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Abstract—Model checking suffers from the state explosion
problem. Compositional abstraction and abstraction refinement
have been investigated in many areas to address this problem.
This paper considers the compositional model checking for timed
systems. We present an automated approach which combines
compositional abstraction and counter-example guided abstrac-
tion refinement (CEGAR). The proposed approach exploits the
semantics of a timed automaton to procure its over-approximative
abstraction. Any safety property which holds on the abstraction
is guaranteed to hold on the concrete model. In the case of a
spurious counter-example, our proposed approach refines and
strengthens the abstraction in a component-wise method. We
implemented our method with the model checking tool Uppaal.
Experimental results show promising improvements.

I. INTRODUCTION

Model checking suffers from the state explosion problem.
The situation is even worse in real-time systems. Real-time
systems can be modeled as a parallel composition of timed
automata [1]. The reachability verification problem for timed
automaton is usually based on the zone graph [2] which,
in worst case, is a region graph [1]. However, the number
of regions in a region graph for each location of the timed
automaton is exponential to the number of clocks (as well as
the maximal constants appearing in the guards and invariants).

Various approaches ranging from compositional abstraction
to counter-example guided abstraction refinement (CEGAR)
have been investigated in many areas to address the state
explosion problem. Even in the verification of timed systems,
some researchers have already made use of these techniques
and achieved some encouraging improvements [3]–[6]. How-
ever, their efforts concentrate on certain aspects of the prob-
lem, without specific method to solve it as a whole. Existing
methods for timed systems either are not fully automated
[3] or do not provide explicit compositional support for
concurrency [4]–[6]. On the contrary, our method integrates
the two powerful methods to overcome the state explosion
problem.

In this paper, we investigate compositional abstraction re-
finement for timed systems. An automated approach which
combines compositional abstraction and counter-example
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guided abstraction refinement is presented. To verify a network
of timed automata 〈A1, . . . , An〉 against a safety property, we
first try to get an abstraction A′

i for each automaton Ai by
eliminating its clock variables and merging some locations.
This abstraction exploits the semantics of timed transition
systems [3] and is conservative. As a consequence, the safety
property that holds on the abstraction is guaranteed to hold
on the concrete system. With the above facts, we are able to
perform model checking on the composition of the abstracted
automata A1

′|| . . . ||An
′ instead of the original automata. The

abstracted automata are usually simpler than the original ones.
In such a way, we avoid computing a large composition of the
original model, thus alleviating the state explosion.

We develop a component-wise counter-example validation
method without constructing the full state space of the concrete
model when the model checker reports a counter-example.
If the counter-example is validated, the algorithm safely
concludes that the property does not hold on the concrete
model. Otherwise, the proposed approach refines the model in
a component specific approach to strengthen the abstractions
and continues to verify the strengthened ones. This process is
repeated until the property is verified or the counter-example
indicates a real bug.

A. Related Work

Formalization of the abstraction technique first appeared in
[7]. Conservative abstraction which preserves safety property
was introduced in [8] [9]. Counter-example guided abstrac-
tion refinement [10] [11] is an iterative scheme which starts
from a coarse abstraction and then iteratively strengthen the
abstraction using spurious abstract counter-examples until the
property is established or a concrete counter-example is found.

Compositionality has been investigated by process algebra
[12] [13]. On the other hand, compositionality in conjunction
with abstraction refinement in timed and untimed systems
has been studied both theoretically and practically in many
research areas. The work in [14] [15] proposed an automated
compositional CEGAR framework which differs in the com-
munication method. In [14], they proposed a data guided
(communication through shared variables) abstraction while
the authors in [15] developed an action guided (communi-
cation through message-passing event) abstraction. A similar
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technique extended compositional abstraction to timed systems
in [3] which combines shared variables and synchronization
events communication. There are also some work that applies
CEGAR mechanism to timed systems. The approach in [4] im-
plemented a compositional model checker for timed systems.
The tool starts from a small set of automata; and iteratively
enlarge the set at refinement steps by adding relevant automata
from the system. In [5], they used predicate abstraction on the
regions of timed automata. The work in [16] presented a fully
automatic CEGAR approach by abstracting the variables and
clocks away and putting some of them back if the lack of them
brings spurious counter-examples during the refinement steps.

B. Our Contribution

The main contribution of this paper is summarized as
follows:

• We present a compositional framework for verifying
safety properties on timed systems. The framework in-
tegrates compositional abstraction and counter-example
guided abstraction refinement scheme to alleviate the
state explosion problem.

• A component-wise method is proposed to validate the
counter-example and refine the abstraction, without com-
puting the global state space of the timed systems.

We implement our method and incorporate it with a model
checker Uppaal. Experimental results show promising im-
provements.

II. PRELIMINARIES

In this section, we define the syntax and semantics of Timed
Automaton. Some notations are borrowed from [1], [3].

Let C be a set of non-negative real-valued clock variables.
For each p ∈ C, its domain is R≥0. Let X be a set of integer
variables. Each x ∈ X is a typed variable defined over a
finite domain of values Dx. We write V = X ∪ C for the
universal set of typed variables including both integer variables
and clock variables.

A valuation s : V → DV maps each variable u ∈ V to
a certain value in its domain Du. We write V al(V ) for the
set of valuations for V . For a valuation v ∈ V al(V ) and a
duration d ∈ R≥0, we define v ⊕ d to be a valuation in V
that increments all the clock variables by d but leaves the
integer variables unchanged. Given a valuation v ∈ V al(V ),
we denote v[u �→ n] a new valuation which maps u ∈ V to
n ∈ Du, and other variables to the same values as in v.

Let ϕ(C,X) be a set of constraints in which each constraint
is a conjunction of atomic formulas in the form: p ∼ n, p−q ∼
n or x ∼ n, where p, q ∈ C, x ∈ X , ∼∈ {<,�, >,�,=}
and n is a natural number. We use ClockV ar(ϕ(C,X)) to
denote the set of clock variables appearing in ϕ(C,X). We
use v |= ϕ(C,X) to denote that the constraint ϕ(C,X) holds
for the valuation v ∈ V al(V ).

Let CH be a set of channels and ch range over CH . The
set of actions is defined as ε � {ch!, ch?|ch ∈ CH}. Actions
of the form ch! are called output actions, while actions of

the form ch? are called input actions. We use τ to denote a
special internal action which need not be synchronized.

A. Timed Transition Systems

Definition 1: A Labeled Transition System (LTS) is a tuple
〈S, s0, Act, R〉, where S is a set of states, s0 ∈ S is the initial
state, Act is a finite set of actions, and R ⊆ S × Act × S is
the set of transitions.

We write s
a→ t if 〈s, a, t〉 ∈ R. A path of an LTS is a

sequence s0, a0, s1, · · · , where each si ∈ S is a state and each
ai ∈ Act is an event and R(si, ai, si+1) holds.

Definition 2: A Timed Transition System (TTS) T is a tuple
〈E,H, S, s0, Act, R〉, where

• E is a set of shared variables which belong to T and
its environment; H is the set of internal variables which
belong to T only. The set of all variables in T are denoted
as V = E ∪H ;

• S ⊆ V al(V ) is a set of states. Each s ∈ S is a valuation
of the variables in V ;

• s0 ∈ S is the initial state of T ;
• Act ⊆ ε ∪ R≥0 is a finite set (alphabet) of discrete ac-

tions (events) together with a set of time-passage actions
(duration);

• R is a set of transitions over S× (Act∪{τ})×S. There
exist both action transitions s

a→ s′ (a ∈ Act) and timed

transitions (time durations) s
R≥0→ s′ in R.

Given a TTS T = 〈E,H, S, s0, Act, R〉, its corresponding
LTS is 〈S, s0, Act, R〉. In the following, we write LTS(T ) for
the underlying LTS of T .

Definition 3: Two TTSs T1 = 〈E1, H1, S1, s
1
0, Act1, R1〉

and T2 = 〈E2, H2, S2, s
2
0, Act2, R2〉 are comparable if they

have the same set of shared variables, i.e., E1 = E2. Two
states s ∈ S1 and t ∈ S2 are compatible, denoted as s♥t, if
s(v) = t(v) for all variables v ∈ E1 ∪ E2. Two TTSs T1 and
T2 are compatible if H1 ∩ V2 = H2 ∩ V1 = ∅ and s10♥s20.

We use s[t] to denote the update execution which substitutes
the value of shared variables (in E1 ∪E2) of s for that value
of t.

Definition 4: Given two compatible TTSs T1 = 〈E1, H1,
S1, s

1
0, Act1, R1〉, and T2 = 〈E2, H2, S2, s

2
0, Act2, R2〉, the

parallel composition T1||T2 is the tuple 〈E,H, S, s0, Act, R〉
where E = E1 ∪ E2, H = H1 ∪H2, S = {s||t|s ∈ S1 ∧ t ∈
S2 ∧ s♥r}, Act = Act1 ∪Act2, s0 = s10||s20, and R is defined
by following rules:

• if s
e→i s

′ where e ∈ ε, then s||t e→ s′||t[s′]
• if s

τ→i s
′ then s||t τ→ s′||t[s′]

• if s
c!→i s

′, t[s′] c?→j t
′ where c!, c? ∈ ε and i 
= j then

s||t τ→ s′[t′]||t′
• if s

d→i s
′, t d→j t

′ where d ∈ R≥0, then s||t d→ s′||t′

B. Timed Automaton

Definition 5: A Timed Automaton (TA) A is a tuple
〈E, Y, C, L, l0, Act, I, R〉, where
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• E and Y are disjoint sets of shared and internal integer
variables, respectively. We write X = E ∪ Y to denote
all the integer variables;

• C is the set of clock variables. All the variables in A
are denoted as V = E ∪ Y ∪C (which obviously equals
X ∪C);

• L is a finite set of locations;
• l0 ∈ L is the initial location;
• Act ⊆ ε is a finite set (alphabet) of actions (events);
• I : L → ϕ(C,X) assigns each location an invariant,

which must be satisfied if A want to stay in that location;
• R ⊆ L× ϕ(C,X)× (Act ∪ {τ})× 2X∪C × L is the set

of transitions.

Given a transition 〈l, g, a, r, l′〉 ∈ R, we write 〈g, a, r〉 as
the edge of the transition, i.e. l

g,a,r→ l′. A can move from
location l to location l′ if the guard condition g ∈ ϕ(C,X) is
satisfied. The transition may take some input / output events
in Act ∪ {τ}, and perform a sequence of reset operations on
clock or integer variables. Especially, assume the valuation in
l is v ∈ V al(V ), we use r(v) to denote the valuation in l′

which uses the new values defined in r to update v.
A Timed network (NTA) consists of a set of timed automata.

These automata interact with CCS semantics. We refer readers
to [2], [3] for more details.

Definition 6: Given a timed automaton A =
〈E, Y, C, L, l0, Act, I, R〉, the TTS associated with A, denoted
as TTS(A), is the tuple 〈E,H ∪{loc}, S, s0, Act, R′〉, where

• H = Y ∪ C, and loc is a fresh variable which ranges
over L and represents the current location in A;

• S = {s ∈ V al(W )|s |= I(s(loc))}, where W = E∪H∪
{loc}, s(loc) returns the value of loc in the valuation s.

• s0 = v0 ∪{loc = l0}, where v0 maps variables in E ∪H
to their initial valuations;

• R′ is a set of transitions which can be either an action
transition or a timed transition:

1) Action transition:

l
g,a,r→ l′, s(loc) = l, s |= g, s′ = r(s)[loc �→ l′]

s
a→ s′

2) Timed transition:

s′ = s⊕ d

s
d→ s′

Lemma 1: Given a timed network N = 〈A1, · · · , An〉 with
alphabets Act1, · · · , Actn, let Act =

⋃
1≤i≤n Acti, then

LTS(N) = LTS((TTS(A1)|| · · · ||TTS(An))\Act).
Lemma 1 shows that the composition semantics of the corre-

sponding TTSs coincides with the noncompositional semantics
of the LTS models. For detailed proof, we refer to [3].

C. Approximation of Timed Automaton with and without In-
variants

When considering safety properties, for a timed automaton
A with location invariants, there exists an alternative timed

automaton without location invariants (denoted as A′) which
in semantics is over-approximative to A. We can shift the
invariants in a location to its immediate ingoing or outgoing
transitions. Given a transition t = 〈l, g, a, r, l′〉 with r =
{x1, x2, · · · , xn}, when the automaton enters l′ from l, all
these variables will be reset to zeros. We use the substitution
function f0 = {x1/0, · · · , xn/0} to denote the reset operation.
Note the invariant constraint I(l′) must be satisfied when
automaton stays in l′. Then I(l′) · f0 should hold such that
the automaton can enter l′ after taking the transition t. For
simplicity, we denote In(I(l′), r) = I(l′) · f0, where f0 is
defined as above. In general, A′ is approximative to A except
that each transition t = 〈l, g, a, r, l′〉 in A is mimicked by a
corresponding transition t′ = 〈l, g∧In(I(l′), r)∧ I(l), a, r, l′〉
in A′ and the invariants in all locations of A′ are assigned
true. We conclude all behaviors in A are preserved in A′. For
a proof, we refer to [17]. We describe a simple example in
Fig.1.

s
u<5

t
u<2

u > 3

u = 0
s t

u>3 0<2 u<5

u = 0

Fig. 1. A simple timed automaton is shown in the left part. We shift the
location invariants in s and t to the transition connecting them in the right
part. We have In(I(t), r) = (u < 2)[u/0] = (0 < 2) then the transition
guard is g′ = g ∧ In(I(t), r) ∧ I(s) = (u > 3) ∧ (0 < 2) ∧ (u < 5). The
absolute time in location s to trigger the transition should be in range (3, 5).

D. Uppaal Path and Counter-example

Uppaal [18] is a modeling, validation and verification tool
for real timed systems modeled as networks of timed automata.
It extends TA with data types such as bounded integers and
arrays. When the property doesn’t hold on the given model,
Uppaal reports a counter-example. In this section, we briefly
and technically discuss the form of the returned counter-
example as Uppaal path. An Uppaal path t is a finite sequence
of system locations connected by system edges formally as
t = l0

e0→ · · · em−1→ lm.
For a safety property, the counter-example path starts at

l0 which is the initial location of the model and ends at lm
a system location which violates the given property. Each
system location is a composition of the locations from all
the timed automata in the system. As we shift the location
invariants from the locations to the corresponding transitions,
clock variables and integer variables are only bounded by the
guards of the transitions. In a system location, a satisfiable
variable assignments to the guard ϕ(C,X) of a location’s
outgoing edge e would trigger that edge. We therefore exploit
this feature to monitor the change of clock variables in the
locations on path t to attach an absolute time to each location
whose value represents the time elapsed from the beginning of
this path. For example, considering the Uppaal path s

e→ t in
the right part of Fig.1, to trigger the edge, the guard condition
3 < u < 5 must be satisfied, then we can conclude u = 4
(note u is an integer variable).
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III. COMPOSITIONAL ABSTRACTION FOR TIMED SYSTEM

In this section, we survey some existing results on composi-
tional abstraction of timed systems at first and then introduce
our main theorem.

Definition 7: Given two comparable TTSs T1 =
〈E1, H1, S1, s

1
0, Act1, R1〉, T2 = 〈E1, H2, S2, s

2
0, Act2, R2〉,

we say that there exists a timed step simulation relation
U ⊆ S1 × S2 from T1 to T2, denoted as T1 � T2, provided
that s10Us20 and for two states s ∈ S1, t ∈ S2 if sUt then

1) ∀y ∈ E1, s(y) = t(y).
2) ∀u ∈ V al(E1), s[u]Ut[u].
3) if s

a→ s′ then either there exists t′ such that t
a→ t′ and

s′Ut′, or a = τ and s′Ut.

Intuitively, for two TTSs, the existence of timed step simu-
lation claims the related states must agree on shared variables
and the relation must be preserved by consistently changing
the shared variables. Each transition in T1 is mimicked by a
transition in T2, except τ which can be simulated by doing
nothing.

Lemma 2: Let T1, T2, T3 be TTSs, T1 and T2 are compa-
rable, T1 � T2, and both T1 and T2 are compatible with T3,
then T1||T3 � T2||T3.

Lemma 3: Given two comparable TTSs T1, T2 such that
T1 � T2, and a safety property AGϕ defined over the external
variables of T1 and T2. If T2 |= AGϕ, then T1 |= AGϕ.

The above theorems provide theoretical foundation for
compositional abstraction of timed system [3]. Lemma 2
states timed step simulation can be applied to compositional
abstraction. Lemma 3 states timed step simulation preserves
the invariant property. It states that if an invariant hold on the
abstract TTS then it also holds on the concrete TTS. Note the
result of Lemma 3 can be extended to timed networks.

Corollary 1: Given a NTA N = 〈A1, · · · , An〉, if
A1|| · · · ||An � A′

1|| · · · ||A′
n, then

A′
1|| · · · ||A′

n |= AGϕ⇒ A1|| · · · ||An |= AGϕ.

Based on above observations, we now come to our main
theorem which forms the basis of our refinement approach.
It manifests the fact that counter-example validation and
abstraction refinement for timed systems can be applied in
a component-wise approach.

Theorem 1: Let N = 〈A1, · · · , An〉 be a timed network
with alphabets Act1, · · · , Actn respectively, define Act =⋃

1≤i≤n Acti. Suppose TTS(A1), · · · , TTS(An) are compat-
ible, then a path t ∈ LTS((TTS(A1)|| · · · ||TTS(An))\Act)
exists if for each 1 ≤ i ≤ n, ti ∈ LTS(TTS(Ai)) exits,
where ti is the path obtained by projecting t on TTS(Ai).

Proof: For 1 ≤ i ≤ n, recall TTS(Ai) is indeed a
LTS. Note that we define the path in the form of a sequence
s0, a0, s1, · · · , where si is a state and ai is an action without
noticing the shared variables. Suppose we model each shared
variable in N as a separate LTS which only contains one state
and transitions doing read/write events. The original read/write
operation in original timed automata in NTA are also changed
to read/write events. These newly added LTS communicate

Abstraction Abstraction

Uppaal Engine

Counter-example Analysis

1A 2A

'
1A

'
2A

ϕ=||| 21 AA

false

true

strengthen strengthen

spurious spurious
ϕ≠||| 21 AA

Fig. 2. CEGAR scheme of composition abstraction refinement.

with NTA via read/write synchronization actions. Theorem 1
is established immediately following the theorem in [13]:
whether a trace belongs to a parallel composition of LTSs
can be checked by projecting and examining the trace on each
individual component separately.

IV. COMPOSITION ABSTRACTION REFINEMENT WITH

CEGAR

In this section, we describe how we combine compositional
abstraction and abstraction refinement to verify timed system.
Fig. 2 illustrates the framework of our approach.

Given a timed network N = 〈A1, · · · , An〉, we switch from
the direct construction of A1|| · · · ||An to the composition of
each Ai using abstraction A′

i. These abstractions are used to
verify the specification instead. If Uppaal finds that the safety
property holds on the above abstractions, then it also holds on
the concrete model. Otherwise, a counter-example is returned.
We validate whether the counter-example can be concretized
on the full model. According to Theorem 1, to check if an
abstract counter-example belongs to a concrete system, it is
sufficient to check it on the individual component respectively
by decomposing the counter-example. (Since it is proved in
Theorem 1, the theorem is correct provided all shared variables
are retained in the abstraction.) If the check passes, we report
this counter-example is a real bug. Otherwise, the counter-
example is spurious; we refine the abstract model and iterate
the verification. We repeat this process iteratively to comply
with the CEGAR principle.

A. Abstraction for Timed Automaton

Based on the theory of compositional abstraction, the prob-
lem remains to find an efficient abstraction for timed automata.

Given a timed automaton, we first preprocess it with the
technique introduced in section II-C which shifts the location
invariants to the transitions. The property which holds on the
preprocessed model certainly holds on the original model.
In what follows, we use the preprocessed model instead.
Let A = 〈X,C,L, l0, Act, I, R〉 denote the preprocessed
automaton, and we write A′ = 〈X ′, C′, L′, l′0, Act

′, I ′, R′〉 as
its abstraction.

171171171



The verification problem for a timed system is usually
based on a zone graph with its scale in the worst case being
equivalent to the size of the system’s region graph [2]. We
have two obstables: the number of regions in a region graph
is exponential in the number of clocks, and the global state
space grows exponentially to the number of processes in the
timed system. The above facts directly lead our abstraction
strategy around abstracting clock variables away and aggre-
gating locations.
1. Clock variable omission guided abstraction

We abstract some clock variables away from timed automa-
ton. We get C′ ⊆ C. With some clock variables omitted, the
guards of some transitions are weakened.
2. Action guided abstraction

The locations in A′ are called abstract locations and the
locations in A are called concrete locations. We map arbitrary
concrete locations to one location in the abstract model so
each abstract location is a disjoint set of concrete locations.
Our method is safe for we do not need to consider the location
invariants because we already shift them to the corresponding
transitions. Formally we write the abstract function γ : L →
L′. The transitions R′ are based upon γ. For two abstract
locations s, t ∈ L′, we write s

e→ t if there exist two concrete
locations q, r ∈ L which guarantees q

e→ r and γ(q) = s ∧
γ(r) = t. The abstract initial location l′0 satisfies γ(l0) = l′0.
We write the concretization function α : L′ → 2L. α(l′) =
{l ∈ L|γ(l) = l′}. Note α induces a partition on L.

Let Z be the set of variables in the abstract model. Define
absZ to be an operation on edges which eliminates the guard
conditions and assignments that contain some variables not in
Z . Two edges are said to be equivalent if they share the same
synchronization event and their guards and assignments are
homomorphism under the operation absZ . For instance, for
two timed transitions, both with assignment y = 0, we say the
edge with guard x > 2 ∧ y > 2 is equivalent to another edge
with guard x > 2 if Z = {x}; but they are considered different
if Z = {x, y}. After the abstract locations are established, we
remove redundant equivalent edges connecting both the same
source abstract location and the same target abstract location.

For a safety property ϕ, the initial abstraction A′ abstracts
away all the clock variables except the ones appearing in
ϕ using clock variable omission abstraction. Thus, we get
C′ = ClockV ar(ϕ) and Z = X ∪ ClockV ar(ϕ) in the
initial abstraction. For action guided abstraction, we use two
different heuristics to construct γ. One heuristic is to merge
some locations together if one (or more) of their outgoing
edges is equivalent. Formally, we write enable(l) for the
set of edges outgoing from l; given two concrete locations
s, t ∈ L, we require γ(s) = γ(t) if ∃e ∈ enable(s) ∧ e′ ∈
enable(t), s.t., e =Z e′. In this way, it is important that
we merge some transitions together as well as aggregate the
locations. The other heuristic is to let the abstract function
γ map all concrete locations into one abstract location, i.e.,
∀s, t ∈ L, γ(s) = γ(t), if a large portion of the concrete
locations have equivalent outgoing edges. It is immediate that a
lot of transitions are merged in this case. Under both strategies,

we consider the locations appearing in ϕ as separated abstract
locations and their original invariants (but only retain the
atomic constraints which involve the variables in Z) are
attached to them. We write L′ = {γ(s)|s ∈ L} for the abstract
locations. The concretized function α can be obtained from γ.

Theorem 2: Both clock variable omission abstraction and
action guided abstraction are over-approximative abstractions.

Proof: Our method removes some clock variables with
some guards weakened but preserves the behaviors of the
original system. Our method merges concrete locations into
abstract locations but preserves the original transition relations.
It is obvious that our abstract and concrete model maintain the
same set of shared variables and the initial states are always
related. The locations in concrete model are exactly matched to
locations in abstract model by partition function γ. The values
of shared variables are also matched as the simulation for the
original transitions are still preserved in the abstract model.
On the other hand, since we removed internal variables from
concrete system weakening its guard, the abstract model is
bisimilar to the concrete model differing only in the values
of the abstracted internal variables. Hence, our abstraction
establishes a timed step simulation from the concrete model
to the abstract model in semantics of the underlying TTS; the
paths of the concrete model are a subset of that of the abstract
model.

B. Automatic Abstraction Refinement for Timed Systems

Given an abstract counter-example path t′ = l′0
e′0→ l′1

e′1→
· · · e

′
p−1→ l′p in the compositional abstract model A′

1|| · · · ||A′
n,

according to compositionality, a system location (edge) is a
composition of the locations (edges) from each automaton.
Formally, for 1 ≤ j ≤ p, each l′j is indeed a tuple of locations

〈lA′
1

j , · · · , lA′
n

j 〉 and each e′j is a tuple of edges 〈eA′
1

j , · · · , eA′
n

j 〉.
For 1 ≤ i ≤ n, we project l′j on l

A′
i

j and e′j on e
A′

i
j to obtain

a path tA′
i
= l

A′
i

0

e
A′

i
0→ l

A′
i

1

e
A′

i
1→ , · · · , e

A′
i

p−1→ l
A′

i
p for A′

i.
However, tA′

i
may still be not a legal path for A′

i because
some edges on the path are possible null edges which connects
two same locations in A′

i. According to the composition
rules in [1], the occurrence of null edges is caused by Ai’s
suspension when the rest of the system take a transition which
can’t be synchronized by A′

i. Based on the above fact, we
remove these edges and the redundant locations to obtain

a legal abstract path t′A′
i
= l

A′
i

0

e
A′

i
0→ l

A′
i

1

e
A′

i
1→ , · · · , e

A′
i

m−1→ l
A′

i
m

(m ≤ p).
In the following, we formulate how our abstraction refine-

ment scheme exploits the abstract path t′A′
i

to validate the
counter-example and refine A′

i if needed. We will write t′

for t′A′
i
, A′ for A′

i and A for Ai for simplicity.
1. Action guided abstraction refinement

Given a location s and a sequence of edges e∗, we use
reach(s, e∗) = {t|s e∗→ t} to denote the location reachable
from s through e∗, i.e., there exist locations l0, · · · , ln with
l0 = s and ln = t such that l0

e0→ l1
e1→ · · · en−1→ ln.
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Given a set of locations set, we overload this notation by
writing reach(set, e∗) to represent the set of locations that
are reachable through e∗ from some locations in set. For a
path t′, we use t′j to denote the sequence of locations and
edges from the initial location to the jth location on t′.

Algorithm 1 Action guided abstraction refinement

Require: t′ = l′0
e′0→ l′1

e′1→ · · · e
′
m−1→ l′m is the abstract trace

and l0 is the initial location.
Ensure: Return false if t′ is not a real counter-example

(with the abstraction being refined) else return true and
a concretized witness t.

1: set0 ← {l0}
2: j ← 0
3: while setj 
= ∅ ∧ j < m do
4: j ← j + 1
5: setj ← reach(setj−1, e

′
j−1) ∩ α(l′j)

6: if setj = ∅ then
7: split l′j−1 into new abstract locations l′xj−1

, l′yj−1
s.t.

α(l′xj−1
) = α(l′j−1) ∩ {l|l ∈ L ∧ reach(l, e′j−1) ∩

α(l′j) 
= ∅}, α(l′yj−1
) = α(l′j−1) \ α(l′xj−1

)
8: update γ according to the split and refine the abstrac-

tion by γ.
9: return false

10: end if
11: end while
12: return true and a path t = l0

e0→ l1
e1→ · · · em−1→ lm which

concretizes t′

Algorithm 1 illustrates the procedure for our method to
eliminate the spurious counter-example. It takes input of an
abstract path t′ and the initial location l0 of the concrete model
A. It returns false and splits an abstract location on t′ to refine
A′ if t′ is a spurious counter-example. Otherwise, it returns
true and a concretized path t in A corresponding to t′.

Theorem 3: Algorithm 1 is correct.

Proof: An abstract counter-example t′ = l′0
e′0→ l′1

e′1→
· · · e

′
m−1→ l′m is a real path under the action guided abstraction

if there exists a concretized path t = l0
e0→ l1

e1→ · · · em−1→ lm
such that for each j, 0 ≤ j ≤ m, lj ∩ α(l′j) 
= ∅. Otherwise,
t′ is considered as a spurious counter-example.

An abstract counter-example t′ can’t be concretized on
the full model if there exists j (1 ≤ j ≤ m) such that
reach(l0, tj−1)∩α(l′j) = ∅ (line 7). First, it is straightforward
that there exist some concrete locations in α(l′j−1) reachable
form the initial location l0 (lines 3-5). Second, according
to our definition about abstract transition, there exist some
concrete locations in α(l′j−1) which could reach some concrete
locations in α(l′j) by edge e′j−1. Based on the above facts, we
conclude there are two kinds of concrete locations in α(l′j−1),
which are categorized into α(l′xj−1

) and α(l′yj−1
) respectively:

• The locations in α(l′xj−1
) are not reachable from the

initial location in trace tj−1 but have e′j−1 edge to some
concrete locations in α(l′j).

• Some locations in α(l′yj−1
) are reachable from the initial

location in trace tj−1 but all of them have no e′j−1

successor in α(l′j)
Splitting these two kinds of locations would suffice to elimi-
nate t′ (lines 7-8).

Hence the algorithm either returns false if t′ is not a real
counter-example and refines the abstraction A′ with t′ being
eliminated (line 9) or returns true and a witness (line 12).

After performing Algorithm 1, for the abstract locations
each of which maps to only a single concrete location, we
attach their original invariants (but only retain the atomic
constraints which involves the variables that are not abstracted
away) to them.

In addition, we also use a heuristic. If a location s, s ∈
l′yj−1

∧s /∈ setj−1, have one (or more) of their outgoing edges
being equivalent to that of a location t, t ∈ l′xj−1

, we transfer
s from l′yj−1

to l′xj−1
. In essence, we aim to aggregate some

locations as well as eliminate some transitions.
2. Clock variables omission guided abstraction refinement

When t′ is concretized on the abstract model in action
guided abstraction refinement, there still lacks guarantee that it
is a real bug for it may be brought by clock variable omission
abstraction. Algorithm 2 illustrates our refinement strategy. It

takes input of t′ = l′0
e′0→ l′1

e′1→ · · · e
′
m−1→ l′m and the concretized

path t = l0
e0→ l1

e1→ · · · em−1→ lm which is obtained by
the use of Algorithm 1. Algorithm 2 returns true if t′ is
valid. Otherwise, it puts some clock variables back once being
abstracted away.

As shown in II-D, we attach the absolute time to the
locations on t′. The attached absolute time indicates the right
time when the immediate outgoing edge is triggered. Our goal
is to ascertain if the absolute time which trigger an edge on
the abstract path would also trigger the corresponding edge on
the concretized path.

Therefore, we need to evaluate each clock variable (includ-
ing abstracted clock variable) on each concrete location in
the concretized path. Considering the clock variable c, let cj
denote the timed value of c on the jth location. The value of
cj is determined by the function update(cj−1, l

′
j , l

′
j−1), which

is defined as follows:

cj =

⎧⎪⎨
⎪⎩

lj .t if j = 0

lj .t− lj−1.t if j > 0 and ej−1 reset c

cj−1 + lj.t− lj−1.t otherwise.

On initial location, the value of c0 just equals the absolute
time; otherwise, if the clock c is reset when taking transition
from the (j− 1)th location to jth location, the timed value of
cj equals the difference of the absolute timed values on these
two locations; otherwise, the timed value of cj equals the sum
of cj−1 and the difference of absolute timed values.

Theorem 4: Algorithm 2 is correct.
Proof: The timed value of each clock variable in each

location on the concretized path is assigned by the time
duration on the abstract path (line 3-9). Remember that we
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Algorithm 2 Clock variable omission guided abstraction re-
finement

Require: t′ = l′0
e′0→ l′1

e′1→ · · · e
′
m−1→ l′m is the abstract trace

and t = l0
e0→ l1

e1→ · · · em−1→ lm is the corresponding
concrete trace.

Ensure: Return true if t′ is a real counter-example or return
false (with the abstraction being refined).

1: j ← 0
2: while j < m do
3: for each Clock c ∈ C do
4: cj ← update(cj−1, l

′
j , l

′
j−1)

5: j ← j + 1
6: end for
7: if assignment of C makes guard(ej) false then
8: U ← {h ∈ ClockV ar(ej)| the assignment of h

contradict guard(ej , h)}
9: put U back to refine A′

10: return false
11: end if
12: end while
13: return true

shift location invariants to the guards of the corresponding
edges, since the timed values of the clock variables in l′j would
trigger the intermediate outgoing edge e′j , the algorithm checks
whether the timed values of the clock variables in lj would
enable the intermediate outgoing edge ej either (line 11). If it
is not the case, t′ can not be concretized on the concrete model
A. Note the guard of the edge is a conjunctions of atomic
constraints. It collects all the clock variables that appears in the
unsatisfied atomic constraints of ej’s guard (line 12). Putting
these clock variables back to A′ would suffice to eliminate t′

(line 13).
Hence the algorithm either returns false and refines the

abstraction A′ with t′ being eliminated (line 14) or returns
true if t′ is a real counter-example (line 17).

For the abstract counter-example path t′ in the abstract
model A′

1|| · · · ||A′
n, we use set P to denote the automata that

appears in the safety property ϕ. Clock variables omission
guided abstraction refinement itself is also an iterative process.
We first perform it component-wise only on the automata in
P . Unless we verify the property is true or P contains all the
automata in the network, we have to enlarge P to assure the
counter-example is not spurious. In each iteration, the newly
added automata to P is selected if they communicate with one
automata in P by synchronized actions or shared variables.

V. EXPERIMENTS

We implemented our algorithm in a prototype called
CAREF written in Java and incorporated it with the model
checking tool Uppaal [18] .

We apply our method to verify some well known bench-
marks mainly from MCTA tool set [19], i.e., Fischer pro-
tocol, Arbiter T ree protocol, Mutual Exclusion protocol.

We derive the Train-gate protocol from Uppaal tool set. Our
industrial partner provided us the Steeve Control system
model. All verification tasks lead to positive results. For the
Mutual Exclusion protocol and the Steeve Control system
model, we use the first strategy mentioned in Section IV-A
to get its initial abstraction. For the other benchmarks, we
use the second strategy. We compare our CAREF technique
with the Uppaal tool (version 4.0.8) on these benchmarks by
total verification time. All the experiments were performed on
Linux with 1GB memory and a 3GHz Intel processor.

In the Fischer protocol, the timed system consists of n
processes. We verify a safety property that, at any time, at
most one process is given permission to enter the critical re-
source. We iteratively increase n to evaluate our approach. The
complexity of the problem explodes quickly as n increases.
All these cases are verified through 3 abstraction refinement
iterations. Experimental results are shown in Table I. The
leftmost column denotes the processes in the current system.
Uppaal fails to construct the global state space when verifying
12 processes. In contrast, our method not only outperforms it
in terms of efficiency but runs until n = 15.

TABLE I
VERIFICATION RESULTS ON FISCHER’S MUTUAL PROTOCOL.

CAREF Technique Uppaal Tool
7 0.187s 0.719s
9 2.844s 22.985s
11 45.14s 670s
12 176.75s 3402.06s
13 678.469s > 14400s
14 2513.37s > 14400s
15 9843.76s > 14400s

The Train-gate protocol models a scene that 9 trains line
up to enter a single gate. We again verify a safety property that
any two trains are forbidden to enter the gate simultaneously.
Table II shows the experimental result. The leftmost column
denotes the number of iteration in CEGAR loop. CE length
denotes the length of the trace of counter-examples returned by
Uppaal. time is in seconds. The proposed method in CAREF
verify the property through 2 abstraction refinement iterations
in 89.736s while Uppaal uses 133.613s. Note in CAREF all
clock variables in Train-gate protocol are abstracted away.

TABLE II
VERIFICATION RESULTS ON TRAIN-GATE PROTOCOL FOR 9 TRAINS

Train-gate
model

clocks CE length time

Uppaal Model 9 Verified 133.613s
Abstr 1 0 10 4s
Abstr 2 0 Verified 85.734s
CAREF Total 0 Verified 89.736s

The Arbiter T ree protocol models a mutual exclusion
protocol based on a tree of binary arbiter processes. Client
processes are situated at the leaves of the tree. In order to
gain access to the shared resource, they may send a request to
their respective parent recursively. When the root processes
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of the tree receives a request, it generates a grant which
is then propagated back down. We verify that two client
processes in the Arbiter T ree protocol would not gain access
simultaneously. Benchmarks A4, A5 and A6 contains 32, 64,
128 automata respectively. Our method verify these examples
in 9 or 10 abstraction refinement iterations and lead to order-
of magnitude speedup on verification time while Uppaal fails
to verify all of them within 1440s as shown in Table III.

TABLE III
VERIFICATION RESULTS FOR MUTUAL PROPERTY ON A4, A5, A6

BENCHMARK

A4
model

CE
length

time Model CE
length

time

Uppaal Model Verified > 1440s
Abstr 1 3 0.01s Abstr 2 7 0.206s
Abstr 3 7 0.243s Abstr 4 11 0.286s
Abstr 5 12 0.405s Abstr 6 13 0.845s
Abstr 7 13 0.5s Abstr 8 18 0.772s
Abstr 9 19 4.491s Abstr 10 Verified 66.463s

CAREF Total Verified 74.222s

A5
model

CE
length

time Model CE
length

time

Uppaal Model Verified > 1440s
Abstr 1 3 0.022s Abstr 2 7 0.366s
Abstr 3 7 0.418s Abstr 4 11 0.537s
Abstr 5 12 0.908s Abstr 6 13 2.362s
Abstr 7 13 1.349s Abstr 8 18 2.479s
Abstr 9 19 16.287s Abstr 10 Verified 295.26s

CAREF Total Verified 320.1s

A6
model

CE
length

time Model CE
length

time

Uppaal Model Verified > 1440s
Abstr 1 3 0.057s Abstr 2 7 0.739s
Abstr 3 7 0.873s Abstr 4 11 1.336s
Abstr 5 12 2.562s Abstr 6 13 7.838s
Abstr 7 13 4.134s Abstr 8 18 7.477s
Abstr 9 Verified 92.586s CAREF Total Verified 117.689s

Benchmarks N3 and N4 come from a case study of the
Mutual Exclusion protocol. It models a real-time protocol
to ensure mutual exclusion of states in a distributed system
via asynchronous communication. Benchmarks N3 has 4
automata while N4 has 5 automata. Both benchmarks have
7 clock variables. Table IV shows the experimental result. In
our proposed abstraction refinement scheme, we can prove the
correctness of the model using an abstraction with a decrease
of 2 clock variables. The verification time is significantly
reduced by half compared to that of the full model.

TABLE IV
VERIFICATION RESULTS FOR MUTUAL PROPERTY ON N3, N4 BENCHMARK

N3 model clocks CE length time
Uppaal Model 7 Verified 4.665s
Abstr 1 3 20 0.057s
Abstr 2 5 Verified 2.676s
CAREF Total 5 Verified 2.734s

N4 model clocks CE length time
Uppaal Model 7 Verified 19.151s
Abstr 1 3 21 0.178s
Abstr 2 5 Verified 10.536s
CAREF Total 5 Verified 10.714s

The Steeve Control system models an industrial platform
that combines a control console and a set of motor-driven
booms lifting freights. The system completes some given
scenes through the movement of booms. Real time information
such as timers are modeled by clock variables in timed
automata to control the start, pause and stop of the motors and
boom controllers. We model a mutual scene in which when
all booms are in place they must be exclusively processed so
that the system must guarantee only one boom can enter the
processing gate and the remaining booms are locked waiting
for the time being. As it is indicated in Table V, when
the system becomes increasingly complex, including more
booms, our method is significantly faster than Uppaal. In these
examples, the abstraction refinement loop have to iterate 3
times and put all clock variables back to generate a coaser
abstraction to prove the property.

TABLE V
VERIFICATION RESULTS FOR MUTUAL PROPERTY ON STEEVE CONTROL

SYSTEM COMPRISED OF 8, 10 BOOMS.

8 booms model clocks CE length time
Uppaal Model 24 Verified 66.98s
Abstr 1 16 28 0.057s
Abstr 2 16 30 0.27s
Abstr 3 24 Verified 31.94s
CAREF Total 24 Verified 32.27s

10 booms model clocks CE length time
Uppaal Model 30 Verified > 1400s
Abstr 1 20 28 0.065s
Abstr 2 20 30 0.26s
Abstr 3 30 Verified 553.43s
CAREF Total 30 Verified 554.42s

In all these benchmarks, we are tackling both asynchronous
and synchronous systems. We believe this fact witnesses our
method’s scalability. The experiments demonstrate that our
method is more capable to verify larger applications than
Uppaal.

VI. CONCLUSIONS

In this paper we studied the compositional verification for
timed systems. An automated approach which combines com-
positional abstraction and counter-example guided abstraction
refinement (CEGAR) was presented. We implemented our
method with the model checking tool Uppaal. Experiment
results show some promising improvements.
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