerator of a fraction
fraction denominator expected as the denominator of a fraction
operator sum expected as a sum operator
operator product expected as a product operator
long arrow expected as a long arrow

error message, forms a new example for synthesis under the training mode. The
newly synthesized rule will be recorded in the rule library so that it can apply
(under the applying mode) to future equation repair problems in this category.

Sometimes, an erroneous equation contains multiple errors. One needs to
interact with EqFix in multiple rounds to fix them all. The user feeds the erro-
neous equation together with one of the error messages in the initial round and
iteratively corrects the other errors using the fixed equation of the last round.

The rest examples in Table 1 showcase two LATEXcompile errors: unmatched
brackets (#5 – #6) and invalid superscript operator (#7 – #8). The error mes-
sages prompted by the LATEXcompiler are instantiated from some templates de-
fined by LATEX. Both compiler-prompted and keywords-based error messages are
handled in a unified way (we will explain that in § 3.1). Back to the examples, a
possible correction for #5 (#6 is similar) suggested by an expert is “${1,2,3}$”,
which inserts the missing right curly bracket (‘}’) at the end of the equation. A
possible correction for #7 (and #8) is to use ‘^” in place of the erroneous “\^”.
Note that #8 is more complicated than #7, while it can be automatically fixed
using the rule synthesized from #7.

In summary, EqFix facilitates an automated approach for fixing common
errors in editing LATEX equations. Our approach is rule-based (§ 3) and the
synthesis by input-output examples (§ 4) is automated. One benefit of our system
is that we may collect many examples and train a set of fixing rules from them in
advance that covers many common problems end users meet. Another benefit is
that the manual efforts of adapting the searched correction to their cases, which
might be the most challenging part to end users, are saved.

3 Rules in EqFix

EqFix is a rule-based system. Rules are formally defined by a DSL as shown in
Fig. 1. Each rule R is a pair ⟨EP, T ⟩, where EP is an error pattern describing the
template of the error message and which problem-specific information needs to
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(Fixing) rule R ::= ⟨EP, T ⟩
Transformer T ::= {v1 7→ τ1, . . . , vk 7→ τk}

Error pattern EP ::= [M1, . . . ,Mk]

Matcher M ::= s | v
Equation pattern P ::= [M1, . . . ,Mk]

Fig. 1: Syntax of fixing rules.

be extracted from that message, and T is a transformer specifying the required
transformation on the erroneous equation to fix the equation repair problem.

3.1 Error Pattern

An error message either comes from the LATEX compiler (e.g., #5 – #8 of Table 1)
or the user (e.g., #1 – #4). For the latter case, we assume the error message
starts with one or more predefined keywords (as in Table 2) that mention the er-
ror type and then followed by a substring of the erroneous equation which locates
the error. In either case, we represent the error message as a natural language
sentence that can be split into a list of tokens [e1, . . . , ek] by delimiters (whites-
paces, commas, etc.). EqFix is unaware of the resource of the error messages
and employs a unified error pattern to match against them. Users are allowed
to customize their keywords because EqFix regards them as normal tokens.

An error pattern EP = [EM1, . . . , EMk] contains a list of matchers, where
each of them is either: (1) a string matcher s that only matches against s itself, or
(2) a variable matcher v that matches against any token and binds the matched
token to v. An error message [e1, . . . , ek′ ] matches EP if they have the same
length (k = k′), and that every token ei (1 ≤ i ≤ k) matches the corresponding
matcher Mi. The matching result (if succeeds) is a mapping from variables to
the bound string values {v1 7→ s1, . . . , vk 7→ sk}.

Example 1. Consider err2 = [“superscript”, “123”] from Table 1. Let EP1 ≜
[“superscript”, v1] be an error pattern. Matching err2 against EP1 succeeds
with {v1 7→ “123”}, i.e., “123” is bound to v1.

3.2 Equation Pattern

Unlike an error message, an equation text usually involves complicated syntax
and thus cannot be directly tokenized by commonly seen delimiters. To extract
the problem-specific information from an equation (e.g., to find the cause of the
error), we propose the notion of an equation pattern.

An equation pattern P = [M1, · · · ,Mk] consists of a list of matchers. Espe-
cially, the string and variable matchers in P must appear alternately, that is,
if Mi is a string, then Mi+1 must be a variable and vice versa. Intuitively, the
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string matchers in an equation pattern are indeed used as “delimiters” to tok-
enize the equation into a list of “tokens”. Each “token” of the equation matches
a variable matcher and may convey some problem-specific information which
may be useful later in generating a corrected equation. Oppositely, if we allow
consecutive variable matchers to appear in an equation pattern, the split would
be ambiguous. For instance, consider a string “alpha” and an equation pattern
[v1, v2], we could either let v1 match against “a” (and v2 match against “lpha”),
or let v1 match against “al” (and v2 match against “pha”), etc.

Pattern Matching Given that string and variable matchers appear alternately, we
pattern match an equation pattern P against an equation eq by simply locating
the occurrences of the string matchers in eq (failure if we cannot)—the variable
matchers then match against the substrings in between. For example, match-
ing [v1, “foo”, v2] against “(foo)” yields the bindings {v1 7→ “(”, v2 7→ “)”},
because the equation is split into three parts “(” · “foo” · “)”.

Pattern Instantiation Equation patterns can be regarded as “templates” of equa-
tion text where the variable matchers are “placeholders”. Thus it is natural to
define pattern instantiation—the reverse of pattern matching—to obtain a (con-
crete) equation by replacing the variable matchers with the bound strings.

Example 2. Consider example #2 of Table 1, where eq2 = “$y^123+x$”. Let
P2 ≜ [“$y^”, v1, “+x$”] be an equation pattern. Matching eq2 against P2 gives
σ = {v1 7→ “123”}. Further, instantiating P2 with σ gives back eq2.

Pattern Generation In EqFix, equation patterns are not explicitly presented in
the rule. They are only intermediate during rule application. To construct an
equation pattern P from an erroneous equation eq with the matching result σ =
{v1 7→ s1, . . . , vk 7→ sk} from an error pattern, we substitute all the occurrences
of s1, . . . , sk in eq with v1, . . . , vk, respectively.

Example 3. Given σ = {v1 7→ “123”} and eq2 = “$y^123+x$”, applying the
above process yields [“$y^”, v1, “+x$”].

3.3 Transformer

Our DSL achieves an underlying repairing strategy via string transformation.
Since string matchers express the problem-unspecific information, the substrings
in the erroneous equation matched by them should be kept in the corrected
equation. The substrings matched by variable matchers, on the other hand, need
to be transformed by string transformers—functions that map a string into a
new one. The string transformer we employ in EqFix is expressed by a variant of
FlashFill’s DSL [7] but possesses a more restricted syntax for better efficiency.
Technical details can be found in our extended version. In EqFix, we define a
transformer—amapping from the variable matchers into string transformers—to
collect all necessary string transformations.
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err2 : [“superscript”, “123”]

EP1 : [“superscript”, v1]

{v1 7→ “123”}

T1

Pattern
Generation

eq2 : “$y^123+x$”

P2 : [“$y^”, v1, “+x$”]

{v1 7→ “{123}”} Pattern
Instantiation

fix2 : “$y^{123}+x$”

Step 1

Step 2

Step 3

Step 4

Fig. 2: Application of the rule R1 = ⟨EP1, T1⟩ to the input (eq2, err2).

Example 4. Let τ1 be a string transformer that inserts a pair of curly parentheses
surrounding the input. Let T1 ≜ {v1 7→ τ1} be a transformer. Applying T1 to
σ = {v1 7→ “123”} yields σ′ = {v1 7→ “{123}”}.

3.4 Rule Application

Putting the above operations together, we now present how a rule R = ⟨EP, T ⟩
is applied to an equation repair problem (eq, err):

1. match EP against err to extract problem-specific information recorded in a
mapping σ;

2. generate an equation pattern P (from σ), regarded as an “template” of eq;
3. perform the underlying repairing strategy expressed by the set of string

transformers in T on σ to obtain a new σ′;
4. obtain the corrected equation by instantiating P with σ′.

Example 5. Let rule R1 ≜ ⟨EP1, T1⟩, where EP1 is defined in Example 1 and T1
is defined in Example 4. Following the above steps, we apply R1 to the equation
repair problem (eq2, err2) (depicted by Fig. 2):

1. matching EP1 against err2 gives σ (as in Example 1);
2. generate P2 from eq2 and σ (as in Example 3);
3. transform σ into σ′ by T1 (as in Example 4);
4. instantiating P with σ′ gives fix2 (as in Example 2).

4 Rule Synthesis

The rule synthesis algorithm takes a set of input-output examples E as the spec-
ification, and generates a fixing rule R = ⟨EP, T ⟩ consistent with the examples.
The synthesis consists of two passes: (1) an error pattern EP is synthesized from
the examples E , and (2) a transformer T is synthesized from E and EP .
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4.1 Synthesizing Error Patterns

Given an error message err = [e1, . . . , ek], our problem is to generate an error
pattern EP (of the same length) that matches against err. To achieve this goal,
a naive pattern EP⊥ = [e1, . . . , ek], the error message itself, is apparently a
solution. However, it is so restricted that only this error message can match it.
Oppositely, another naive pattern EP⊤ = [v1, . . . , vk] is too general and can be
matched with any error message with k tokens.

To synthesize an error pattern that is neither too restricted nor too general,
we start with EP⊥, and for each string in EP⊥, replace it with a fresh variable;
if it also occurs in either the input equation eq or the output equation fix.
Such a replacement makes the error pattern more general. Realizing that the
error message is usually related to either the input equation by telling why it is
erroneous or the output equation by explaining how to repair it, the introduced
variables, in either case, will capture such important information.

4.2 Synthesizing Transformers

The essential problem of synthesizing a transformer {v1 7→ τ1, . . . , vk 7→ τk} is to
synthesize the underlying string transformers τ1, . . . , τk. This problem has been
well-studied in previous literature, and a well-known approach could be the PBE
approach invented by FlashFill [7]. To adopt their approach in our setting, we
must extract a set of input-output string examples, each is a pair (s, s′) packed
the input string s and the expected output string s′, as the specification for
synthesizing each string transformer τi.

Let us first consider the situation where the generated pattern (using the
pattern generalization process mentioned in § 3.2) matches against both the
input and output equations for all examples E . This condition implies that we
can always compute two mappings by matching the generated pattern against
the input and output equation. Thus, to synthesize τi, we are able to extract
an input-output string example (σ(vi), σ

′(vi)) for each example in E (so the
complete specification is their union), where σ and σ′ are the two mappings
computed as above.

Example 6. Given examples #1 and #2 from Table 1, to synthesize a trans-
former τ1, we extract (“10”, “{10}) from example #1, and (“123”, “{123}”)
from example #2 (see Example 3 for the generated pattern). Thus, the complete
specification for synthesizing τ1 is φ1 = {(“10”, “{10}”), (“123”, “{123}”)}.

Suppose the generated pattern only matches against the input equation but
not the output; we must generalize this pattern so that it matches against the
output equation. The generalization process is an extension to EqFix, and we
will discuss it later in § 4.3. Once this is done, the synthesis method we have
just introduced works again. So far, we have adequate mechanism to synthesize
a rule from example #1 of Table 1 (depicted in Fig. 3):

1. synthesize an error pattern EP1 by comparing err1 with eq1 and fix1, re-
spectively, σ1 = {v1 7→ “10”} records the values of the matched variable;
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Error Pattern Synthesis(eq1, err1, fix1) EP1

{v1 7→ “10”}Pattern Generation

P1 : [“$x^”, v1, “$”]

Pattern Matching

Transformer Synthesis

{v1 7→ “{10}”}

T1

Step 1

Step 2

Step 3

Step 4

Fig. 3: Synthesis a rule R1 = ⟨EP1, T1⟩ by example (eq1, err1, fix1).

2. generate the equation pattern P1;
3. match P1 against fix1, yielding σ′

1 = {v1 7→ “{10}”};
4. synthesize τ1 from {(“10”, “{10}”)}, which gives rise to the transformer T1 =

{v1 7→ τ1}.

4.3 Extension: Pattern Generalization via Lazy Relaxation

Let us study some examples to get a sense of how to generalize patterns.

Example 7. Consider example #5 of Table 1, where

– eq5 = “${1,2,3$”,
– fix5 = “${1,2,3}$”, and
– err5 = “Missing } inserted”.

Let EP2 ≜ [“Missing”, v1, “inserted”] be the error pattern. Matching EP2

against err5 gives σ5 = {v1 7→ “}”}. From eq5 and σ5, an equation pattern
P5 = [“${1,2,3$”] is generated. We see that P5 cannot be matched by fix5.
However, a more general pattern such as [v] (where v is a fresh variable) matches
with fix5.

Example 8. Consider eq = s1 · s2 · s3 · s4, fix = s1 · s′2 · s′3 · s′4, and σ = {v1 7→
s2, v2 7→ s4}. Note that s2, s3 and s4 are all modified in fix compared to
eq, however s3 is not bound to a variable in σ. From eq and σ, an equation
pattern [s1, v1, s3, v2] is generated, which apparently does not match against fix.
However, a more general pattern like [s1, v] (v is a fresh variable) can match fix,
where v is matched against s′2 · s′3 · s′4.

We learn from the examples that if the generated equation pattern cannot
match the output equation, we can always replace several string matchers with
fresh variables until it matches against the output equation – we call this process
pattern relaxation. As the relaxation goes on, the pattern becomes more and more
general. In the worst case, it gives P⊤ = [v] that consists of a single variable v
and can be matched by any string (as in Example 7). To find a relaxed pattern
that is as strict as possible, the relaxation should be lazy.
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Lazy Relaxation Process Let P be an equation pattern, and s be a string (i.e.,
the output equation). As a special case, if P is a constant (i.e., contains no
variables), P⊤ is the only possible relaxed pattern. Otherwise, since P cannot
match against s, there must be some string s′ in P that is not a substring of s.
Three kinds of relaxations are performed on P depending on the relative position
(left, right, or binary) of s′ in P :

(left) If s′ appears at the beginning of P , we replace the subpattern that consists
of s′ and the variable V followed by it, with a fresh variable LVar(V ).
(right) If s′ appears in the end of P , we replace the subpattern that consists of
s′ and the variable V before it, with a fresh variable RVar(V ).
(binary) If s′ appears in the middle of P , we replace the subpattern that consists
of s′ and the adjacent variables V1 and V2, with a fresh variable BVar(V1, V2).

The above repeats until the current pattern already matches against s.

Example 9. Pattern P5 in Example 7 is relaxed to P⊤.

Example 10. Pattern [s1, v1, s3, v2] in Example 8 is relaxed to [s1,BVar(v1, v2)].

Example 11. Consider a pattern [s1, v2, s3, v4, s5, v6, s7] and an output equation
s′1 · s2 · s3 · s4 · s′5 · s6 · s′7. It takes several steps to obtain a relaxed result. In the
following, we highlight the relaxed subpattern with an underline and annotate
the unmatched string with an asterisk:

[s∗1, v2, s3, v4, s5, v6, s7] → [LVar(v2), s3, v4, s
∗
5, v6, s7]

→ [LVar(v2), s3,BVar(v4, v6), s
∗
7]

→ [LVar(v2), s3,RVar(BVar(v4, v6))]

Relaxers and Synthesis We extend the rule DSL (Fig. 1) to include relaxers that
syntactically encode the three kinds of relaxations, with id for no relaxation:

Rule R ::= ⟨EP, {r1, . . . , rk}, T ⟩
Relaxer r ::= id(v) | LRelax(r) | RRelax(r) | BRelax(r1, r2)

Variable V ::= v | LVar(V ) | RVar(V ) | BVar(V1, V2)

In applying a rule with relaxers, one or more subpatterns of the generated equa-
tion pattern will be substituted with fresh variables according to the relaxers.
For synthesis, the above lazy relaxation process is performed, and the relax-
ations that have been applied are recorded as corresponding relaxers. For more
technical details, please refer to our extended version.

5 Evaluation

We prototyped the proposed approach as a tool EqFix, written in a combination
of F# and C#, running on the .NET core platform. Rule application, synthesis
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algorithms, and relaxer extensions were built following the approaches proposed
in the paper. We developed the synthesizer for string transformation under the
PROSE framework (proposed in [22]), in which we specified the syntax and
semantics of our DSL, a set of witness functions for guiding PROSE’s synthesis
engine, and a bunch of scoring functions for ranking candidate programs.

To measure the performance of EqFix, we conducted an experimental com-
parison with FlashFill [7], a state-of-the-art synthesizer for string manipulation,
on a dataset that consists of 89 input-output example groups collected from the
web (online help forums, tutorials, and technical blogs), each reveals one type
of common mistake that users make, such as mismatch of delimiters and misuse
of commands. Unlike the machine learning approaches, PBE techniques usually
only need a few (2 – 5) examples. The lengths of the erroneous equations vary
from 5 to 166, with an average of 18.

5.1 Experimental Setup

The baseline tool FlashFill was initially designed for string manipulation in
spreadsheets (such as Excel), so an input-output example comprises a column
of strings as input and a single string as output. To adapt FlashFill to our
problem domain, we regarded an erroneous equation and an error message as
two indistinguished input columns.

Another difference between FlashFill and EqFix is that FlashFill does not
maintain a rule library. To make a fair comparison, we made the following adap-
tion to avoid the usage of rule libraries: both tools were tested on an equation
repair problem immediately after the rules were synthesized using the examples
under the same example group. Since the number of consistent string transform-
ers with a given specification is usually multiple, our synthesis algorithm will
produce multiple candidate rules as well for one group of input-output exam-
ples. The candidate rules were ranked with heuristics, and we only attempted
the top-10 candidate rules for each test case for fixing. If any rule gives a fixed
equation that equals the expected correction of that test case, the test case is
said “solved” (otherwise “failed”). In each example group, we left the one with
the longest erroneous equation as the test case and the others as training ex-
amples. We set four training configurations C1, . . . , C4, where Ci (i = 1, . . . , 4)
means the first i shortest (by the length of the erroneous equation) examples in
the training set are used for synthesis. There were, in total, 356 training runs of
EqFix (and also for FlashFill).

The experiments were conducted on an Intel(R) Core(TM) i5 laptop with
2.3GHz CPU and 8GB memory, running Mac OS 11.6 and .NET core 2.2.207.

5.2 Results

The overall number of solved test cases is presented in Fig. 4. EqFix outper-
formed FlashFill under all configurations. When training with only one example
(C1), EqFix solved 67 (75.2%) test cases, whereas FlashFill failed to solve any.
Both EqFix and FlashFill performed better when more training examples were
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given—this is well-understood, as more training examples eliminate spurious
rules and lead to more general rules. With the entire training set (C4), EqFix
solved 72 (80.9%) while FlashFill solved less than half of the test cases. There-
fore, EqFix has a more vital learning ability in our problem domain.

Impact of Ranking To understand how ranking affects the ability to solve the
test cases, we list the numbers of attempted rules10 in Table 3. A cross mark “✗”
indicates that no (top-10) rules produced the expected fix. Among the solved
test cases by EqFix, at most 5 rules were attempted (#81), and 57 – 68 test
cases were solved by the top-ranked rule. In contrast, FlashFill attempted at
most 8 rules (#48), and 0 – 33 test cases were solved by the top-ranked rule.
We also recognize that providing more training examples helps to decrease the
number of attempts, e.g., in #4 and #82.

Generalization Ability Thanks to the dynamic generation of equation patterns,
the rules learned by EqFix are insensitive to where errors locate. In example
#1 of Table 1, the erroneous part “10” appears at the end of the input equa-
tion, whereas in example #2, “123” appears before “+x” in the input equation.
Although their positions are distinct, the rule synthesized by example #1 is
general enough to fix problem #2, as the generated equation pattern P2 (in
Fig. 2) replaces “123” with v1. In contrast, the rules learned by FlashFill are
less general—in many cases, they are position-sensitive because FlashFill does
not support extracting problem-specific information from error messages, which
is a major difference between the two. As a result, the rule learned from #1 by
FlashFill cannot generalize to solve #2 while EqFix can.

Efficiency Fig. 5 depicts the cumulative synthesis time when the number of
training example groups increases under C4. The average time was 201ms for
EqFix and 476ms for FlashFill. EqFix spent less time on 78 out of 89 runs.

10 Rules were attempted in the order of the rank list.
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Table 3: Numbers of attempted rules for solving each test case, EqFix (E) v.s.
FlashFill (F).

#
C1 C2 C3 C4

#
C1 C2 C3 C4

#
C1 C2 C3 C4

E F E F E F E F E F E F E F E F E F E F E F E F

1 1 ✗ 1 ✗ 1 ✗ 1 ✗ 31 1 ✗ 1 1 1 1 1 1 61 3 ✗ 3 2 3 2 3 1
2 1 ✗ 1 ✗ 1 ✗ 1 ✗ 32 2 ✗ 1 ✗ 1 ✗ 1 ✗ 62 1 ✗ 1 1 1 1 1 1
3 ✗ ✗ ✗ ✗ ✗ ✗ ✗ 1 33 2 ✗ 1 ✗ 1 ✗ 1 2 63 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

4 2 ✗ 2 ✗ 2 ✗ 1 1 34 2 ✗ 2 ✗ 1 2 1 1 64 1 ✗ 1 2 1 ✗ 1 ✗

5 1 ✗ 1 ✗ 1 ✗ 1 ✗ 35 3 ✗ 2 ✗ 1 ✗ 1 ✗ 65 1 ✗ 1 ✗ 1 ✗ 1 ✗

6 1 ✗ 1 ✗ 1 ✗ 1 ✗ 36 ✗ ✗ ✗ ✗ 1 2 1 2 66 1 ✗ 1 2 1 1 1 1
7 1 ✗ 1 ✗ 1 ✗ 1 ✗ 37 1 ✗ 1 ✗ 1 ✗ 1 ✗ 67 ✗ ✗ ✗ ✗ ✗ ✗ 1 1
8 ✗ ✗ ✗ 2 ✗ 2 ✗ 2 38 1 ✗ 1 ✗ 1 1 1 1 68 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

9 1 ✗ 1 ✗ 1 ✗ 1 ✗ 39 1 ✗ 1 ✗ 1 ✗ 1 ✗ 69 1 ✗ 1 ✗ 1 ✗ 1 1
10 1 ✗ 1 1 1 1 1 1 40 1 ✗ 1 ✗ 1 ✗ 1 ✗ 70 ✗ ✗ ✗ ✗ 1 1 1 1
11 1 ✗ 1 ✗ 1 ✗ 1 ✗ 41 1 ✗ 1 ✗ 1 ✗ 1 1 71 1 ✗ 1 ✗ ✗ ✗ ✗ ✗

12 ✗ ✗ ✗ 1 ✗ 1 ✗ 1 42 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 72 1 ✗ 1 ✗ 1 ✗ 1 ✗

13 1 ✗ 1 1 1 1 1 1 43 1 ✗ 1 ✗ 1 1 1 1 73 1 ✗ 1 ✗ 1 1 1 ✗

14 1 ✗ 1 ✗ 1 ✗ 1 ✗ 44 1 ✗ 1 ✗ 1 ✗ 1 ✗ 74 2 ✗ 1 ✗ 1 ✗ 1 ✗

15 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 45 1 ✗ 1 ✗ 1 1 1 1 75 1 ✗ 1 ✗ 1 ✗ 1 1
16 1 ✗ 1 2 1 1 1 1 46 ✗ ✗ ✗ ✗ 1 1 1 1 76 1 ✗ 1 ✗ 1 4 1 1
17 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 47 1 ✗ 1 ✗ 1 4 1 ✗ 77 ✗ ✗ ✗ ✗ ✗ 1 ✗ 1
18 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 48 ✗ ✗ ✗ 8 ✗ 8 ✗ 8 78 ✗ ✗ ✗ ✗ ✗ 1 ✗ 1
19 1 ✗ 1 ✗ 1 ✗ 1 ✗ 49 ✗ ✗ 3 2 3 2 3 2 79 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

20 1 ✗ 1 ✗ 1 ✗ 1 ✗ 50 1 ✗ 1 ✗ 1 ✗ 1 ✗ 80 1 ✗ 1 ✗ 1 1 1 1
21 1 ✗ 1 1 1 1 1 1 51 1 ✗ 1 ✗ 1 ✗ 1 ✗ 81 5 ✗ 5 ✗ 5 ✗ 5 ✗

22 1 ✗ 1 2 1 2 1 1 52 1 ✗ 1 ✗ 1 ✗ 1 ✗ 82 3 ✗ 2 1 2 1 2 1
23 1 ✗ 1 2 1 ✗ 1 ✗ 53 1 ✗ 1 ✗ 1 ✗ 1 1 83 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

24 1 ✗ 1 ✗ 1 ✗ 1 ✗ 54 1 ✗ 1 ✗ 1 1 1 1 84 1 ✗ 1 ✗ 1 ✗ 1 ✗

25 1 ✗ 1 ✗ 1 ✗ 1 ✗ 55 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 85 1 ✗ 1 ✗ 1 ✗ 1 ✗

26 2 ✗ 1 ✗ 1 1 1 1 56 1 ✗ 1 ✗ 1 ✗ 1 ✗ 86 1 ✗ 1 ✗ 1 ✗ 1 ✗

27 1 ✗ 1 1 1 1 1 1 57 1 ✗ 1 ✗ 1 ✗ 1 ✗ 87 1 ✗ 1 ✗ 1 1 1 1
28 1 ✗ 1 2 1 2 1 1 58 1 ✗ 1 ✗ 1 ✗ 1 ✗ 88 1 ✗ 1 ✗ 1 ✗ 1 ✗

29 1 ✗ 1 2 1 2 1 2 59 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 89 ✗ ✗ 1 ✗ 1 ✗ 1 ✗

30 1 ✗ 1 ✗ 1 ✗ 1 ✗ 60 1 ✗ 1 ✗ 1 ✗ 1 ✗
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Relaxer Extension We also noticed that in 17 (19.1%) of the 89 synthesized rules
under configuration C4, relaxers exhibited in the synthesized rule. This reveals
that the relaxer extension is necessary and improves our tool’s practicality.

Failure Cases EqFix failed on 17 test cases under C4. Manually inspecting these
cases, we classified the cause of failure into three categories:

– Inconsistent examples (7 cases): The provided examples are inconsistent with
each other, so our synthesizer failed to give any consistent rule.

– Insufficient error message (6 cases): The provided error messages are insuf-
ficient, and EqFix could not generate a useful equation pattern.

– Restricted DSL expressiveness (4 cases): The test case is deviated far from
the training examples of the same group, and due to the restricted expres-
siveness of our DSL, the learned rule could not generalize to that test case.

Testing the Rule Library Additionally, we conducted another evaluation on the
same dataset, but only for EqFix, that fitted a more realistic setting where
equation repair problems are solved by trying the initial rules saved in a rule
library. We obtained the initial rule library by learning from the entire training
set examples (C4) under the training mode. Then, under the applying mode, we
tested all 89 test cases. Interestingly, compared with the results shown in Table 3,
one more test case (#71) was solved (by the top-ranked rule synthesized from
the example group #69).

6 Related Work

Program Repair Automated program repair aims to automatically correct pro-
grams so that they satisfy the desired specification [5]. Heuristic-based repair
tools such as GenProg [26,4,15] employs an extended form of genetic program-
ming with heuristics. However, it is shown that these techniques produce patches
that overfit the test suite [25]. Ranking techniques have been studied to address
the problem. ACS [27] produces precise patches with a refined ranking technique
for condition synthesis. PAR [13] mines bug fix patterns from the history and
gives frequently occurring fixes high priority. Prophet [17] outperforms the pre-
vious works by learning a probabilistic model for ranking the candidate patches.

Semantics-based repair techniques generate repairs via symbolic execution
[21,18] and program synthesis [16]. Such techniques, however, are also suspected
of overfitting the test suite. Recently, a new repair synthesis engine called S3
is proposed [14]. It leverages Programming by Examples (PBE) methodology to
synthesize high-quality bug repairs, elaborating several ranking features.

Technically, EqFix belongs to the semantics-based family. To avoid overfit-
ting, we also rely on the ranking technique for promoting rules with a high
generality. Furthermore, syntactic errors are common and must be tackled in
equation repair, while it is usually neglected in program repair, as people con-
cern more about bugs [19]. HelpMeOut [9] aids developers to debug compilation
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and run-time error messages by suggesting past solutions. Unlike EqFix, it only
provides related examples and cannot create repairs for new problems.

NoFAQ [2] is a system for fixing buggy Unix commands using PBE. Although
the problem domain is similar to ours, due to its lazy synthesis algorithm, it only
can synthesize a practical fixing rule when at least two examples are provided. In
contrast, in many cases, one example is sufficient for EqFix. The DSL of NoFAQ
can only accept tokenized strings (separated by spaces) as input. However, there
is no direct way to tokenize an erroneous equation in our problem domain. We
thus introduce the equation patterns and propose a mechanism for synthesizing
them. These equation patterns help to pattern match against an equation and
extract the variant parts, which need to be transformed later.

Text Transformation FlashFill [7] pioneered in text transformation via program
synthesis and was later extended for semantic transformation [24]. A similar tech-
nique is put into a live programming environment by StriSynth [6]. FlashExtract
[12] automates data extraction by highlighting texts on web pages. String trans-
formation is performed at a high level in these techniques, but it is unsuitable for
repairing equations. We realize that error messages guide the repairing process.
By pattern matching the error messages, we only perform the transformation on
a few variables instead of the entire equation, which takes less time.

VSA-based Program Synthesis Version space algebra (VSA) has been widely
adopted in PBE applications [11,10,22,1,28,23]. In those applications, VSA is
critical as the set of candidate programs is possibly very large. In EqFix, the
synthesized rules are represented compactly with VSA.

VSA-based program synthesis has also been applied in program transforma-
tion. Refazer [23] is a framework that automatically learns program transfor-
mations at an abstract syntax tree level. Feser et al. [3] propose a method for
example-guided synthesis of recursive data structure transformations in func-
tional programming languages. Nguyen et al. [20] present a graph-based tech-
nique that guides developers in adapting API usages.

7 Conclusion & Future Directions

We present EqFix, a system for fixing both compilation and typesetting errors
in LATEX equations. We design a DSL for expressing fixing rules and propose a
synthesis algorithm to learn rules from user-provided examples. In the future,
our tool can be improved by leveraging data from various sources like LATEX on-
line forums via crowdsourced learning. When a large rule library is established,
it would be interesting to develop an EqFix plugin in modern editors for prac-
tical use. Furthermore, because adding more data does not require any change
in EqFix but simply needs more input-output examples to construct synthesis
rules, our approach can potentially be applied to other string and mathematical
equation systems.
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