
An Efficient Resolution Based Algorithm for SAT

Min Zhou
Department of Computer Science and Technologies

Tsinghua University

Beijing, China

Email: zhoumin03@mails.tsinghua.edu.cn

Fei He and Ming Gu
School of Software

Tsinghua University

Beijing, China

Email: hefei/guming@mail.tsinghua.edu.cn

Abstract—Propositional satisfiability problem (SAT) is a fun-
damental problem both in theory and practice. In the area of
software engineering, people employ various techniques, such as
model checking, theorem proving, automated testing and so on,
to ensure the quality of software. Those techniques are usually
based on SAT solvers. The efficiency is an important criterion for
a good SAT solver. Besides, the ability of producing proofs is also
considered to be quite useful because it provides a mechanism
that the correctness of checking result is guaranteed. Moreover,
proofs can be used when calculating interpolation. In this paper,
we investigate a new resolution based algorithm for solving
SAT problem. The algorithm combines resolution and search. It
resolves certain clauses when necessary and at the same time tries
to find a valuation under which the formula evaluates to true.
Information found in the process of searching for such a valuation
is used to guide the resolution. The algorithm stops whenever
a satisfying valuation is found or empty clause is generated.
So, it terminates quickly for both satisfiable and unsatisfiable
clauses. Compared with other resolution based algorithms, the
experiment result shows that the number of resolutions and
number of generated clauses are much less than directional
resolution. Another major advantage of our algorithm is, once
terminates, a proof can be easily generated with very low time
complexity.

I. INTRODUCTION

Satisfiability problem of propositional logic is also called

SAT. It has been densely studied for many years not only

because its theoretical importance but also its practical interest.

Nowadays, in software engineering and industry, SAT problem

has many applications. For example, SAT-based model check-

ing is used in hardward design, SAT solvers are also invoked

when generating some test cases, and so on. It is a fundamental

problem both in theory and practice.

There are already some algorithms for solving SAT

problem, a few of which are already used in indus-

try. Furthermore, an international competition (official site:

http://www.satcompetition.org/) is held annually to provide

a platform for comparing various algorithms and encourage

researchers to optimize their solvers.

Efficiency is probably the most important thing when solv-

ing an SAT problem. However, it is not enough. When SAT

solvers are used as underlying tools in model checking, the

ability of generating counter examples and proofs is required.

Furthermore, the counter example and proof should be as small

as possible.

Historically, it is proved by Cook [1] in 1971 that 3-SAT

problem is NP. What we call k-SAT is a sub-category of

SAT problem where each clause is given with k literals. It is

not yet proved but generally believed that completely solving

NPC problem requires at least exponential time complexity.

So, generally speaking, solving large SAT problems is hard.

However, the applications of SAT problem have been widely

spread in industry and electronic design. Therefore, algorithms

that are able to give a result in an acceptable time are of great

practical interest.

A. Related Work

The syntax and semantic of propositional logic are concise.

Because of its simplicity, there are lots of research in reducing

other problems to SAT, then one can invoke SAT solvers to

solve them, such as in [2]. In industry or software engineering,

some researchers try to automate test case generation using

SAT, as can be found in [3].

SAT problems can be classified into some subcategories.

For instance, 3-SAT problem is a class of SAT problems

where each clause contains 3 literals. It is the first problem

proved to be NP-Complete. 2-SAT problem where each clause

consists of 2 literals is linear time solvable. SAT problem

which involves only Horn Clauses (where each clause contains

at most one positive literal.) is solvable in polynomial time [4].

However, solving arbitrary SAT problem requires some

technique. Typically, SAT algorithms can be classified into

two categories. One is search based algorithms, such as DPLL

[5]. Tools based on DPLL algorithm are available, such as:

Chaff [6], PicoSAT, MiniSAT [7], and so on. In DPLL, conflict

clauses analysis and clause learning are adopted so as to

enhance the performance. The main flow of this kind of

algorithm is to look up for a satisfiable valuation. So, they are

good for most satisfiable cases. But their major disadvantage

is the difficulty of generating proofs for unsatisfiable cases.

The other category of algorithm is based on resolution. For

instance, DP algorithm [8] which deals with CNF formulas

by exhaustively apply resolution until saturation (can not find

any new resolvent) or empty clause is derived. An improved

version of DP algorithm is Directional Resolution (DR) [9]

which defines an order on those literals and restricts the

resolution to be on the maximal literal. The experiment result

shows DR performs significantly better than the naive DP

algorithm (will be explained later in this paper). However, for

satisfiable cases, both of them take quite long time to finish

all resolutions.

2011 Fifth IEEE International Conference on Theoretical Aspects of Software Engineering

978-0-7695-4506-6/11 $26.00 © 2011 IEEE

DOI 10.1109/TASE.2011.23

60

There are also researches on combining search and resolu-

tion. In [10], the author presented two hybrid approaches. The

BDR-DP(i) approach performs bounded resolution prior to

search, while the other scheme called DCDR(b) use resolution

dynamically during search. Although combined at a high level,

both of them yield better performances.

In real application, knowing the status of satisfiable or

unsatisfiable is not enough. For many reasons, proofs are also

needed. In model checking, proofs and counter examples are

used to calculate interpolation or to refine the model. On

the other hand, which is a realistic problem that, there is

no guarantee that the SAT solver one invoked is correctly

implemented. So, providing the proof along with the satisfiable

or unsatisfiable result can help. In this case, the proof serves

as a certification for the output result. For satisfiable case, a

proof can be a satisfying valuation. For unsatisfiable case, a

proof can be a trace C1, C2, . . . , CN such that each Ck is

either an initial clause in the input formula or resolved from

Ci, Cj , where i, j < k. CN should be the empty clause “�”.

For specialized algorithm, the format of proof can be in a

more concise form, such as a class of linear regular resolutions

[11]. Some certified theorem prover, such as Coq, can read and

verify if such proof supports the status of problem.

The contribution of this paper is in introducing an efficient

resolution based SAT algorithm and providing experiment

comparisons. The idea of the algorithm is explained and the

algorithm procedures are also described in details. More im-

portantly, proofs of soundness and completeness are provided.

The rest of this paper is organized as follows: In Sect. II,

some notations are introduced. The algorithm is explained and

described in Sect. III. Then the soundness and completeness

is discussed in Sect. IV. In Sect. V, we talked about some

implementation issues that readers may concern. Finally, the

complexity analysis and experiments are shown in Sect. VI

followed by the conclusion.

II. PRELIMINARIES

We assume that readers are familiar with propositional logic.

In propositional logic, Boolean values are B = {1, 0}. Atoms
are propositional variables range over B, in this paper, they

are denoted by uppercase letters. A is the set of all atoms.

Especially, we use � (⊥) to denote the atom which is always

true (false). A literal is a positive or negative form of atom

such as P,¬P . A clause is a disjunction of literals such as

P ∨¬Q∨R. Clauses can be viewed as sets of literals, e.g. the

previous clause can be written {P,¬Q,R}; A formula(CNF)

is a set of clauses. A valuation is a map A �→ B, i.e. from atom

set A to Boolean values {1, 0}. A valuation can be interpreted

on formulas intuitively. Use v(t) to denote the value of t under

valuation v. For convenience, a valuation can be represented

as a subset of A i.e. the subset of atoms whose value are 1

under v. Thus, we also write v the set {P ∈ A|v(P) = 1}.
A model for a formula f is a valuation v such that v(f) = 1.

A formula f is satisfiable iff it has at least one model. Two

formulas f and g are equiv-satisfiable iff f is satisfiable ⇐⇒
g is satisfiable.

TABLE I
AN EXAMPLE OF RESOLUTION PRINCIPLE

Num Clause Note

(5) P Resolvent of (1) and (2)
(6) Q Resolvent of (1) and (3)
(7) � Resolvent of (1) and (4)
(8) � Resolvent of (2) and (3)
(9) ¬Q Resolvent of (2) and (4)
(10) ¬P Resolvent of (3) and (4)
(11) � Resolvent of (5) and (10)

In this paper we consider satisfiability problem of CNF

formulas. By introducing new variables, it is possible to

convert an arbitrary formula f to an equiv-satisfiable CNF

formula f̂ in linear time [4]. Besides, the number of introduced

new variables is linear to the size of f . Thus, SAT problem

on an arbitrary propositional formula can be reduced to SAT

problem on CNF formulas.

Resolution: It is a theorem in propositional logic that if

L∨X and ¬L∨Y are both true under some valuation v, then

X ∨ Y is also true under v. Formally, we write:

L ∨X,¬L ∨ Y

X ∨ Y
Res

where L is a literal and X , Y are both disjunction of literals.

X ∨ Y is called the resolvent of L ∨ X and ¬L ∨ Y ,

denoted by X ∨ Y = Res(L ∨X,¬L ∨ Y). It is obvious that

{L ∨ X,¬L ∨ Y } is satisfiable if and only if {L ∨ X,¬L ∨
Y,X ∨ Y } is satisfiable. Therefore, given a set of clauses,

one can resolve any pair of resolvable clauses and add the

resolvent to the initial clause set. If the empty clause is found

before saturation, then the initial clause set is unsatisfiable,

otherwise satisfiable. This is called resolution principle [4].

Actually, some algorithms are based on the idea.

III. SEARCHING GUIDED RESOLUTION ALGORITHM

A. The idea of our algorithm

Resolution principle can be used to check satisfiability of a

set of clauses. It is simple and easy to implement. DP [8] and

DR [4] algorithms are based on it. DP is a simple improvement

of resolution principle which pick the initial clause set S, do

all possible resolution and collect all the resolvents S1, then

apply the same procedure on S1 to obtain S2. Repeat until

some Fi contains empty clause “�” or Fi = ∅. DP algorithm

does avoid adding all resolvents to the initial set and reduced

the size of clause set. However, it is not enough.

For example, for S = {(1) : P ∨ Q, (2) : P ∨ ¬Q, (3) :
¬P ∨Q, (4) : ¬P ∨¬Q}. The resolution procedures are listed

in Table I. In all, 7 resolutions are needed in order to derive

the empty clause “�”.

Directional Resolution [4] is big improvement for resolution

based algorithm. We already know that it is not always

necessary to apply all possible resolutions. What’s needed is

essentially a trace to the empty clause (if there is any). So

one can define an order “>” on A and resolve only upon

the maximal literal. For example, in the example above, if we

define P > Q, then empty clause is derived after 5 resolutions

61

(resolvent 5 and 10 will not appear). Using directional reso-

lution will save quite a lot for unsatisfiable cases. However,

it is still not satisfactory. Because for satisfiable clause set,

one still has to finish all resolutions (although restricted on

maximal literals, that is still a big number).
DPLL algorithm is based on search. It explores every pos-

sible valuation in order to find a model. For performance con-

sideration, DPLL employs conflict clause analysis and clause

learning. In practice, DPLL is quite efficient when the initial

clause set is satisfiable. However, for unsatisfiable clauses, it

also requires that all possible valuations are explored. Another

disadvantage is, because each clause is not a simple resolution,

it requires to record quite a lot of information as well as all

generated clauses in order to find a proof for unsatisfiable

result, which is not easy.
We see that the search based algorithms are good for

satisfiable cases, while the resolution based algorithms are

good for unsatisfiable cases. A natural idea is: if the initial

clause set is satisfiable, we hope to find a model as early as

possible; if unsatisfiable, resolve to empty clause as early as

possible. This paper is based on the idea. Our algorithm has

the following characteristics:

• based on resolution;

• all literals and clauses are ordered, to reduce the number

of resolutions;

• it tries to find a model;

• if a model is not yet derived, resolution is guided by

current valuation.

For both satisfiable and unsatisfiable initial clause set, our

algorithm terminates quickly. The number of resolution steps

is much less than other resolution based algorithms. Compared

with DPLL algorithm, our algorithm is easy to implement and

better at generating proofs.

B. Algorithm SGR

We call our algorithm SGR since it is a Search Guided

Resolution based SAT algorithm. In our algorithm, an order

on atoms is needed. Use “>” to denote the order relation. It

can be an arbitrary well-defined order relation on A. In the

rest of this paper, we assume A = {A1, A2, . . . , An} and the

order is An > An−1 > · · · > A1. “>” can be extended to

literals and clauses:

• For literals of different atoms, the order is decided by

comparing underlying atoms.

• For literals of the same atom, the negative form is larger

than the positive form. i.e.

¬An > An > ¬An−1 > An−1 > · · · > ¬A1 > A1

• The order on clauses is the defined as the multi-set order.

In other words, empty clause is the minimal clause.

For any two non-empty clauses X and Y (viewed as

literal sets). Let P,Q be the maximal literals in X,Y
respectively. If P �= Q then the X > Y iff P > Q
otherwise P = Q, then X > Y iff X−{P} > Y −{Q}.
e.g.

¬A3 ∨A1 > A3 ∨A1, A3 ∨A2 > A3 ∨A1

During the execution of the SGR, a valuation v is main-

tained. v is modified from time to time in order to form a

model. σ is a map: A �→ ClauseSet which records the reason

that v(Ai) is modified from 0 to 1.
The procedures of SGR are described in Algorithm 1. We

say a clause C is an F-Clause if v(C) = 0:

Algorithm 1 SGR algorithm

S0 (Initialization)

Let S = {C1, C2, . . . , Cm} be the initial clause set. S
is sorted such that Cm > Cm−1 > · · · > C1.

Let v be the initial valuation s.t. ∀a ∈ A.v(a) = 0.

σ is undefined for all atoms.

S1 (Locate the minimal F-Clause under v)

Let Ck = min{Ci|v(Ci) = 0}. If such Ck does not

exists, return SAT; otherwise goto S2.

S2 (Check Ck)

If the maximal literal in Ck is in the positive form

then goto S3, otherwise goto S4.

S3 (Modify the valuation v)

In this case, Ck = Ap ∨D, where Ap is the maximal

literal in Ck. We modify v and σ, let v(Ap) = 1, and

σ(Ap) = Ck, goto S1.

S4 (Resolution)

In this case, Ck = ¬Ap∨D, where ¬Ap is the maximal

literal in Ck. Then σ(Ap) must be already defined and

in the form of Ap ∨ E (i.e. Ap is the maximal literal

and in the positive form).

Resolve Ck and σ(Ap), we get C ′ = D ∨ E.

If C ′ is empty clause then return UNSAT, otherwise,

insert C ′ to S. For convenience, we still write S =
{C1, C2, . . . , Cm}.
Suppose Aq is the maximal literal in Cnew, then for

all Ap ≥ Ar > Aq , reset v(Ar) = 0 and set σ(Ar) to

undefined. Goto S1.

In S4, we asserted that “σ(Ap) must be already defined and

in the form of Ap∨E”. We informally explain a little on this.

Because v(Ck) = 0, v(Ap) = 1 must hold at that time. But by

default, all atoms have value 0 under v, thus in S3 there should

be some Ct such that Ct < Ck and Ap is the maximal literal

in Ct. Furthermore, Ct is 0 under the valuation v′ when in S3.

Only in this case, v(Ap) = 1 and σ(Ap) = Ct are updated.

Actually, v = v′ ∪ {Ap} and σ(Ap) = Ct = Ap ∨ E.
Take S = {(1) : P ∨ Q, (2) : P ∨ ¬Q, (3) : ¬P ∨ Q, (4) :

¬P ∨ ¬Q} as an example. Assume the order is defined as

P > Q. The detailed procedures are listed in Table II.
Note that in the SGR we resolve only upon the maximal

literal, therefore, the number of resolution is less or equal to

that in Directional Resolution. Actually, in this example, we

did not resolve clauses like P ∨Q and ¬P ∨ ¬Q which is a

valid step in Directional Resolution. As a result, we only need

3 resolutions steps. In practice, SGR usually takes much less

steps than Directional Resolution. In case the initial clauses

are satisfiable, our algorithm is possible to find a model, then

terminates without exhaustively resolved.

62

TABLE II
AN EXAMPLE DEMONSTRATING THE ALGORITHM

Related Clause v before v after Explanation

1 (1): P ∨Q {} {P} (1) is the minimal F-Clause discovered in S1.
Because P is the maximal literal, we add P to v, so that v(P ∨Q) = 1

2 (3): ¬P ∨Q {P} {}

(3) is the minimal F-Clause discovered in S1.
Because ¬P is the maximal literal, which is in negative form.
We resolve (1) and (3) to (a): Q, and insert it to S.
At the same time, Q is the maximal literal in (a).
So, in S4, we remove P (> Q) and v is then ∅.

3 (a): Q {} {Q} (a) is the minimal F-Clause discovered in S1.
Because Q is the maximal literal, we add Q to v, so that v(Q) = 1

4 (2): P ∨ ¬Q {Q} {P,Q} Similar to step 1.

5 (4): ¬P ∨ ¬Q {P,Q} {Q} Similar to step 2. Resolvent is ¬Q.

6 (b): ¬Q {Q} {}
(b) is the minimal F-Clause found in S1.
Because ¬Q is the maximal literal in (b), so we resolve (a) and (b).
Empty clause is generated, return UNSAT.

C. Proof generation

For an satisfiable case, the proof is a model. If such model is

found in the process of algorithm, the proof is already there.

For an unsatisfiable case, a proof is a sequence of clauses

which ends with empty clause and each clause is either an

initial clause or a resolvent of two antecedents.

In S4, we can record how each clause is derived. Use τ1
and τ2 to record the two antecedents if there are. i.e. if C is an

initial clause, τ1(C) and τ2(C) are both undefined, otherwise,

if C = Res(D,E), then τ1(C) = D and τ2(C) = E. We also

say that C depends on D and E. The dependence relation

actually defines a partial order on clauses. We show that,

in the process of SGR algorithm, the partial order is well

defined. Therefore, it is possible to do topological sort to

derive a total order on these clauses. Then the proof can be

simply the sequence of relative clauses in the total order. Here,

relative clauses are those clauses that the empty clause depends

directly or indirectly. Irrelative clauses are not to appear in the

proof.

Lemma 3.1: If C = Res(D,E), then D > C and E > C.

Proof: Because in step S4, we only resolve on the

maximal literal, say Ap. Thus, Ap does not appear in C, and

the maximal literal of C, say Aq , is less than Ap. By definition

of the order on clauses, D > C and E > C.

By Lemma 3.1, actually, we can observe that the total order

“>” is already a candidate total order for topological sort. This

fact means we don’t even have to do topological sort. Just use

the existing “>” order. More importantly, if we maintain all

the clauses in order (that’s what we do in the implementation),

what we need to do is to find all the relative clauses and output

from the maximal one to the minimal one. The algorithm for

finding all relative clauses is described in Algorithm 2, a stack

is used. This procedure will take O(N) where N is the size

of proof.

The proof is stored in proof , in order. Take the same

example we used in Sect. III-B. When the empty clause is

found, all clauses are shown in Table III. Those clauses are

listed in order, from minimal to maximal. The proof is [(4),

(3), (2), (1), (a), (b), (c)], as in Fig. III-C:

The complexity for generating a proof is linear to the size

Algorithm 2 Generate proof

push(�)
while stack is not empty do
c← pop()
if c is not marked then

mark c
insert c to the beginning of proof
if c is a resolvent then
push(τ1(c))
push(τ2(c))

end if
end if

end while

TABLE III
AN EXAMPLE OF GENERATING PROOF

Id Clause τ1 and τ2

(c) � (a) and (b)
(b) Q (1) and (3)
(a) ¬Q (2) and (4)
(1) P ∨Q initial clause
(2) P ∨ ¬Q initial clause
(3) ¬P ∨Q initial clause
(4) ¬P ∨ ¬Q initial clause

4 3 2 1 a b c

Fig. 1. Dependence relation

of generated proof. i.e. at most O(m), where m is the size of

all clauses. Compared with other DPLL based algorithms, or

algorithm is much easier to generate unsatisfiable proof.

IV. SOUNDNESS AND COMPLETENESS

This section proves that the SGR algorithm is both sound

and complete.

Lemma 4.1: If σ(A) is defined on some atom A, then σ(A)
must have a positive literal A. i.e. σ(A) = A∨E. Furthermore,

A is the maximal literal in σ(A).

63

Proof: For any given atom A, we consider the last time

σ(A) was defined. Because σ can only be defined in step S3.

If σ(A) is defined (step S3 entered), that implies A is the

maximal literal of some minimal F-Clause Ck. Otherwise, it

will not branch from S2 to S3.

Then, in S4, σ(A) is set to Ck which is in the form of A∨E.

Lemma 4.2: For each atom A, at every moment, σ(A) is

defined iff A evaluates to 1 under the valuation.

Proof: Trivial, because σ and v are always modified at

the same time. And each σ(A) is defined, v(A) is set to 1;

σ(A) is undefined, v(A) is set to 0.

Lemma 4.3: In step S4, the generated clause C ′ does not

exist in S.

Proof: Assume the valuation is v in S4 and the minimal

F-Clause founded is ¬L∨C (¬L is the maximal literal). Then

v(L) = 1 and v(C) = 0 must hold. By Lemma 4.2, we know

σ(L) is defined and in the form of L∨D. Assume the valuation

was v′ at the moment σ(L) was defined.

v′(L) = v′(D) = 0 because L ∨ D is the minimal F-Clause

when σ(L) was defined. Furthermore, we can conclude that

v = v′ ∪ {L} because when v′ is modified to v in S3, the

minimal F-Clause is ¬L∨C. In the next iteration, the minimal

F-Clause must be L ∨D.

v and v′ are only different at the atom L. The fact v′(D) = 0,

along with v′(C) = 0 leads to v′(C ∨D) = 0. If the resolvent

C ∨ D is identical to some clauses in S, in the algorithm,

we would not pick ¬L∨C as the minimal F-Clause, because

v′(C ∨D) = 0 and C ∨D < ¬L ∨ C. Contradicts.

Theorem 4.1: For any input clause set, our algorithm must

terminate eventually.

Proof: First of all, the number of different clauses defined

on n atoms can not exceed 3n. If we haven’t do resolution

for a certain period, then during this period, the minimal F-

Clause found in step S1 should be monotonically increasing.

All together, there are n atoms. So, each n times we turn to

step S2, either a model is found or resolution happens. In the

first case, a model is found, the algorithms already terminates.

In the other case, there are at most 3n distinct clauses, and by

Lemma 4.3, each resolvent is different to all existing clauses.

Thus, a upper bound of the number we turn to S2 is n ·3n.

Actually, n · 3n is a very loose upper bound. However, it has

already guaranteed that our algorithm terminates. Based on

this result, we can give the main theorem of this section.

Theorem 4.2: Our algorithm is sound and complete.

Proof: By Theorem 4.1, our algorithm always terminates.

We show that once terminates, our algorithm gives the correct

answer. This will prove the soundness and completeness.

If the algorithm terminates with a SAT result, then a model is

returned. In this case, no F-Clause can be found, the model

is indeed a model for the initial clause set. Otherwise, empty

clause is derived, by resolution principle, the initial clause is

unsatisfiable.

V. IMPLEMENTATION ISSUE

It is intuitive to organize the clauses set in order. This will

help in locating the minimal F-Clause. The efficiency of our

algorithm relies on: 1) How to find the minimal F-Clause under

current valuation v; 2) How to maintain the clause set where

new clause can be easily inserted while preserving the order.

For the first problem, it is straight forward and intuitive way

to scan from the first (minimal) clause and stop until a false

clause is found. This is easy to implement but not so efficient.

There are a few obvious improvements: 1) We know that the

minimal F-Clause monotonically increase before step S4 is

executed. Thus, we don’t need to do it from the very beginning,

instead, we can setup a lower bound and only search clauses

that are larger than this bound until step S4 is executed. For

example, if we start from C1 and found the minimal F-Clause

Ck and S4 is not executed (that means S3 executes) then next

time we can start from Ck+1. 2) Furthermore, checking the

clauses one by one is not necessary. If v(L) = 1 then all

clauses containing a positive literal L are true under v. At

least, all clauses with the maximal literal L are true under v.

Thus, in that case, we can skip an interval (where the maximal

literal is L) of clauses at one time.

For the second problem, we employ a data structure on

which binary search can be performed in O(log(N)) and

insertion can be in O(1).

A. Find the minimal F-Clause

Observe the fact that if A = {A1, A2, . . . , An} and An >
An−1 > · · · > A1, we can use a n-dimensional vector over

{0, 1, 2} to represent a clause: the i-th dimension of the vector

is decided by the occurrence of Ai in the clause. 0 means

Ai does not occur, 1 means Ai occurs and 2 means ¬Ai

occurs. Vector is presented by a pair of bracket. A direct

observation is: For two clauses C = (xn, xn−1, . . . , x1), D =
(yn, yn−1, . . . , y1), the relation C > D is equivalent to:

∃1 ≤ k ≤ n. ((∀k < i ≤ n.xi = yi)) ∧ (xk > yk))

The algorithm for finding the minimal F-Clause is described

in Algorithm 3. The function FindMinFClause takes 3

parameters. start (including) and end (excluding) defines the

interval to search, i.e. finding the minimal F-Clause in the

range of [start, end). This procedure is done recursively, so

we need a parameter depth to record which level we are at.

It is guaranteed that, each step, clauses in [start, end) are

identical from the n-th to (depth+ 1)-th dimension.

A function Partition is referred. It requires a precondition

that clauses in [start, end) are identical from the n-th to the

(depth + 1)-th dimension. We are lucky to have this condi-

tion satisfied in FindMinFClause. Partition will return 2

bounds, p1, p2, the depth-th dimension is 0 for [start, p1), 1

for [p1, p2) and 2 for [p2, end). In the implementation, p1, p2
are decided by binary search.

B. A data structure for storing the clauses

The data structure we use to store all clauses should satisfy

our requirement:

64

Algorithm 3 Find the minimal F-Clause

Function FindMinFClause(Clause start, Clause end,

int depth)

if start = end then
return null;

else if start < 0 then
return start;

else
(p1, p2) = Partition(start, end, depth)
first← FindMinFClause(start, p1, depth− 1)
if first �= null then

return first
else

if v(Adepth) = 1 then
return FindMinFClause(p2, end, depth− 1)

else
return FindMinFClause(p1, p2, depth− 1)

end if
end if

end if

Fig. 2. An example of SkipList

• Low complexity for locating a specified item;

• Low complexity for inserting a new item at any position;

It’s theoretically applicable to use balanced tree, which offers

O(log(N)) locating and O(log(N)) insertion (maintain the

tree balanced) while using O(N) space. However, to imple-

ment such data structure is complicated, the inherent com-

plexity may be quite big. Here, we use a simple and efficient

stat structure, SkipList [12]. The complexity for locating and

insertion are both O(log(m)) but easy to implement. Links in

the SkipList are of different levels. When locating an element,

we search from the higher level to the lower level. Fig. 2 is a

demonstration of logical structure of SkipList from Wikipedia.

Detailed description can be found in the cited literature.

With the above optimizations, the performance is accept-

able. For further improvement, other tricks are needed. Ac-

tually, almost every mature solver employs several optimiza-

tions. While writing this paper, we can not dive into the very

detail. The proposed algorithm is further improvable by apply-

ing other techniques, such as defining a hash function which

preserving the clause order to speed up clause comparison,

calculating a maximal acceptable level while using SkipList,

and so on.

VI. COMPLEXITY ANALYSIS AND EXPERIMENT RESULTS

First of all, the execution time of our algorithm is highly

related to the size of the clause set. Each resolution increases

Fig. 3. The probability of being satisfiable

the clause set by 1, thus the complexity highly depends on

how many resolutions we applied. We mentioned in 4.1 that

there is an upper bound for the number of resolutions which

is exponential to the size of atoms. However, an exponential

complexity is usually (not theoretically proved) a lower bound

for NP-Complete problems.

Compared with other resolution based algorithm, the follow-

ing property hold: The number of resolutions in our algorithm
does not exceed the number of resolutions in directional
resolution. Because each resolution is applied on the maximal

literal. Actually, experiment results show that our algorithm

takes much less resolutions than directional resolution.

In order to test the performance of our algorithm, we need

a serial of test cases. Two categories of test cases are usually

used as benchmarks: one is random generated cases, while the

other is structured cases.

A. Random generated test cases

For random generated cases, it is almost canonical to test

on 3-SAT problem where the difficulty of a problem can be

reflected by the number of clauses m and the number of atoms

n. Some research shows that the ratio of m/n statistically

determines the probability that a random generated formula

being satisfiable. When m/n > 4.3, the probability is above

50%, while for m/n < 4.3, the probability is below 50%.

As in Fig. 3 [13], the horizontal axis is the ratio of m/n,

the vertical axis is the statistical data that a random generated

formula is satisfiable. For a certain n, statistics shows that

almost every existing sat solver spends most time solving a

random generated formula when m/n = 4.3, so this kind of

problem is usually considered as the most difficult class of

3-SAT problem.

We are going to discuss these 3 cases respectively. Because

directional resolution is better than many other resolution

algorithms, we compare with directional resolution.

1) For m/n < 4.3: Statistically, formulas are likely to be

satisfiable. Our algorithm can find a model very quickly. In

directional resolution, resolvent may already exist. But in our

algorithm, resolvent must be a fresh clause. So, we distinguish

“Added”(the number of added clauses) and “Resolution”(the

number of resolutions). In the table, “Modify v” is how often

we modified the valuation v is S3, “Added” is how often we

resolve in S4.

65

TABLE IV
EXPERIMENT RESULTS OF m/n < 4.3 CASES

Test Case Directional Resolution Algorithm in this paper
n m m/n Status Time Added Resolutions Time Added Modify v
10 30 3.0 SAT 0.01s 300 3860 0.00s 1 4
20 60 3.0 SAT 159.4s 80545 237106115 0.00s 18 44
40 120 3.0 SAT – – – 0.00s 17 73
80 240 3.0 SAT – – – 0.00s 68 326
100 300 3.0 SAT – – – 0.00s 300 1445
200 600 3.0 SAT – – – 0.00s 325 2207
300 900 3.0 SAT – – – 0.03s 1709 10381
100 320 3.2 SAT – – – 0.00s 319 1358
100 340 3.4 SAT – – – 0.01s 912 2920
100 360 3.6 SAT – – – 0.14s 5176 5536
100 380 3.8 SAT – – – 0.19s 6325 11901
100 400 4.0 SAT – – – 1.30s 14031 27005

In Table IV, “–” means the program has run for more than

10 minutes without returning a result. We can see from the

table that our algorithm actually found a model quickly. We

don’t need to complete all resolutions.

2) For m/n > 4.3: Compared with previous result, unsat-

isfiable formulas need more time to verify because we have

to do resolution until saturation, shown in Table V.

3) For m/n = 4.3: In this case, there is half chance

for a random formula to be satisfiable (or unsatisfiable). It

is considered that this kind of problem is the most difficult

class to verify. They are even difficult to verify than many

non 4.3 problems which are in very large scale. There is

an international benchmark package, “SAT-LIB”, containing

many random 4.3 ratio 3-SAT problems. Our test cases are

picked from this package.

Compared with resolution based algorithm, our algorithm

is much better than directional resolution both in the added

clauses and execution time, as shown in Table VI.

B. Structured cases

For structured cases, different algorithm has different per-

formance due to the characteristics of problem. We researched

2 kinds of structured problems which are also used as bench-

marks in [10], the chains problem and (k,m)-tree problem.

They each has a specialized structure which consists of several

cliques. Each clique is an set of clauses that involving several

certain variables. There are very few clauses that involving

variables interleaving different cliques.

The chains problem test cases are generated as follows:

Firstly, we create a sequence of independent uniform k-cnf

cliques and connects each pair of successive cliques by a 2-cnf

clause containing variables from two consecutive cliques. The

parameters of generator are the number of cliques, Nclique, the

number of variables perclique, N , and the number of clauses

per clique, C.

The (k,m)-tree problem test cases are generated as follows:

A tree of cliques each having (k+m) nodes where k is the size

of the intersection between two neighboring cliques. Given

k,m, the number of cliques Nclique, and the number of clauses

perclique, Ncls, the generator produces a clique of k+m size

with Ncls clauses and then generate ech of the other Nclique−1

cliques by selecting randomly an existing clique and its k
variables, adding m new variables, and generating Ncls clauses

on that new clique.

TABLE VII
EXPERIMENT RESULTS ON chains CASES

Test Case Algorithm in this paper
n m Status Time Added Modify v Proof Size

125 299 SAT 0.02s 42 81 –
125 399 UNSAT 0.01s 13 15 25
125 499 UNSAT 0.00s 16 22 22
300 1299 UNSAT 0.1s 149 223 54
300 1524 SAT 0.1s 6 33 –
300 1599 SAT 0.4s 209 350 –
400 1419 SAT 1.2s 723 1240 –
400 1619 SAT 0.15s 27 88 –
500 1774 UNSAT 1.9s 645 1156 162
750 5024 SAT 2.1s 173 419 –
1000 6274 UNSAT 5.1s 1117 1971 1089

TABLE VIII
EXPERIMENT RESULTS ON (k,m)-tree CASES

Test Case Algorithm in this paper
n m Status Time Added Modify v Proof Size

300 1563 SAT 0.1s 19 39 –
300 1607 SAT 0.1s 181 310 –
300 1260 UNSAT 0.1s 123 180 46
400 1422 SAT 0.2s 690 1122 –
400 1646 SAT 0.2s 33 79 –
500 1605 SAT 0.8s 620 1232 –
500 1808 UNSAT 1.7s 797 1923 302
1000 6221 UNSAT 3.1s 1090 1902 980
1000 7002 UNSAT 7.2s 3987 8293 2841

We implemented both generators and run tests on the

generated data. Results are listed in Table VII and Table VIII

respectively. We can see our algorithm works well and the

number of resolution is small. On these structured problems,

our algorithm out performs those algorithms 1, which also

combines search and resolution, described in [10].

1The conclusion comes from comparing the experiment data of ours and
that from the referred paper. We have neither exactly the same test cases nor
their executable solvers. However, we believe the test case generator employs
the same algorithm as they did.

66

TABLE V
EXPERIMENT RESULTS OF m/n > 4.3 CASES

Test Case Directional Resolution Algorithm in this paper
n m m/n Status Time Added Resolutions Time Added Modify v
10 48 4.8 UNSAT 0.01s 540 14978 0.00s 33 38
20 96 4.8 UNSAT 174.12s 84562 296650036 0.00s 137 206
40 192 4.8 UNSAT – – – 0.00s 1733 3032
60 288 4.8 UNSAT – – – 0.34s 7777 13081
80 384 4.8 UNSAT – – – 12.77s 34051 52444
100 480 4.8 UNSAT – – – 580.32s 199025 256943

TABLE VI
EXPERIMENT RESULTS OF m/n = 4.3 CASES

Test Case Directional Resolution Algorithm in this paper
n m m/n Status Time Added Resolutions Time Added Modify v
10 43 4.3 SAT 0.00s 101 602 0.00s 3 6
20 86 4.3 UNSAT 730.26s 147881 1077149856 0.00s 161 238
30 129 4.3 UNSAT – – – 0.00s 346 584
40 172 4.3 SAT – – – 0.00s 455 978
50 215 4.3 SAT – – – 0.07s 3446 5633
60 258 4.3 UNSAT – – – 1.01s 13130 19564
70 301 4.3 UNSAT – – – 10.68s 33062 51211
80 344 4.3 UNSAT – – – 30.06s 48365 76503
90 387 4.3 SAT – – – 57.92s 67977 96984

100 430 4.3 UNSAT – – – 378.3s 154026 213773

C. Proof generation

The advantage of our algorithm is that it is easy to im-

plement and can generate proof. Although SAT-solvers such

as zChaff, PicoSAT and MiniSAT also provide proofs for

unsatisfiable cases, the formats are quite different from each

other. So it seems not reasonable to compare the proof size.

However, our proof format is quite simple, which is given

in a sequence of clauses and its two resolution antecedents.

Furthermore, from Table VII and VIII, one can see intuitively

that the proof size is much smaller than the scale of problem

input.

The idea of our algorithm is adoptable, based on this idea,

we combine both search and resolution. Every algorithm is

not born efficient, our SGR algorithm provides a new way of

thinking about resolutions in solving the SAT problem. We

will work on this because we believe that all algorithms can

be further improved.

VII. CONCLUSION AND FUTURE WORK

This paper investigated a search guided resolution based

algorithm for solving SAT problem. We explained in details

the idea and procedure of algorithm, proved the soundness and

correctness. Then we compared our algorithm with directional

resolution which is another resolution based algorithm. Our

algorithm is more scalable. We believe that all algorithms

are not born efficient. It is hopeful that in the future we can

construct a new and more efficient algorithm based on ideas

in this paper.

ACKNOWLEDGMENT

Min Zhou, Fei He and Ming Gu are with the Tsinghua

National Laboratory for Information Science and Technology

(TNList), and School of Software, Tsinghua University, and

the Key Laboratory for Information System Security, Ministry

of Education, Beijing, China. This research is sponsored by

the NSFC Program (No.91018015, 60811130468, 60903030)

and 973 Program (No.2010CB328003) of China.

REFERENCES

[1] S. Cook, “The complexity of theorem-proving procedures,” in Proceed-
ings of the third annual ACM symposium on Theory of computing.
ACM, 1971, pp. 151–158.

[2] C. Barrett, D. Dill, and A. Stump, “Checking satisfiability of first-
order formulas by incremental translation to SAT,” in Computer Aided
Verification. Springer, 2002, pp. 681–710.

[3] J. Zhang and X. Wang, “A constraint solver and its application to path
feasibility analysis,” International Journal of Software Engineering and
Knowledge Engineering, vol. 11, no. 2, pp. 139–156, 2001.

[4] J. Robinson and A. Voronkov, Handbook of automated reasoning. North
Holland, 2001.

[5] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–
397, 1962.

[6] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Design Automation Conference,
2001. Proceedings. IEEE, 2001, pp. 530–535.

[7] N. Sörensson and N. Een, “Minisat v1. 13-a sat solver with conflict-
clause minimization,” SAT, vol. 2005, p. 53, 2005.

[8] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM (JACM), vol. 7, no. 3, pp. 201–215, 1960.

[9] R. Dechter and I. Rish, Directional resolution: The davis-putnam pro-
cedure, revisited. Citeseer, 1994.

[10] I. Rish and R. Dechter, “Resolution versus search: Two strategies for
SAT,” Journal of Automated Reasoning, vol. 24, no. 1, pp. 225–275,
2000.

[11] P. Beame, H. Kautz, and A. Sabharwal, “Understanding the power
of clause learning,” in International Joint Conference on Artificial
Intelligence, vol. 18. Citeseer, 2003, pp. 1194–1201.

[12] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Communications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[13] D. Mitchell, B. Selman, and H. Levesque, “Hard and easy distributions
of SAT problems,” in Proceedings of the National Conference on
Artificial Intelligence. Citeseer, 1992, pp. 459–459.

67

