
Integrating Evolutionary Computation with
Abstraction Refinement for Model Checking

Fei He, Xiaoyu Song, William N.N. Hung, Ming Gu, and Jiaguang Sun

Abstract—Model checking for large-scale systems is extremely difficult due to the state explosion problem. Creating useful

abstractions for model checking task is a challenging problem, often involving many iterations of refinement. In this paper we consider

techniques for model checking in the counterexample-guided abstraction refinement. The state separation problem is one popular

approach in counterexample-guided abstraction refinement, and it poses the main hurdle during the refinement process. To achieve

effective minimization of the separation set, we present a novel probabilistic learning approach based on the sample learning

technique, evolutionary algorithm, and effective heuristics. We integrate it with the abstraction refinement framework in the VIS [1]

model checker. We include experimental results on model checking to compare our new approach to recently published techniques.

The benchmark results show that our approach has overall speedup of more than 56 percent against previous techniques. Our work is

the first successful integration of evolutionary algorithm and abstraction refinement for model checking.

Index Terms—Formal models, verification.

Ç

1 INTRODUCTION

FORMAL property verification is assuming growing im-
portance as digital designs grow in complexity and

traditional validation techniques struggle to keep pace.
Formal methods introduce mathematical rigor in their
analysis of digital designs thereby guaranteeing exhaustive
state space coverage.

Model checking is a popular formal verification techni-
que. However, model checking for large-scale systems is
extremely difficult due to the state explosion problem.
Many techniques have been developed to ameliorate this
problem. Abstraction is one of the most important techni-
ques. The essence of abstraction is to eliminate the irrelevant
information to reduce the system model. But coming up
with a useful abstraction for the model checking task is
often a challenge, especially for large systems. The
abstracted system must be small enough to avoid state
explosion during model checking, yet preserve the logical
correctness of the property which was intended for the
original large system. If the model checking found a
counterexample on the abstracted system, we need to
reproduce the counterexample on the original system. If
the counterexample cannot be reproduced within the

original system, it is a bogus counterexample. We need to

create a different abstraction (a refinement) and conduct

model checking again. Hence, finding a good abstraction is

usually a tedious manual process. There are many types of

abstraction for model checking large industrial designs [2],

[3]. Nevertheless, most of the practical abstraction techni-

ques involve expert users who are familiar with both the

design under verification and model checking. Such high

entrance bar is a bottleneck to widespread adoption of

model checking.
As a step towards enabling automated abstraction for

formal verification, counterexample-guided abstraction re-

finement (CEGAR) [4] has been developed to allow iterative

abstraction with model checking. In CEGAR, the verifica-

tion is performed in an abstract-check-refine fashion, and

the refinement is guided by counterexamples. The counter-

example contains the critical clues about the cause of the

violation. If there exists a real path in the concrete model

that simulates the counterexample, one can find a real bug,

otherwise the counterexample is spurious and one has to

refine the abstract model to eliminate such a spurious path.

1.1 Our Contribution

In this paper, we focus on CEGAR in verification of digital

systems. We consider the strategy proposed in [5], where

the abstraction is performed by making a set of latches or

variables invisible. Consider an abstract counterexample

P̂ ¼ hI; II; III; IVi shown in Fig. 1. It is spurious since there

is no corresponding path in the concrete model. To

eliminate the counterexample, the abstract model must be

refined. That is, we need to distinguish the set of states

f7; 8g and f9g. As in [5], the set of states f7; 8; 9g is defined

as failure states. The sets of states f7; 8g and f9g are defined

as Deadend and Bad sets, respectively. The State Separation

Problem (SSP) is to effectively separate the dead-end set and

bad set for the failure states.

116 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

. F. He, M. Gu, and J. Sun are with Tsinghua National Laboratory for
Information Science and Technology (TNList), and the School of Software,
Tsinghua University, Beijing 100084, China and the Key Laboratory for
Information System Security, Ministry of Education, Beijing, China.
E-mail: {hefei, guming, sunjg}@tsinghua.edu.cn.

. X. Song is with the Department of Electrical & Computer Engineering,
Portland State University, PO Box 751, Portland, OR 97207-0751.
E-mail: song@ece.pdx.edu.

. W.N.N. Hung is with Synopsys, Inc., Verification Group, Mailstop: A-21,
700 East Middlefield Road, Mountain View, CA 94043.
E-mail: William.Hung@synopsys.com.

Manuscript received 14 Sept. 2008; revised 24 Apr. 2009; accepted 21 May
2009; published online 22 July 2009.
Recommended for acceptance by S. Shukla.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-09-0467.
Digital Object Identifier no. 10.1109/TC.2009.105.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

In realistic systems, the size of failure states is usually
very large. Moreover, since the state separation problem is
embedded in the abstract-check-refine iteration, each time a
spurious counterexample is found, a solution to the SSP
needs to be provided. Thus, there is a strong demand for the
effectiveness of SSP solvers in terms of time and memory.

We propose a novel probabilistic learning (PL) approach
to SSP, which utilizes the sample learning technique,
evolutionary algorithm (EA) and effective heuristics. We
integrate our idea into the abstraction refinement frame-
work of the VIS [1] model checker. Experimental results
demonstrate the promising performance of our approach.
Experiments on model checking indicate that our approach
has overall speedup of 56 percent and 199 percent against
recent published techniques in [5] and [6], respectively.

1.2 Prior Work

One of the pioneer works of CEGAR is Kurshan’s
localization reduction [7], where the abstract-check-refine
paradigm was first proposed. In other approaches, such as
[8], [9], the abstraction refinement schedule was determined
using structural information of the model. A “goal set” of
states is derived in [10] to refine successively, with respect
to this goal set, the approximations made in the subformu-
las (of the CTL model checking), until the formula is
verified or computational resources are exhausted.

There are many variations of the basic CEGAR [5], [6],
[11], [12], [13], [14], [15], [16]. Most of them use a model
checker (or symbolic analysis) and try to get rid of the
spurious counterexample to reach a concrete counter-
example or a proof of the property. Other recent methods
on automatic abstraction [17], [18], [19], [20] employ the
unsatisfiable core saved in the SAT solver, and the
abstraction is based on the proofs provided by the SAT
solver, but not on refuting the counterexamples.

In [15], the “hybridization effect” induced by the choice
of projection (abstraction) is identified as the cause of the
abstraction failure. A heuristic based on Hamming Distance
is proposed to improve the choice of projections, hence
refining the abstraction.

Predicate abstraction [21] is used in the refinement
process of [13], [22], where a finite set of predicates is
defined over the set of concrete state variables, such that
each predicate corresponds to a fresh Boolean variable. The
main disadvantage of predicate abstraction is that abstrac-
tion computation is very expensive.

The basic format of CEGAR framework has been used in
commercial formal and semiformal verfication tools [14],
[23], [24]. Automatic test-pattern generation and min-cut
analysis are used during the counterexample analysis phase
[23], [24]. Multiple Counterexample-based heuristic is also
used to guide the refinement process [14].

In [11], an integer linear programming (ILP) model for
the minimal state separation problem (MSSP) has been
presented, and both an ILP solver and a decision tree
learning (DTL) solver are employed for solving this
problem. The general ILP solver attempts to enumerate the
solution space to find the optimal solution for the state
separation problem. However, since the minimal state
separation problem is NP-hard, it is infeasible for the
ILP solver to find the solution when the problem size is
large. Note that we do not necessarily need the solution to
be minimal. An approximate optimum may still be good
enough for the refinement process; nevertheless, the result-
ing refined model may be slightly bigger.

In [5], an improved solver was proposed, which is based
on decision tree learning. The DTL algorithm trains the
decision tree based on input examples. It utilizes the well-
trained decision tree to classify data. With some adjust-
ments on the parameters, the DTL algorithm is used to
solve the state separation problem, and the structure of its
decision tree just gives a possible solution. Obviously, the
DTL approach is an approximate method. Its solution
precision relies on the number of input examples. If there
are a sufficient number of examples, the solution could be
guaranteed. However, if the input examples are too many,
the time cost is extremely high. Thus, there is a trade-off
between the solution precision and the solving cost.
Furthermore, in coping with the large problem size, an
efficient sampling technique has been applied to the
DTL solver. Experimental results show that DTL solver
with efficient sampling technique (for short, SDTL) outper-
forms the ordinary DTL solver [11].

In [6], an abstraction refinement method based on
simultaneous analysis of all abstract counterexamples of
the shortest length was presented. A multithread concreti-
zation technique was used to test all the counterexamples.
To validate this method, a GRAB package has been
implemented in VIS verification system [1]. That paper also
presented experimental comparisons of various refinement
algorithms including [5], [11], [12], and their impact on the
overall performance of the CEGAR loop. The comparison
[6] indicates the GRAB package is a very competitive

HE ET AL.: INTEGRATING EVOLUTIONARY COMPUTATION WITH ABSTRACTION REFINEMENT FOR MODEL CHECKING 117

Fig. 1. A spurious counterexample.

CEGAR implementation. Hence, we also compare our
approach with the GRAB implementation in Section 5.

Some efficient heuristics for refinement variables selec-
tion were presented in [16]. To the best of our knowledge, it
is the first study on the effectiveness of greedy heuristics for
the state separation problem. Experimental results show the
promising performance of these heuristics. This paper
builds on [16] by extending these heuristics into a novel
probabilistic learning approach.

An early version of our research was published in [25].
That paper presented the basic idea of using evolutionary
algorithm in the state separation problem for abstraction
refinement in model checking. The main drawback of that
paper lies in its experimental parts. It showed only simple and
trivial examples which were randomly generated. It lacked
the linkage with a real model checker and did not provide
any evidence to demonstrate its effectiveness in the entire
abstraction refinement flow. In this paper, we chose VIS as
our model checker platform and implemented the entire
strategy. In addition, extended comparison tests have been
performed. Now we can demonstrate the effectiveness of our
method in the whole abstraction refinement flow.

1.3 Organization of this Paper

The remainder of the paper is organized as follows: In
Section 2, we introduce some preliminaries. In Section 3, we
formally define the problem. In Section 4, we present our
probabilistic learning approach. The experimental results are
reported in Section 5. Finally, Section 6 concludes the paper.

2 PRELIMINARIES

We use state transition systems to model systems. Given
a nonempty set of atomic propositions AP , let M ¼
hS; S0; R; Li be a transition system where

. S is the set of states.

. S0 � S is the set of initial states.

. R � S � S is the transition relation.

. L : S ! 2AP is the labeling function.

Let V ¼ fv1; v2; . . . vjV jg be the universal domain of
system variables. We assume that the variables in V range
over a finite set D. Atomic propositions are built from
variables in V , constants in D and relation symbols, i.e.,
v1 � 2 > 0. A valuation for V corresponds to a state in S.

As in [5], we think of V as two parts: the set of visible

variables (denoted as VS) and the set of invisible variables
(denoted as VN). Invisible variables are those that we will
ignore when building the model. For example, consider a
digital system with latches. The subset of latches that we are
interested are considered as visible variables, while the
remaining latches are regarded as invisible.

In the original (nonabstracted) model, all system
variables are visible. The abstraction process is essen-
tially selecting some variables to be invisible. Conversely,
the refinement process is to convert some of the invisible
variables to visible.

Let M be the original model. An abstraction function h is
defined as a surjection h : S ! ~S. Given a concrete state
s 2 S, we denote hðsÞ the abstract state to which it is

mapped by h. Accordingly, given an abstract state ~s, we
denote h�1ð~sÞ the set of concrete states s such that hðsÞ ¼ ~s.

Given the original modelM and an abstraction function h,
the abstract model ~M ¼ h ~S; ~S0; ~R; ~Li is defined as follows [4]:

. ~S ¼ f~s j 9s 2 S; hðsÞ ¼ ~sg.

. ~S0 ¼ f~s j 9s 2 S0; hðsÞ ¼ ~sg.

. ~R ¼ fð ~s1; ~s2Þ j 9s1 2 S; s2 2 S;Rðs1; s2Þ ^ hðs1Þ ¼ ~s1 ^
hðs2Þ ¼ ~s2g.

. ~Lð~sÞ ¼
S
hðsÞ¼~s LðsÞ.

Note that in above definition we require the abstraction
function to be conservative. Such a conservative translation
may introduce additional behaviors into the abstract model.
Consider the example shown in Fig. 1, after mapping the
concrete states 7, 8, 9 to III, and 10 to IV, respectively, the
additional transitions 7! 10; 8! 10 are added implicitly to
the abstract model.

A path in M is a sequence of states, s1; s2; . . . ; sm, where
Rðsi; siþ1Þ holds for any i < m. Given an abstract path ~P ¼
h ~s1; ~s2; . . . ~smi in ~M and a concrete path P ¼ hs1; s2; . . . smi in
M, we define the simulation relation � as

P � ~P () s1 2 S0 and

s1 2 h�1ð ~s1Þ; s2 2 h�1ð ~s2Þ; . . . sm 2 h�1ð ~smÞ:
ð1Þ

In the counterexample-guided approach, if we find a
counterexample ~P in the abstract model, we check if there is
a concrete path P in M such that P � ~P . If it is true, we have
a real bug. Otherwise, the counterexample is spurious. In
the case of the spurious counterexample, we need to
compute the failure index iF , i.e., the maximal index
iF ; iF < m, such that there exists a concrete path in M
which simulates the iF prefix of ~P . With the failure index,
we define the failure states to be the set of concrete states
F ¼ h�1ð ~siF Þ in M. Consider the example in Fig. 1, the
failure index is III, and the failure states are 7, 8, and 9.

The failure states can be partitioned into three sets.

1. The set of dead-end states Fd: s 2 Fd if and only if

. s 2 F ;

. there exists a concrete path to s which simulates
the iF prefix of ~P .

2. The set of bad states Fb: s 2 Fb if and only if

. s 2 F ;

. there exists no concrete path to s which
simulates the iF prefix of ~P ;

. there exists a transition from s to some states in
h�1ðsiFþ1Þ.

3. F � Fd � Fb.
Consider the example shown in Fig. 1, the states 7 and 8 are
dead-end states, and the state 9 is a bad state.

3 STATE SEPARATION PROBLEM

A state is a group of valuations for all variables in V . We use
s7!v to denote the valuation of a state s for the variable v.
Given a dead-end state s 2 Fd and a bad state t 2 Fb, they
cannot be distinguished in the abstract model, that is

8v 2 VS; s 7!v ¼ t7!v:

118 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

We want s and t be separable in the refined model. Here
goes the state separation problem.

Definition 1. The SSP [5] is to find a subset � of the invisible
variables in VN such that

8s 2 Fd; 8t 2 Fb; 9v 2 �; s7!v 6¼ t7!v: ð2Þ

The set � is named as separation set. We usually want the
separation set to be as minimal as possible so that the
corresponding refined model is minimal. This problem is
known as the minimal state separation problem (MSSP).

Consider the abstract counterexample P̂ ¼ hI; II; III; IVi
shown in Fig. 1. It is spurious since there is no correspond-
ing path in the concrete model. For this instance, the failure
states are 7, 8, and 9. To eliminate the counterexample, we
need to make some variables visible to distinguish the sets
of states f7; 8g and f9g.

In realistic systems, the size of failure states is usually
very large. Moreover, since the state separation problem is
embedded in the abstract-check-refine iteration, each time a
spurious counterexample is found, a solution to the SSP
needs to be provided. Thus, there is a strong demand for the
effectiveness of SSP solvers in terms of time and memory.

In the following, we first prove that the set covering
problem is reducible to the MSSP. Then, we present a new
mathematical model for MSSP.

Definition 2. Given a pair of states hs; ti; s 2 Fd; t 2 Fb, if there
exists a variable v, such that s 7!v 6¼ t7!v, we say that state pair
hs; ti is covered by the variable v.

With the concept of covering, the state separation
problem can be redefined as follows:

Definition 3. The SSP is to find a subset � � VN such that it
covers all elements in Fd � Fb. The MSSP is the optimization
version of SSP which requires the subset � to be minimal.

The set covering problem [26] is a famous NP-hard
problem. We prove the NP-hardness of MSSP by reducing
the set covering problem to MSSP.

Definition 4. Given a universe U and a family S of subsets of U,
the set covering problem is to find a minimal subfamily C � S
of sets whose union is U.

Proposition 1. The set covering problem is reducible to MSSP.

Proof. Given a universe U and a family S of subsets of U,
consider U as Fd � Fb, and define a variable v for each
subset s 2 S. The set of all variables corresponds to the
family S. According to Definition 4, the set covering
problem is to find a minimal set � of variables v such that
it covers all elements in U. Obviously, it is an MSSP. tu

A failure state is not covered by any visible variable, we
need only consider its invisible part when given an MSSP. In
the following, we limit our discussion on invisible variables.

Assume there are n invisible variables, we denote a
failure state s as a vector of length n with s½i� ¼ s7!v; where
v is the ith invisible variable in VN .

Suppose we are given an MSSP instance with n invisible
variables and m state pairs. For simplicity, we use
pj; 1 � j � m, to denote a state pair in Fd � Fb, i.e.,

Fd � Fb ¼ fp1; p2; . . . ; pmg. We define the decision variables

as follows:

xi ¼
1; if vi 2 �;
0; else:

�

Assume pj ¼ hspj ; tpji, where

spj ¼ hspj ½1�; spj ½2�; . . . ; spj ½n�i

and

tpj ¼ htpj ½1�; tpj ½2�; . . . ; tpj ½n�i:

According to (2), pj must be covered by certain variable in

the separation set, i.e.

9vi 2 �; spj ½i� 6¼ tpj ½i�:

It is equivalent to

Xn
i¼1

ðspj ½i� � tpj ½i�Þ 	 xi
 1; ð3Þ

where � is the exclusive or operator, and xi the decision

variable of vi.
Let A ¼ faijgm�n be a coefficient matrix where

aij ¼ spj ½i� � tpj ½i�; for 1 � i � n; 1 � j � m:

Obviously, aij equals 1 if and only if the state pair pj is

covered by the variable vi. Then the MSSP can be

formulated as

min
Xn
i¼1

xi; where

Xn
i¼1

aijxi
 1; j ¼ 1; . . . ;m;

ð4Þ

xi ¼ f0; 1g; i ¼ 1; . . . ; n; ð5Þ

where (4) and (5) characterize the feasible solutions.

4 OUR APPROACH

During verification, the solutions of SSP do not need to be

exactly the minimum. Thus, it is possible to use some

approximate method to solve this problem. In [5], a decision

tree learning solver is proposed. In this paper, we present a

novel learning approach based on the sample learning

technique, evolutionary algorithm, and efficient heuristics.

Experimental results show the better performance of our

approach.

4.1 Sample Learning Technique

In practice, the number of failure states of SSP is very large. It

is not easy to determine the separation set for large-scale

systems. In [11], an idea of inferring the separation set by

learning from some selected samples, instead of the entire set,

was introduced. More formally, given a set of dead-end states

Fd and a set of bad statesFb, they looked for samplesSFd � Fd
and SFb � Fb, such that the minimal separation set computed

on SFd and SFb equals to that computed on Fd and Fb.

HE ET AL.: INTEGRATING EVOLUTIONARY COMPUTATION WITH ABSTRACTION REFINEMENT FOR MODEL CHECKING 119

We follow the basic idea in [11] and present a new
implementation for this technique. The main procedure of
our Sample Learning Approach (SLA) is shown in
Algorithm 1. The method avoids the complexity of SSP
by considering only samples of the set of state pairs. This
algorithm is iterative. By adjusting the parameters
MAX_ITER and MAX_SAM, we set the maximal number
of iterations and the maximal number of samples picked
in every iteration. A sample here is a pair of states
hs; ti 2 Fd � Fb. The algorithm picks MAX_SAM samples
in every iteration, among which only those that are not
covered by the present separation set (we call them
efficient samples) are added into the set SAMPLE. The
REQ_SIZE is a preassigned parameter. When there are
enough efficient samples generated, the set of samples
will be renewed, and then the separation set is computed.

Note that we use the covering concept to judge the
validity of the given samples. The samples that are already
covered by the present separation set will be directly
discarded. Given an appropriate value to the REQ_SIZE,
many samples will be discarded directly according to their
coverage to the present separation set, and thus the number
of SSP solver invocations will be greatly reduced.

Let Aj ¼ ha0j; a1j; . . . ; anji be the coefficient vector corre-
sponding to pj. According to (3), it is not difficult to
determine the coverage of pj to the present separation set �.
It is equivalent to testing true value of the following formula:

Xn
i¼1

aij 	 xi
 1: ð6Þ

The way we check the validity of samples is different
from that in [11] where a SAT-based method is used. Our
procedure is based on testing of (6), which is easy to be
performed and can always be accomplished in a constant
time. Reversely, the validity checking procedure in [11] is
SAT-based which may become slower when the size of
separation set increases.

Algorithm 1. Outline of the sample learning algorithm

1: � :¼ �
2: SAMPLE :¼ �

3: NEWSAMPLE :¼ �

4: for i :¼ 1 to MAX_ITER do

5: for j :¼ 1 to MAX_SAM do

6: pick the next sample hs; ti from Fd � Fb
7: if hs; ti cannot be covered by � then

8: NEWSAMPLE :¼ NEWSAMPLE [hs; ti
9: end if

10: end for

11: if sizeof(NEWSAMPLE)
 REQ_SIZE then

12: SAMPLE :¼ SAMPLE [NEWSAMPLE

13: call solver to compute � based on SAMPLE

14: NEWSAMPLE :¼ �
15: end if

16: end for

4.2 Probabilistic Evolutionary Algorithm

EA [27] is a powerful search and optimization paradigm. It
utilizes the principles of natural evolution and “survival of
the fittest.” Starting with a set of initial solutions,

evolutionary algorithms explore the solution space through
simulated evolution. In each generation, the solutions are
evaluated by their fitness. The more suitable they are, the
more chances they have to survive and be reproduced.

EA is a population-based algorithm, which manipulates
multiple solutions at the same time. Each solution is usually
encoded as a string of symbols or numbers, called a
chromosome. The number of chromosomes in the population
is a predetermined integer and is called population size. EA
uses evolutionary operators to evolve the population of
candidate solutions. The underlying operators are that of
crossover, mutation, and selection. In the beginning of each
generation, all chromosomes are updated by the crossover
and mutation operators. And then a proportion of the
existing population is selected to breed a new generation.
This process is repeated until a solution with sufficient
quality is found or a previously defined generation limit is
reached. The basic procedure of EA is shown in Algorithm 2.

Algorithm 2. Evolutionary algorithm

1: Generate an initial population

2: while not (terminal condition) do

3: Update the chromosomes by crossover and mutation

operations

4: Evaluate the fitness of each chromosome

5: Select chromosomes to form a new population

6: end while

There are many studies on applying evolutionary
algorithms to the set covering problem [28], [29], [30],
[31]. The experimental results listed in the above literatures
show good performance of applying EA to the set covering
problem. However, we cannot apply EA directly to the SSP
due to the huge number of failure states. SSP is essentially a
special case of set covering problem, where the number of
constraints is much more than the number of variables. By
applying the sample learning technique, we avoid the
complexity of such huge number of constraints. We use EA
as the central solver embedded in the learning structure
which is used to compute the separation set.

We reinforce the basic EA in a way such that problem-
specific knowledge is incorporated. We observe the follow-
ing properties in SSP, which derive the effective heuristics:

1. For a state pair, there may be multiple variables that
can cover it.

2. If the variables in a separation set cover all state
pairs in Fd � Fb, the corresponding solution is
already a feasible solution.

In order to get a feasible solution more quickly, an effective
strategy is to assign larger probabilities to the variables which
cover more state pairs. Denote EV ðvÞ the number of state
pairs covered by variable v. Based on the statistical analysis
on the sets of states Fd and Fb, the EV ðvÞ values for all
variables can be evaluated easily in advance of the execution
of our algorithm. More clearly, for each state pair hs; ti in
Fd � Fb, we increase EV ðviÞ by 1 when s½i� 6¼ t½i�; 1 � i � n.

4.2.1 Probabilistic Initialization

We use a n-bit binary string as the chromosome structure
where n is the number of invisible variables. A value of 1 for
the ith bit implies that the variable vi is selected into the
separation set.

120 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

We generate pop_size chromosomes to initialize the
population. To obtain a random chromosome, the involved
method acts as in Algorithm 3.

Algorithm 3. Initialize a chromosome

1: randomly generate an integer e ð0 � e � nÞ, and use it as

the size of the separation set.

2: randomly select e variables into the separation set.
3: the probability of each variable to be selected is

proportional to the number of state pairs it covers.

4.2.2 Probabilistic Mutation

Mutation operator acts on one chromosome and results in a
new candidate solution. Let Pm be the probability of
mutation. The number of chromosomes undergoing the
mutation operation is most likely Pm � pop size.

We adopt the two-point mutation approach. For a
traditional two-point mutation, it randomly selects two
points r1 and r2 in the chromosome, and then replaces the
value of every character between sites r1 and r2 with a
random value (0 or 1).

In our probabilistic two-point mutation, the mutation
sites r1 and r2 are selected similarly; however, the value of
each character between sites r1 and r2 are heuristically
replaced, as shown in Algorithm 4.

Algorithm 4. Mutate a chromosome

1: randomly generate an integer e (0 � e < r2 � r1).

2: randomly select e genes between sites r1 and r2 into the

separation set.
3: the probability of each gene between sites r1 and r2 to

be chosen is proportional to the number of state pairs

it covers.

4.2.3 Probabilistic Crossover

Crossover operator acts on two selected chromosomes
(called parents) and results in one or two new candidate
solutions (called children). Let Pc be the probability of
crossover. The number of chromosomes undergoing the
crossover operation is most likely Pc � pop size.

We adopt the uniform crossover operator, which is
claimed to have more recombination potential to combine
smaller building blocks into larger ones [32], [33]. The
uniform crossover usually works by first generating a
crossover mask and then creating a child solution. The
child solution is created by inheriting bits from parents.
The mask bits decide from which parent the correspond-
ing bits of the child can inherit.

Let P1 and P2 be the two parent chromosomes whose
encoding strings are P1½1�; . . . ; P1½n� and P2½1�; . . . ; P2½n�,
respectively. Let M be the mask string M½1�; . . . ;M½n�. The
child string C is created as

C½i� :¼
P1½i�; if M½i� ¼ 0;

P2½i�; if M½i� ¼ 1:

�

We follow the probabilistic crossover operator defined in
[28]. Empirical studies show that this crossover operator is
suitable for the set covering problem. Probabilistic cross-
over is derived from the standard uniform crossover. For
the probabilistic crossover operator, the probability of a
parent to be chosen for passing its variable to the offspring

is proportional to its fitness value. Formally, given
parents P1 and P2 the crossover mask M is generated as

M½i� ¼ 0; with probability p ¼ fitnessðP2Þ
fitnessðP1Þ þ fitnessðP2Þ

;

1; with probability 1� p;

8<
:

where the fitness function returns the objective value for
a solution.

4.2.4 Solution Improvement

When applying evolutionary operators to the chromo-
somes, the resulting solutions are no longer guaranteed to
be feasible. We implemented two strategies to deal with
infeasible solutions.

The first strategy is to apply penalty function to
deteriorate the optimality of an infeasible solution by
adding a penalty cost to its objective function. In our
approach, after the penalty function is applied, the
optimization model becomes

Minimize
Xn
i¼1

xi þ
Xm
j¼1

f
Xn
i¼1

aijxj
 1

 !
;

where fð	Þ is the penalty function for unsatisfying the
constraints (4). The penalty function has a strong influence
on the performance of the whole algorithm. In our approach,
we implement a simple and efficient penalty function as
follows:

fðxÞ ¼
0; if x is true;

BIGVALUE; otherwise:

(

The second strategy is to apply a heuristic operator to
transform the infeasible solution into feasible solution. We
implemented the heuristic feasibility operator proposed in
[28] with minor modifications. By applying this heuristic
operator, not only can the infeasible solutions be trans-
formed into feasible solutions, but also the feasible solutions
can be improved by eliminating the redundant variables.
The basic idea behind the operator is the greedy heuristic.
Algorithm 5 gives the framework of the operator.

Algorithm 5. Heuristic feasibility operator

1: for each Aj, compute the number of variables that are in

the separation set and can cover this row, i.e.,

nj ¼
Xn
i¼1

aijxi; for 1 � j � m:

2: while (9j 2 ½1;m�; nj ¼ 0) do

3: find the best variable v� which is not in the separation

set and can cover maximal number of uncovered rows,

i.e.,

max
n

i¼1

Xm
j¼1

ðni ¼ 0Þ ^ ðxj ¼ 0Þ ^ ðaij ¼ 1Þ
()

:

4: add v� into the solution and renew nj for each Aj.

5: eliminate the redundant variables, i.e., the variables
satisfying:

8j 2 ½1;m�; ðaij ¼ 1Þ ^ ðxi ¼ 1Þ ! nj
 2:

6: end while

HE ET AL.: INTEGRATING EVOLUTIONARY COMPUTATION WITH ABSTRACTION REFINEMENT FOR MODEL CHECKING 121

5 EXPERIMENTAL RESULTS

We implemented a PL solver based on our approach. Our
solver is written in C++ language, and computes the
separation set. To validate our approach, we compared
our solver to the basic evolutionary algorithm solver and
the previous published sampling decision tree learning
(SDTL) solver [5], [11]. The results are listed in Sections 5.1
and 5.2. We compared how fast and how efficient do these
solvers compute the separation set when given a set of
dead-end states and a set of bad states. The benchmarks in
Sections 5.2 and 5.1 are created using a random generator.

Note CEGAR is an iterative framework, which involves
the state separation problem in each of its iteration. We
want to validate that our approach is not only valuable to
the state separation problem, but also can be used to
improve the whole model checking. To validate this idea,
we implemented our algorithm and the SDTL algorithm in
the VIS [1] verification system. We compared the perfor-
mance of VIS model checking with our probabilistic
learning algorithm, with the SDTL algorithm, and with
the original GRAB [6] algorithm, respectively. The bench-
marks in Section 5.3 came from the VIS distribution [1], [34].

All experiments were run on a PC with Intel T2300
(1.66 GHz) CPU and 512 M RAM.

5.1 Our Solver versus EA

This experiment compares the performance of our solver to
the basic evolutionary algorithm. The efficiency of a solver
is evaluated by its runtime, and the solution quality is
evaluated by the size of its separation set.

The results are listed in Table 1. Benchmark is the name of
the tested benchmark. The benchmark’s name implies
relevant parameters. For example, name “ran k30
m500 n300” indicates that the number of invisible variables
is 30, the number of dead-end states is 500, and the number
of bad states is 300, respectively. The time column lists the

runtime in seconds, and the jSepSetj column gives the size of
the resulting separation set. To guarantee termination, we
impose a limit of two hours on the running time. We denote
by “N/P” in the time column the examples that could not be
solved in this time limit.

Since there is no sampling technique applied, all state
pairs are involved in the running of the basic EA. To
make a fair comparison, we make the sampling in our
solver to be performed successively, such that all state
pairs in Fd � Fb can be sampled. In comparison with the
two solvers, we observed that our solver can always find
a better solution in shorter runtime. The EA solver quickly
blows up as the problem size increases. Such phenomena
show that the sample learning technique and probabilistic
operators can greatly improve the performance of an
evolutionary algorithm.

We also sum up the efficient samples encountered in all
iterations, and compare it to the total number of samples
kFd � Fbk, the ratios are listed in the eff_ratio column. When
we consider the columns eff_ratio, we can observe that for
all benchmarks, the number of efficient samples is much
less than the total number of samples. In all cases, the ratios
of efficient samples to all samples are in the magnitudes of
10�2 to 10�4. Such phenomena showed the power of our
sample learning technique. With this technique, after an
initial separation set is obtained, most of the samples will be
discarded directly because they are already covered by the
current separation set.

5.2 Our Solver versus SDTL

This experiment compares the performance of our PL solver
to the SDTL solver [5], [11].

All results are listed in Table 2. The � and � columns give
the number of samplings, and the number of samples

122 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

TABLE 1
Our Solver versus EA

TABLE 2
Our Solver versus SDTL

picked in each sampling, respectively. Note that the
solution of SSP need not be exactly the minimum. Thus, it
is possible for us not to enumerate all state pairs in Fb � Fb.
The product �� � gives the total number of samples in all

sampling iterations. In this experiment, the value of � is
fixed to 500, while the value of � is associated to the number
of efficient samples found in the former experiment. Note
that if no information on efficient samples is given, the
value of � can be set to a predefined value too.

The results in Table 2 are arranged into six groups. In the
first two groups, we let the numbers of dead-end states and
bad states be fixed, and let the number of invisible variables
increase, we observed that all solvers’ runtimes increase in
most cases. In the last four groups, we fixed the number of
invisible variables, and let the number of dead-end states and
bad states increase. We observed that the SDTL solver
quickly blows up, whereas our solver still works well. Even
for the benchmarks that are solvable by both the solvers, the
runtime of our solver are two to four orders of magnitude
smaller than that of the SDTL solver. Regarding the
separation set size, the separation set found by our solver is
76 percent smaller than that by the SDTL solver on average.

5.3 Model Checking Experiments

To validate the merit of our approach to the whole model
checking, we implemented our PL algorithm and the
SDTL algorithm in the VIS [1] verification system. We
choose the GRAB package [6], which came with VIS as a
built-in package, to be our base verification framework for
comparison, because it is originally derived from CEGAR
and is reported to be a better abstraction refinement

HE ET AL.: INTEGRATING EVOLUTIONARY COMPUTATION WITH ABSTRACTION REFINEMENT FOR MODEL CHECKING 123

TABLE 3
Benchmarks’ Information

TABLE 4
Model Checking Experiments

technique. We compared the performances of VIS model
checking (using GRAB method) with above three kinds of
refinement algorithms enabled, respectively. For simplicity,
we use the algorithm name to denote the corresponding run
of model checking involving this algorithm, i.e., PL, SDTL,
and GRAB.

All benchmarks tested in this experiment came from the
VIS Verification Benchmarks [34]. Information about these
benchmarks are listed in Table 3. Column #inputs lists the
number of inputs, where the first integer gives the number
of primary inputs, and the second gives the number of total
inputs with all hierarchies. In the same way, column
#outputs lists the number of outputs. Column #latches gives
the number of latches in the model. Column #invs lists the
number of invariants to be validated on the model.

The results are listed in Table 4, where Prop column lists
the properties no., and Result column gives results for
verifying the property on the model, where value “Y”
means property passed and “N” means property failed.
Note that all the three solvers report same result for each
property on each model. The runtime (in seconds) for PL,
SDTL, and GRAB is listed in corresponding time columns.
In general, by looking at the sum row of Table 4, we can see
that PL outperforms both SDTL and GRAB in runtime.
Moreover, notice that GRAB blows up in BDD and times
out for two properties on the Needham design, while PL
and SDTL work well for all properties on all designs.

In Table 4, we also reported the refinement iterations and
image (including postimage and preimage) computations
involving in runs of model checking. Note that the
abstraction refinement framework of GRAB is a bit different
from ours, which involves multiple refinements within
one iteration, we compare only SDTL to PL with these
measures. By considering together the refinement iterations,
image computations, and runtime, we can find that the
refinement iterations have significant impact to others. With
the same benchmark, more refinement iterations usually
results in more image computations, hence longer runtime.

To further analyze the data in Table 4, we compared the
runtime of SDTL and GRAB to that of PL, and then plotted
them in Figs. 2 and 3, respectively. Among the 33 cases,
there are 24 cases where our solver runs faster than SDTL,
and 23 cases where our solver runs faster than GRAB. For
the 10 cases where our solver lost to GRAB, most of them
are simple which can be solved in 10 seconds. For most

complex cases, our solver beats GRAB. Note that the last
two columns in Table 4 give the runtime ratios of SDTL and
GRAB to that of PL. Consider all benchmarks, our PL solver
has total speedup of 1.56 (i.e., 56 percent) and 2.99
(i.e., 199 percent) against SDTL and GRAB, respectively.

6 CONCLUSION

In this paper, we investigated techniques for counter-
example-guided abstraction refinement in model checking.
The state separation problem is one popular approach in
counterexample-guided abstraction refinement, and it
poses the main hurdle during the refinement process. We
presented a novel probabilistic learning approach to solve
this problem, and integrated it with the abstraction
refinement framework in the VIS model checker. Experi-
mental results showed the efficiency and power of our
approach. Model checking experiments on the VIS Verifica-
tion Benchmarks indicate that our approach has overall
56 percent speedup against SDTL and 199 percent speedup
against GRAB. Our work is the first successful integration
of evolutionary computing and abstraction refinement for
model checking.

ACKNOWLEDGMENTS

This work was supported in part by the Chinese National
973 Plan under grant No. 2004CB719400, the National
Science Foundation of China under grant Nos. 60553002,
60635020, 60903030 and 90718039.

REFERENCES

[1] R.K. Brayton, G.D. Hachtel, A. Sangiovanni-Vincentelli, F.
Somenzi, A. Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y.
Kukimoto, A. Pardo, S. Qadeer, R.K. Ranjan, S. Sarwary, T.R.
Shiple, G. Swamy, and T. Villa, “VIS: A System for Verification
and Synthesis,” Proc. Eighth Int’l Conf. Computer-Aided Verification
(CAV), R. Alur and T.A. Henzinger, eds., vol. 1102, pp. 428-432,
1996.

[2] W.N.N. Hung and N. Narasimhan, “Reference Model Based RTL
Verification: An Integrated Approach,” Proc. IEEE Int’l High Level
Design Validation and Test Workshop (HLDVT), pp. 9-13, Nov. 2004.

[3] R.H. Beers, R. Ghughal, and M.D. Aagaard, “Applications of
Hierarchical Verification in Model Checking,” Proc. Formal
Methods in Computer-Aided Design, Nov. 2000.

[4] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counter-
example-Guided Abstraction Refinement,” Proc. Computer-Aided
Verification, pp. 154-169, 2000.

124 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

Fig. 2. Time speedup: SDTL versus PL. Fig. 3. Time speedup: GRAB versus PL.

[5] E.M. Clarke, A. Gupta, and O. Strichman, “SAT Based
Counterexample-Guided Abstraction-Refinement,” IEEE Trans.
Computer Aided Design, vol. 23, no. 7, pp. 1113-1123, July 2004.

[6] C. Wang, B. Li, H. Jin, G.D. Hachtel, and F. Somenzi, “Improving
Ariadne’s Bundle by Following Multiple Threads in Abstraction
Refinement,” IEEE Trans. Computer Aided Design, vol. 25, no. 11,
pp. 2297-2316, Nov. 2006.

[7] R.P. Kurshan, Computer Aided Verification of Coordinating Processes.
Princeton Univ. Press, 1994.

[8] W. Lee, A. Pardo, J. Jang, G. Hachtel, and F. Somenzi, “Tearing
Based Abstraction for CTL Model Checking,” Proc. Int’l Conf.
Computer-Aided Design, pp. 76-81, Nov. 1996.

[9] J. Lind-Nielsen and H.R. Andersen, “Stepwise CTL Model
Checking of State/Event Systems,” Proc. Computer-Aided Verifica-
tion, pp. 316-327, 1999.

[10] A. Pardo and G.D. Hachtel, “Incremental CTL Model Checking
Using BDD Subsetting,” Proc. Design Automation Conf., pp. 457-
462, 1998.

[11] E.M. Clarke, A. Gupta, J.H. Kukula, and O. Strichman, “SAT
Based Abstraction-Refinement Using ILP and Machine Learning
Techniques,” Proc. Computer-Aided Verification (CAV), E. Brinksma
and K.G. Larsen, eds., pp. 265-279, 2002.

[12] P. Chauhan, E.M. Clarke, J. Kukula, S. Sapra, H. Veith, and D.
Wang, “Automated Abstraction Refinement for Model Checking
Large State Spaces Using SAT Based Conflict Analysis,” Proc.
Formal Methods in Computer-Aided Design (FMCAD), 2002.

[13] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy
Abstraction,” Proc. Symp. Principles of Programming Languages,
pp. 58-70, 2002.

[14] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, and M.Y. Vardi,
“Multiple-Counterexample Guided Iterative Abstraction Refine-
ment: An Industrial Evaluation,” Proc. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pp. 176-191, 2003.

[15] S.G. Govindaraju and D.L. Dill, “Counterexample-Guided Choice
of Projections in Approximate Symbolic Model Checking,” Proc.
Int’l Conf. Computer-Aided Design (ICCAD), pp. 115-119, 2000.

[16] F. He, X. Song, M. Gu, and J. Sun, “Effective Heuristics for
Counterexample-Guided Abstraction Refinement,” Proc. 17th
ACM Great Lakes Symp. Very Large-Scale Integration (GLSVLSI ’07),
H. Zhou and E. Macii, eds., pp. 393-398, 2007.

[17] K.L. McMillan and N. Amla, “Automatic Abstraction without
Counterexamples,” Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pp. 2-17, 2003.

[18] A. Gupta and O. Strichman, “Abstraction Refinement for Bounded
Model Checking,” Proc. Computer-Aided Verification, K. Etessami
and S.K. Rajamani, eds., pp. 112-124, 2005.

[19] A. Gupta, M.K. Ganai, Z. Yang, and P. Ashar, “Iterative
Abstraction Using SAT-Based BMC with Proof Analysis,” Proc.
Int’l Conf. Computer-Aided Design (ICCAD), pp. 416-423, 2003.

[20] C. Wang, H. Jin, G.D. Hachtel, and F. Somenzi, “Refining the SAT
Decision Ordering for Bounded Model Checking,” Proc. Design
Automation Conf. (DAC), pp. 535-538, 2004.

[21] S. Graf and H. Saı̈di, “Construction of Abstract State Graphs with
PVS,” Proc. Computer-Aided Verification, pp. 72-83, 1997.

[22] H. Jain, D. Kroenig, N. Sharygina, and E.M. Clarke, “Word Level
Predicate Abstraction and Refinement for Verifying RTL Verilog,”
Proc. Design Automation Conf., pp. 445-450, 2005.

[23] P.-H. Ho, T. Shiple, K. Harer, J.H. Kukula, R. Damiano, V.
Bertacco, J. Taylor, and J. Long, “Smart Simulation Using
Collaborative Formal Simulation Engines,” Proc. Int’l Conf.
Computer-Aided Design, pp. 120-126, 2000.

[24] D. Wang, P.-H. Ho, J. Long, J.H. Kukula, Y. Zhu, T. Ma, and R.
Damiano, “Formal Property Verification by Abstraction Refine-
ment with Formal, Simulation and Hybrid Engines,” Proc. Design
Automation Conf., pp. 35-40, 2001.

[25] F. He, X. Song, M. Gu, and J. Sun, “A Probabilistic Learning
Approach for Counterexample Guided Abstraction Refinement,”
Proc. Fourth Int’l Symp. Automated Technology for Verification and
Analysis (ATVA ’06), S. Graf and W. Zhang, eds., pp. 29-50, Oct.
2006.

[26] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, second ed. MIT Press/McGraw-Hill, 2001.

[27] D. Dumitrescu, B. Lazzerini, L. Jain, and A. Dumitrescu,
Evolutionary Computation, L. Jain, ed. CRC Press, 2000.

[28] J. Beasley and P. Chu, “A Genetic Algorithm for the Set Covering
Problem,” European J. Operational Research, vol. 94, pp. 392-404,
1996.

[29] S. Sen, “Minimal Cost Set Covering Using Probabilistic Methods,”
Proc. 1993 ACM/SIGAPP Symp. Applied Computing, pp. 157-164,
1993.

[30] U. Aickelin, “An Indirect Genetic Algorithm for Set Covering
Problems,” J. Operational Research Soc., vol. 53, no. 10, pp. 1118-
1126, 2002.

[31] E. Marchiori and A. Steenbeek, “An Evolutionary Algorithm for
Large Scale Set Covering Problems with Application to Airline
Crew Scheduling,” Proc. EvoWorkshops, pp. 367-381, 2000.

[32] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” Proc.
Third Int’l Conf. Genetic Algorithms, pp. 2-9, 1989.

[33] W.M. Spears and K.A. De Jong, “On the Virtues of Parameterized
Uniform Crossover,” Proc. Fourth Int’l Conf. Genetic Algorithms,
R. Belew and L. Booker, eds., pp. 230-236, http://citeseer.ist.psu.
edu/spears91virtues.html, 1991.

[34] VIS Verification Benchmarks, ftp://vlsi.colorado.edu/pub/vis/
vis-verilog-models-1.0.tar.gz, 2008.

Fei He received the BS degree in computer
science from the National University of Defence
Technology, Changsha, China, in 2002. He
received the MS and PhD degrees in computer
science from Tsinghua University, Beijing,
China, in 2004 and 2008, respectively. He is
currently a lecturer in the School of Software at
Tsinghua University. His current research inter-
ests include model checking, automata theory,
and their applications in embedded systems.

Xiaoyu Song received the PhD degree from the
University of Pisa, Italy, 1991. From 1992 to
1999, he was on the faculty at the University of
Montreal, Canada. In 1998, he worked as a
senior technical staff in Cadence, San Jose. In
1999, he joined the faculty at Portland State
University. He is currently a professor in the
Department of Electrical & Computer Engineer-
ing at Portland State University, Oregon. His
current research interests include formal meth-

ods, design automation, embedded system design, and emerging
technologies. He has been awarded as the Intel Faculty Fellow during
2000-2005. He served as an associate editor of the IEEE Transactions
on Circuits and Systems and the IEEE Transactions on VLSI Systems.

William N.N. Hung received the BS and MS
degrees in electrical and computer engineering
from the University of Texas at Austin in 1994
and 1997, respectively. He received the PhD
degree in electrical and computer engineering
from Portland State University, Oregon, in 2002.
He worked at Intel as a senior engineer from
1997 to 2004 in Hillsboro, Oregon. From 2004 to
2007, he worked at Synplicity as a senior staff
engineer/director in Sunnyvale, California. Since

November 2007, he has been working at Synopsys as a senior staff
R&D engineer/senior R&D manager in Mountain View, California. His
research interests include logic synthesis, physical design, formal
methods, combinatorial optimization, nanotechnology, and quantum
computing. He served as a session chair for the Design Automation
Conference (DAC) and the IEEE World Congress on Computational
Intelligence (WCCI), and as publications chair for the Formal Methods in
Computer-Aided Design (FMCAD). He served as vice chair for the
Quantum Computing Task Force of the Emergent Technologies
Technical Committee for the IEEE Computational Intelligence Society.
He also served in the Technical Program Committees of the Design
Automation and Test in Europe (DATE), the IEEE Congress on
Evolutionary Computation (CEC), and the IEEE International Computer
Software and Applications Conference.

HE ET AL.: INTEGRATING EVOLUTIONARY COMPUTATION WITH ABSTRACTION REFINEMENT FOR MODEL CHECKING 125

Ming Gu received the BS degree in computer
science from the National University of Defence
Technology, Changsha, China, in 1984, and the
MS degree in computer science from the
Chinese Academy of Science at Shengyang in
1986. Since 1993, she has been working as a
lecturer/associate professor/researcher in Tsin-
ghua University. She is also serving as the vice
dean of the School of Software at Tsinghua
University. Her research interests include formal

methods, middleware technology, and distributed applications.

Jiaguang Sun received the BS degree in
automation science from Tsinghua University in
1970. He is currently a professor in Tsinghua
University. He is dedicated in teaching and R&D
activities in computer graphics, computer-aided
design, formal verification of software, software
engineering, and system architecture. He is
currently the director of the School of Informa-
tion Science & Technology and the School of
Software in Tsinghua University. He is also the

director of the National Laboratory for Information Science & Technol-
ogy. He has been a member of the Chinese Academy of Engineering
since 1999.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

126 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 1, JANUARY 2010

