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Abstract. Deagle is an SMT-based multi-threaded program verification
tool. It is built on top of CBMC (front-end) and MiniSAT (back-end). The
basic idea of Deagle is to integrate into the SMT solver an ordering con-
sistency theory that handles ordering relations over the shared variable
accesses in the program. The front-end encodes the input program into
an extended propositional formula that contains ordering constraints.
The back-end is reinforced with a solver for the ordering consistency
theory. This paper presents the basic idea, architecture, installation, and
usage of Deagle.
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1 Verification Approach

Given a multi-threaded program, the thread communication behaviors can be
modeled using the happens-before relations over memory access (read/write)
events [1]. There are various kinds of happens-before relations: program order
(PO), read-from order (RF ), write serialization order (WS ), and from-read order
(FR). A happens-before ordering formula (abbreviated as ordering formula) is
a logical formula that involves only memory access events and happens-before
relations.

Deagle is an SMT-based multi-threaded program verifier, which consists of

– a front-end that encodes the intra-threaded behaviors (e.g., the control and
data flow per thread) into propositional formulas, and the inter-threaded
behaviors (i.e., the communication between threads) into ordering formulas ;

– a back-end that extends MiniSAT with an ordering consistency theory solver
[8] by following the DPLL(T) framework [7], and is able to solve propositional
formulas and ordering formulas mixed together.
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Compared with [8]: The theory solver in [8] uses a from-read axiom to de-
rive FR orders. Besides the from-read axiom, Deagle also implements a write-
serialization axiom [11], with which WS orders can also be derived. In return,
the front-end of Deagle need not encode both FR and WS orders explicitly.

2 Software Architecture

Deagle is developed on top of CBMC [9] and MiniSAT [6] using C++. Addition-
ally, for ease of usage and debugging, Deagle reuses some modules developed
in Yogar-CBMC [10,11]. Deagle is not a strategy selection-based verifier. Deagle
runs the following procedures successively to verify a given C program:

Preprocessing (from Yogar-CBMC) For each global structure variable in the
C program, the preprocessing procedure unfolds it by creating a fresh variable
for each member. Note that arrays need no preprocessing; CBMC is able to handle
each array as an entity.

Parsing and Goto-Program Generation (originally in CBMC) CBMC em-
ploys Flex and Bison to transform the preprocessed C program into an abstract
syntax tree (AST ). Then CBMC builds a goto program, where all branching state-
ments and loop statements are represented with (conditional) goto statements.

Library Function Modeling (extended from CBMC) CBMC models each
multithreading-related library function (e.g., pthread cond wait). For example,
mutex m contains a Boolean variable m locked indicating whether m is locked;
pthread mutex lock(&m) assumes m locked to be originally false and sets
m locked to true. Based on CBMC, we extend Deagle to support the modeling of
more library functions.

Unwinding We employ bounded model checking (BMC ) [3,4,5] to handle loops.
If the program contains loops, we determine an unwinding limit and unwind the
program to a loop-free bounded program:

– If the maximal loop time of the program can be determined through static
analysis, e.g.,

for (i = 0; i < 10; i + +)

we set the unwinding limit to this maximal loop time;
– If the maximal loop time depends on non-determinism. e.g.,

for (i = 0; i < n; i + +)

where n is attained from the function VERIFIER nondet int, we report
UNKNOWN since such loops cannot be fully unwound.

– Otherwise, we set the unwinding limit to 2.
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Formula Generation (extended from CBMC) After unwinding, the loop-free
program is represented in the static single assignment (SSA) form, where each
thread is a chain of assignments. These assignments can be directly modeled
into first-order logic formulas (for ease of solving, we further convert them into
propositional logic formulas). Additionally, an assignment may contain global
memory access events; we model program orders and read-from orders (please
refer to [8] for more information) of these events into the formulas.

Constraint Solving (extended from MiniSAT) We develop an ordering con-
sistency theory solver and integrate it into the DPLL(T) framework [8]. For
efficiency, we extend MiniSAT, an SAT-based solver, to run our theory solver ex-
clusively. Please refer to [8] for the detailed algorithms of our decision procedure.

Witness Generation (adapted from Yogar-CBMC) If the back-end solver
returns satisfiable (i.e., finds a counterexample violating the property), our or-
dering consistency theory solver reports a sequence (total order) of these events,
which can be used for generating the witness of the counterexample.

3 Strengths and Weaknesses

Compared to the traditional method [1] which explicitly converts ordering for-
mulas into propositional formulas, Deagle employs a dedicated theory solver to
handle ordering formulas, which improves both time and space efficiency. Ignor-
ing some tasks in goblint-regression that require unwinding 10000 times, Deagle
reports TIMEOUT in only 9 tasks and OUT OF MEMORY in only 7 tasks –
fewer than most ConcurrencySafety competitors.

In most weaver tasks (117 out of 169), the number of loop iterations is non-
deterministic. As is mentioned in previous section, Deagle reports UNKNOWN.
Since such tasks are common in real-world programs, we are exploring an ap-
proach to dealing with such programs in the future work.

4 Tool Setup and Configuration

The source code of Deagle 1.3 (the submitted version in SV-COMP 2022 [2]) is
publicly accessible 4. Please refer to README for more installation instructions.
In SV-COMP 2022, Deagle participates in ConcurrencySafety category and only
checks property Unreach-Call 5. By setting parameters

−− 32 −−no− unwinding − assertions−−closure

one can reproduce Deagle’s results of SV-COMP 2022.

4 Deagle repository: https://github.com/thufv/Deagle
5 The benchmark definition of Deagle: https://gitlab.com/sosy-lab/sv-comp/

bench-defs/-/blob/main/benchmark-defs/deagle.xml
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4.1 Parameter Definition

Deagle inherits lots of parameters from CBMC. Due to the page limit, we only
describe parameters related to the competition or newly added in Deagle:

* −− 32/−−64: sets the width of integers to 32/64.
* −−no−unwinding−assertions: does not generate unwinding assertions into

the formula. Assuming a loop is unwound n times, its unwinding assertion
asserts the loop condition to be false after n iterations. Since unwinding
assertions can lead to false counterexamples, we disable the generation of
unwinding assertions.

* − − closure/ − −icd (new in Deagle): uses our proposed approach. Once
the parameter −− closure is enabled, Deagle employs a transitive closure-
based theory solver (recommended). If − − icd is enabled, Deagle employs
an incremental cycle detection-based solver. In SV-COMP 2022 [2], Deagle
solves all tasks with the parameter −− closure.

5 Software Project

Deagle is developed by Fei He, Zhihang Sun, and Hongyu Fan from the Formal
Verification Lab6 in Tsinghua University. Deagle is licensed under GPLv3. Since
Deagle is developed over CBMC and MiniSAT, and reuses some modules from
Yogar-CBMC, it also contains copyright of those tools.
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