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Abstract—This paper considers bounded model checking for
extended labeled transition systems. Bounded model checking
relies on a SAT solver to prove (or disprove) the existence of
a counterexample with a bounded length. During the translation
of a BMC problem to a SAT problem, much useful information is
lost. This paper proposes an algorithm to analyze the transition
system model, and then utilize the structure information hidden
in the model to refine the decision ordering of variables in SAT
solving. The basic idea is to guide the search process of SAT
solving by the structure of the transition system. Experiments
with this heuristic on real industrial designs show 5-12 times
speedup over standard bounded model checking.

I. INTRODUCTION

Bounded model checking (BMC) [1] has been widely
accepted as a complement to BDD-based model checking, and
has achieved great successes in a large number of industrial
cases. It limits the search to a bounded length, and reduces the
model checking problem to a propositional satisfiability prob-
lem, which can be solved by a SAT solver. The performance
of BMC depends heavily on the efficiency of the SAT solver.

Most works on BMC are conducted on the state machine
model. However, for specifying sophisticated behaviors of
embedded systems, an event-based formalism is a necessity.
This paper considers BMC for extended labeled transition
systems. Of course an extended labeled transition system
can be translated to a state machine, and then the BMC
problem can be encoded similarly as a SAT problem. However,
during such translation, much useful information stored in the
transition system is lost.

Consider an extended labeled transition system shown in
Fig. 1, which consists of 4 locations and a data variable x
ranging from 0 to 15. Assume that we are about to verify the
property AG(x! = 15), and the search length is 8, the BMC
problem is formulated as a SAT problem and then fed to a
modern SAT solver (minisat2-070221). It takes the SAT solver
up to 156 variable decisions1 to give the result. However, by
looking at the model, only at location s0 is there a fork. So
we need only choose branch at location s0. For any path of
length 8, 3 decisions should be enough.

Encoding of the BMC problem takes 6 Boolean variables
(2 for encoding the locations, and 4 for encoding the data).
The SAT solver treats all these Boolean variables alike when

1Variable decision: when a SAT solver cannot deduce anymore, it selects a
variable and then guesses its value.

0

1

2

3

Fig. 1. A simple example for BMC

branches in the search tree. As a result, many unreachable
states may be explored by the SAT solver. Consider the
example in Fig. 1: given any path of length 8, the only
reachable location is s3. This is obvious by looking at the
structure of the model. However, when a SAT solver makes
decisions in the search tree, all this information is lost. As
a result, the SAT solver may lead the search tree in the
eighth step to any location, including s0 to s2. It will be very
time-consuming for the SAT solver to resolve the unreachable
locations.

To avoid such situation, the basic idea is to keep and utilize
the structure information of the model in SAT solving. We
define a transition variable for each transition in the model.
During the SAT solving, the transition variable is assigned
higher priority than other variables to be chosen as a decision
variable. Among the many transition variables, their priorities
are assigned following the structure of the transition system.
In this way, the structure information is utilized to guide the
search process of the SAT solver.

The strategies are realized in VCS2, a model checker for
component-based systems in the BIP language [2]. Experi-
ments with this heuristic on real industrial designs show 5-12
times speedup over standard bounded model checking.

A. Related Work

There are some works on utilizing circuits’ structure to
speedup the SAT solving. In [3], Kuehlmann et al. uses
circuit specific knowledge to guide the search of SAT solving.
In [4], Gupta et al. explores implications learned from the
circuit structure to help the SAT solving. For a CNF with no
structure information, Ostrowski et al. [5] suggests recovering
and exploiting structural knowledge to eliminate clauses and
variables.

2http://code.google.com/p/bip-vcs/
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There are also some works carried out to exploit the
characteristics of BMC to refine the SAT decision ordering.
In [6], the authors identifies important variables from previous
unsatisfiable BMC instances, and makes decisions first on the
important variables to solve the current instance. The work
most related with ours is [7]. It suggests predetermining a
static order, following either a forward or backward Breadth-
First Search (BFS) on Variable Dependency Graph (VDG). But
the strict backward or forward BFS will make the method to
be explicit. So it suggests triggering the BFS with a set S of
small number of variables from each cycle. In our method, as
our algorithm is limited to transition systems, so transition
variables can be an appropriate trade-off between explicit
enumerations and reducing unreachable states.

The rest of the paper is organized as follows. Section II
introduces the preliminaries. Section III-A defines the transi-
tion variables, Section III-B presents our decision heuristics,
and Section III-C gives the BMC algorithm enhanced by our
heuristics. Section IV reports the experimental results. Finally
Section V concludes this paper.

II. PRELIMINARIES

A. Extended Labeled Transition System

A labeled transition system (LTS) is a tuple 〈L,L0,P, T 〉,
where L is a set of local states, L0 ⊆ L is a set of initial
states, P is a set of labels, and T ⊆ L × P × L is a set of
transitions.

An extended labeled transition system (ELTS) E is a tuple
〈L,L0,P, T ,v, {gt}t∈T , {αt}t∈T 〉 where 〈L,L0,P, T 〉 is a
LTS; v is a set of local variables; {gt}t∈T is a set of predicates
on v, and for each transition t ∈ T , gt is the guard that enables
t ; {αt}t∈T is a set of predicates on the current and next-state
variables {v,v′}, and for each transition t ∈ T , αt is the
function that updates the values of variables in v.

Given a set of ELTSs {E1, E2, · · · , En}, denote Ti the set
of transitions of Ei. A communication γ is a set of transitions
trans(γ) which have to execute synchronously. trans(γ) ⊆⋃n

i=0 Ti, and for any ELTS Ei, trans(γ)∩ Ti ≤ 1. In γ, there
may be some data exchanges among the ELTSs in dom(γ).

An asynchronous system (AS) A is a pair 〈E ,Γ〉, where E =
{E1, E2, · · · , En} is a set of ELTSs, and Γ = {γ1, γ2, · · · , γm}
is a set of communications on E . In the concurrent semantics,
each ELTS in A should execute separately, except that those
transitions participating the same communication should ex-
ecute at the same time. A single ELTS E can be seen as a
special AS A = {{E}, ∅}.

Given an AS A = 〈E ,Γ〉, the internal transitions of any
Ei ∈ E are those ones that do not join any communication of
Γ. The set of global transitions of an AS A is denoted by T.
∀t ∈ T, it can be either an internal transition t of any Ei ∈ E ,
or a communication γi ∈ Γ.

Denote x and x′ the current and next-state variables of A
respectively, and let Ft be the symbolic representation of the
global transition t, then the transition relation R of an AS A
can be formulated as

R(x,x′) =
∨

t∈T

Ft(x,x
′) (1)

The AS A can be formulated as a Finite State Machine
(FSM) M = (x, I(x),R(x,x′)) where x is the set of state
variables of A, I(x) is the initial predicate, and R(x,x′) is
the transition relation.

B. Bounded Model Checking

Given a FSM M = (x, I(x),R(x,x′)) and a safety
property φ(x), the existence of a counterexample of length
k can be reduced to a SAT problem, i.e.

Ω(k) = I(x0) ∧ (
k−1∧

i=0

R(xi,xi+1)) ∧ (
k∨

i=0

¬φ(xi)). (2)

Note that Ω(k) is a Boolean formula, which is first con-
verted to the conjunctive normal form (CNF), and then solved
by a SAT solver. Property φ is false iff there exists some k so
that Ω(k) is satisfiable.

C. SAT Solving

Given any propositional formula f , it can be converted to
CNF in linear time by introducing intermediate variables [8]
[9]. In most of the CNF conversion algorithms, a new name
is given to every sub-formulae of f , which is known as the
definitional clause, and the resulting CNF is equisatisfiable to
the original formula f . For example, formula f = ((a ∧ b) ∨
c)∧d can be represented by formula set S = {x ⇔ a∧b, y ⇔
x ∨ c, z ⇔ y ∧ d, z} where each subformula t ∈ S can be
converted to clauses trivially.

Most modern SAT solvers are variants of the DPLL algo-
rithm [10], which is based on the Depth-First Search (DFS)
on the variable space. In the beginning, the DPLL algorithm
selects a variable and assigns it true or false. This process is
called making a decision. A clause is a unit clause if it has
only one free literal and all the other literals are false. To
make a unit clause satisfiable, the free literal must be set to
true, and then this literal is called a propagated literal. The
process of propagating literals iteratively is called Boolean
constraint propagation (BCP). A DPLL algorithm iteratively
makes decisions and applies BCP, until either a satisfiable
assignment is found or the search tree has been fully explored.
For a DPLL algorithm, the number of decisions it makes and
the number of literals it propagates reflect the size of the search
tree and can be used to evaluate the efficiency of the SAT
solver.

III. OUR APPROACH

A. Transition Variable

To convert the transition relation R to a CNF, for each
global transition t, we need to add one intermediate variable,
i.e.

R =
∨

t∈T

Ft =
∨

t∈T

vt ∧
∧

t∈T

(vt ⇔ Ft). (3)

Definition 1: When converting the transition relation R to
a CNF, the intermediate variable vt added for each transition
t is called a transition variable.

Note that these transition variables are needed to convert
R to a CNF. So in our algorithm, we do not add any new
variable.
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B. Heuristics for SAT Decision Ordering

A SAT solver is essentially a DFS algorithm, which it-
eratively makes decisions on unassigned variables. When a
SAT solver makes a decision, it prefers choosing the variable
leading to the maximal propagations. Many heuristics have
been proposed to evaluate variables dynamically [11]. Each
time a SAT solver makes a decision, it chooses the variable
with the greatest evaluation value. For example, DLIS is a
heuristic strategy which prefers choosing the literal with the
most occurrences in the unassigned clauses.

The basic idea here is that the decision variable should
deduce as much as possible from other variables, so that
assigning values to this variable can lead to more propagation
than other variables. A transition variable in R(xk,xk+1)
bridges two big sets of system variables, that is xk and xk+1.
Intuitively, decision on transition variables may lead to a large
number of unit clause propagations.

Rule 1: Transition variables have higher priority than other
variables in the SAT decision ordering.

Formally, let  be the partial order on variables, x1  x2

means x1 is preferred over x2 to be selected as the decision
variable. Rule 1 states that transition variables lead all other
variables in the partial order.

Rule 2: The transition variables in the early system evo-
lution have higher priorities than those in the later system
evolution in the SAT decision ordering.

More formally, the transition variables in R(xk,xk+1)
has higher priorities than those in R(xk+1,xk+2). According
to the semantics of asynchronous systems, in each system
evolution only one transition can be taken, and the transition
taken in the next evolution must be a successor of the current
one. Rule 2 attempts to limit the search following the structure
of the transition system. In other words, Rule 2 makes the SAT
search explicitly on locations, and it can prune a large number
of unreachable branches in the search tree.

Consider the example shown in Fig. 1 again. Since a tran-
sition variable can be set true only if its preceding transition
has already been taken, the search path of length 8 will never
come to s0, s1 and s2.

To realize the heuristics, we use an array priority to store
the priority of each variable. Given k the search length of
BMC, Δi the set of transition variables in R(xk,xk+1), we
assign each transition variable with priority,

priority[v] = k + 1− i, for v ∈ Δi, 0 ≤ i ≤ k (4)

and all other variables with priority 0. In our algorithm, the
SAT solver always selects the unassigned variable with the
highest priority to make the decision. If several variables have
the same priority, it relies on the default heuristic, like DLIS
and VSIDS, to make decision.

After a variable being selected, the next step is to determine
its value. There are many heuristics on deciding the variable’s
value [11]. In our algorithm, if a transition variable (with
priority greater than 0) is chosen, its value is constantly set to 1,
since we want to take the corresponding transition; otherwise,
the value is determined by the default heuristics of SAT solver.

C. Enhanced Bounded Model Checking

The standard BMC algorithm is enhanced with our variable
decision heuristic, as shown in Algorithm 1. It accepts 4
parameters, i.e. the initial predicate I, the transition relation
predicates R, the safety property φ and the maximal search
length D. The search length for BMC increases from 0 to D.
With each determined search length, the cnfConvert function
reduces the BMC problem to a SAT formula according to
Eq. (2), and then converts it to CNF. The priorities of variables
are also computed in the cnfConvert function, according to
Eq. (4). The satisfiability of the formula is then solved by a
SAT procedure. Note that the array priority is also provided
to assist the SAT solving. The algorithm terminates with a
counterexample ce if the SAT procedure returns SAT , other-
wise it iterates the process with the search length increased by
1.

Algorithm 1 Enhanced BMC Algorithm bmc∗

Require: I, R, φ, D
1: for k = 0 to D do
2: (Ω, priority) = cnfConvert(I,R, φ, k)
3: (ret, ce) = satSolve(Ω, priority)
4: if ret == SAT then
5: return ce
6: end if
7: end for

IV. EXPERIMENTAL RESULTS

Our enhanced bounded model checking algorithm is im-
plemented in VCS, a verifier for component-based systems,
which accepts models described in BIP language [2]. A small
tool is implemented to extract SMV models from BIP models.
The method is that, a FSM M = (x, I(x),R(x,x′)) can be
easily written in SMV format using the {VAR, INIT, TRANS}
operators. Our approach is compared to the existing bounded
model checking algorithm implemented in NuSMV-2.5.33 (the
base step of een-sorensson algorithm). The involved SAT
solver in both VCS and NuSMV is minisat2-0702214. All
experiments are conducted on a computer with a Intel 2.67GHz
CPU and 4GB memory.

In this paper, we consider 3 examples taken from real
industry. The first example is a data processing unit (DPU)
used in a space vehicle [12], which continuously collects data
from sensors, processes the data and then sends results to
the master computer. The second example is a gate control
system (GCS), which is used in LingShan Buddhist Palace
in Jiangsu, China [13]. The third example is a real time
protocol (RTP) used in the train communication network (IEC
61375). Additionally, two examples from BIP’s website4 are
also considered: the ATM example and the dining philosophers
problem (DPP).

All experimental results are listed in TABLE I, where “Ex-
ample” column shows the name of the models, “Prop” column
gives the property name it verifies, “Step” column lists the
search length for the model checker to find a counterexample,
“Time” column gives the run time (in seconds) for NuSMV

3http://nusmv.fbk.eu/
4http://minisat.se/MiniSat.html
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TABLE I. EXPERIMENTAL RESULTS

Example Prop Step
Time(s) Decisions(×103) Propagations(×106) Prop/Dec

NuSMV bmc bmc∗ bmc bmc∗ bmc bmc∗ bmc bmc∗

DPU p1 24 5.01 1.08 0.09 128.89 0.28 2.98 0.26 23 947
DPU p2 26 6.59 1.46 0.15 164.52 0.33 3.81 0.34 23 1005
DPU p3 32 14.4 4.00 0.39 354.35 0.66 10.74 0.93 30 1407

GCS p1 46 36.72 24.80 4.61 849.74 2.81 169.45 33.79 199 12044
GCS p2 54 224.31 119.50 11.59 1748.37 8.39 845.02 84.32 483 10055

RTP p1 30 - 134.71 17.74 1167.93 56.31 157.96 73.78 135 1310
RTP p2 30 - 195.87 16.93 1348.60 57.12 184.58 72.27 137 1265
RTP p3 33 - 184.64 30.35 1549.05 95.97 204.72 129.36 132 1348
RTP p4 30 - 105.82 18.11 1043.50 58.29 136.52 74.45 131 1282

ATM p1 15 - 627.81 98.26 3140.70 388.68 232.50 136.92 74 352
DPP p1 10 33.01 6.62 44.69 150.13 377.13 9.26 99.50 62 264

(with the een-sorensson algorithm), bmc (the standard BMC
algorithm in VCS) and bmc∗ (our enhanced BMC algorithm
in VCS), “Decisions” and “Propagations” columns list the
total number of decisions (×103) and the total number of
propagations (×106) made by the SAT solver of bmc and bmc∗
respectively, and “Prop/Dec” gives the ratio of “Propagations”
to “Decisions”. If a checker runs out of memory or fails to
give the result in 900 seconds, “-” is marked in the table.

Comparing bmc to NuSMV, we observed that bmc runs
a bit faster than NuSMV for all examples. We believe this
performance improvement is due to the new CNF conversion
methods implemented in VCS. Comparing bmc to bmc∗, we
observed that bmc∗ runs much faster for the first 3 examples,
where each model contains plenty of local variables. The least
speedup is 5 times (with model GCS and property p1), the
greatest speedup is 12 times (with model DPU and property
p1), and the average speedup is 8 times. For the remaining
two examples from BIP website, bmc∗ run faster for ATM but
slower for DPP. This is reasonable since the models for these
two examples contain no local variable, which may bring our
technique into an explicit metod.

From Table I, we also observed that for the first three
examples, the numbers of decisions and propagations made
by bmc∗ are much less than those made by bmc. In total,
the number of decisions has been reduced by 97%, and the
number of propagations has been reduced by 73%. This finding
supports our fist observation on the performance improvement
of bmc∗ over bmc.

By looking at the last two columns, we observed that for
the examples with plenty of local variables, the number of
propagations per decision in bmc∗ is 10+ times larger than
that in bmc. Note bmc∗ uses our heuristic, while bmc uses
VSIDS. As we discussed in section III-B, a better heuristic
for SAT decision result in more unit clause propagations. This
finding gives an evidence for the superiority of our heuristic.

V. CONCLUSION

This paper considers bounded model checking for extended
labeled transition systems. It proposed an enhanced BMC
algorithm with optimized SAT decision ordering. This ordering
is based on the so called transition variables, which can be
used to prune lots of unreachable branches in the search
tree. Experiments on real industrial designs show significant
performance improvement of our algorithm over the standard
bounded model checking.
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