
Maxterm Covering for Satisfiability

Liangze Yin, Fei He, Member, IEEE,
William N.N. Hung, Sr. Member, IEEE,

Xiaoyu Song, Sr. Member, IEEE,
and Ming Gu

Abstract—This paper presents a novel efficient satisfiability (SAT) algorithm

based on maxterm covering. The satisfiability of a clause set is determined in

terms of the number of relative maxterms of the empty clause with respect to the

clause set. If the number of relative maxterms is zero, it is unsatisfiable, otherwise

satisfiable. A set of synergic heuristic strategies are presented and elaborated. We

conduct a number of experiments on 3-SAT and k-SAT problems at the phase

transition region, which have been cited as the hardest group of SAT problems.

Our experimental results on public benchmarks attest to the fact that, by

incorporating our proposed heuristic strategies, our enhanced algorithm runs

several orders of magnitude faster than the extension rule algorithm, and it also

runs faster than zChaff and MiniSAT for most of k-SAT (k � 3) instances.

Index Terms—Verification, satisfiability, maxterm covering, heuristics.

Ç

1 INTRODUCTION

BOOLEAN satisfiability (SAT) is to find if there is a true
interpretation for a Boolean formula. The complexity of the
problem grows exponentially with increasing number of vari-
ables. The 3-SAT problem is a well-known NP-complete problem
[1]. Many real-world problems can be transformed into SAT
problems and many of these problem instances can be effectively
solved via satisfiability, such as testing [2], formal verification [3],
[4], synthesis [5], nanofabric cell mapping [6], various routing
problems [7], [8], [9], [10], [11], etc. Hence, the research for fast
and efficient SAT solvers is an important and useful topic.

Satisfiability has been widely studied for decades. Many well-
known and efficient SAT solvers have been published [12], [13],
[14], [15]. There are two main kinds of SAT solvers: complete and
incomplete solvers. Incomplete SAT solvers can be faster than
complete SAT solvers for certain class of problems, but there is no
guarantee of finding a solution. Incomplete SAT solvers can use
local search or evolutionary techniques, such as WalkSAT [16] and
GSAT [17]. Complete solvers may not be as fast as incomplete
solvers for certain class of problems, but as long as the problem is
satisfiable, complete solvers are guaranteed to find a solution for
sufficient memory and runtime. A complete SAT solver can be
used to prove that a problem is unsatisfiable. Most complete SAT
solvers are developed based on the work of DP [18] and DLL [19],
also called DPLL. Many well-known SAT solvers [13], [14], [15] are
based on DPLL. Some successful improvements on DPLL include:
conflict-driven clause learning, nonchronological backtracking,
Boolean constraint propagation with “two-watched-literals”, adap-
tive branching, and random restarts.

DPLL and most of the recent algorithms are based on the
exploration of the variable space. In this paper, we propose an
algorithm in terms of maxterm covering of the clause set. A portion
of our idea is similar to the Extension Rule (ER)-based algorithm,
which was introduced in [20] for theorem proving purposes. In
that paper, they compute the satisfiability of a clause set by
extending every clause of the set into maxterms using extension
rule, and determine if the set contains 2n clauses. To handle space
complexity, they introduced an inclusion-exclusion principle to
circumvent the problem. In our algorithm, we find the satisfiability
of a clause set by computing the relative maxterms covered by the
empty clause with respect to clause set T , and determine if the
relative maxterm covering is ; or not.

We propose a set of optimization strategies for our approach.
The experiments indicate that, after improvement by the optimiza-
tion strategies, our algorithm runs several orders of magnitude
faster than the ER Algorithm for all the problems, and 3 to 50 times
better than zChaff [13], one to two times better than MiniSAT [15]
for most of the k-SAT (k � 3) instances.

2 THEORY

Most SAT solvers focus on solving Boolean formula in the
conjunctive normal form (CNF). Suppose we are given a Boolean
formula f over a set of Boolean variables. The CNF of f is simply a
conjunction of clauses, where each clause is a disjunction of literals,
and each literal is either a Boolean variable or the negation of a
Boolean variable.

Given a CNF ðp1 _ � � � _ pmÞ ^ � � � ^ ðq1 _ � � � _ qnÞ, we can
represent it as a clause set T ¼ fp1 _ � � � _ pm; . . . ; q1 _ � � � _ qng.
The satisfiability of a Boolean formula is equivalent to the
satisfiability of a CNF. In what follows, we consider the
satisfiability of a Boolean formula as the satisfiability of a clause
set, where each clause in that set is a disjunction of literals.

A maxterm is a disjunction of literals, with exactly one literal for
each variable in the formula. A principal conjunctive normal form
(PCNF) is a CNF in which every clause (disjunction) is a maxterm.
Given any Boolean formula, there is one and only one PCNF that is
equivalent to it.

Theorem 1. A Boolean formula is unsatisfiable if and only if its PCNF

has 2n maxterms, where n is the number of variables in the formula.

Proof. Given a PCNF f with n variables which corresponds to the
Boolean formula, each maxterm corresponds to a distinct row in
the truth table where f evaluates to FALSE. There are 2n rows
in the truth table of f . Hence f is unsatisfiable if and only if the
number of maxterms in f is equal to 2n. tu
Based on theorem 1, we can determine the satisfiability of any

Boolean formula by computing the number of maxterms in its

corresponding PCNF, and checking if this number is 2n.

Definition 1. The maxterms covered by a clause set T ¼
fC1; C2; . . . ; Cmg are the maxterms contained in the PCNF of T ,

denoted as MCðT Þ.

In particular, if there is only one clause C in the clause set T , we

denote the maxterm cover as MCðCÞ.
Given a clause C, suppose its PCNF is ðp1 _ � � � _ pnÞ ^

� � � ^ ðq1 _ � � � _ qnÞ, then MCðCÞ ¼ fp1 _ � � � _ pn; � � � ; q1 _ � � � _ qng.
Given a clause set T ¼ fC1; C2; . . . ; Cmg, then

MCðT Þ ¼
[m
i¼1

MCðCiÞ:

Based on Theorem 1 and Definition 1, we have:

Corollary 1. A clause set T is unsatisfiable if and only if the number of

elements in MCðT Þ is equal to 2n.

420 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

. L. Yin, F. He, and M. Gu are with the School of Software, Tsinghua
University, Room 1-118, FIT Building, Beijing 100084, China.
E-mail: yinliangze@163.com, {hefei, guming}@tsinghua.edu.cn.

. W.N.N. Hung is with the Verification Group, Synopsys, Inc., 700 East
Middlefield Road, Mountain View, CA 94043.
E-mail: william_hung@alumni.utexas.net.

. X. Song is with the Department of ECE, Portland State University,
PO Box 751, Portland, OR 97207-0751. E-mail: song@ece.pdx.edu.

Manuscript received 25 Mar. 2010; revised 10 Sept. 2010; accepted 27 Nov.
2010; published online 9 Dec. 2010.
Recommended for acceptance by S. Shukla.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-03-0206.
Digital Object Identifier no. 10.1109/TC.2010.270.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Theorem 1 and Corollary 1 can also be seen in [20], but to

determine if the number of elements in MCðT Þ is equal to 2n,

they tried to extend every clause into maxterms or use the

inclusion-exclusion rule, while we compute the relative max-

terms covered by empty clause with repect to clause set T as

follows:

Definition 2. The relative maxterms covered by a clauseC with respect to

a clause set T are the maxterms covered by C but not by T , denoted as

relativeMaxtermðC; T Þ ¼MCðCÞ nMCðT Þ.

An example is shown in Fig. 1 for the clause set T ¼ fC1;

C2; C3; C4g.
Given a set of variables, we denote the set of all possible

maxterms as the universal set. Note the maxterms covered by the
empty clause � is equal to the universal set. Based on corollary 1,

determining the unsatisfiability of a clause set T is equivalent to
deciding MCðT Þ ¼MCð�Þ. On the other hand, determining the
satisfiability of a clause set T is equivalent to finding if there is any

relative maxterm covered by the empty clause with respect to T , i.e.,

relativeMaxtermð�; T Þ 6¼ ;:

This is the main idea of this paper. An example is shown in Fig. 2

where the clause set T ¼ fC1; C2; C3; C4; C5g is satisfiable, as

relativeMaxtermð�; T Þ 6¼ ;.
The above analysis shows that the key point to solve the

satisfiability problem is to find the relative maxterms covered by a
clause C (note C can be an empty clause) with respect to a clause

set T , i.e., relativeMaxtermðC; T Þ. We can obtain it using the
following formula:

relativeMaxtermðC; T Þ ¼MCðCÞ nMCðT Þ

¼MCðCÞ n
[m
i¼1

MCðCiÞ

¼MCðCÞ nMCðC1Þn � � � nMCðCmÞ:

Now we face the following question: given clauses C1 and C2,

how to compute MCðC1Þ nMCðC2Þ? We consider two lemmas.

Lemma 1. If the literals in clause C1 form a subset of the literals in clause

C2, i.e., LiteralsðC1Þ � LiteralsðC2Þ, where LiteralsðCÞ gives the

set of literals in clause C, then the maxterms covered by C2 is a subset

of the maxterms covered by C1, i.e., MCðC2Þ �MCðC1Þ.
The proof of Lemma 1 is trivial. For example, given a

satisfiability problem with variables p, q, r, s, and clause C1 ¼
p _ :q, C2 ¼ p _ :q _ r, then LiteralsðC1Þ ¼ fp;:qg, LiteralsðC2Þ ¼
fp;:q; rg, since LiteralsðC1Þ � LiteralsðC2Þ, soMCðC2Þ �MCðC1Þ.
Definition 3. Two clauses are mutually independent if and only if they

contain a complementary pair of literals.

For example, clauses C1 and C2 are mutually independent if C1

contains literal p and C2 contains the complement literal :p.

Lemma 2. If clauses C1 and C2 are mutually independent, there is no

intersection between the sets of maxterms covered by C1 and C2. i.e.,

MCðC1Þ \MCðC2Þ ¼ ;.
Proof. If there is a complementary pair of literals p in C1 and :p in

C2, all maxterms covered by C1 must contain p, and all

maxterms covered by C2 must contain :p. Hence MCðC1Þ \
MCðC2Þ ¼ ;. tu

Theorem 2. Given two clauses that are not mutually independent, C ¼
q1 _ q2 _ � � � _ qn and C1 ¼ p1 _ p2 _ � � � _ pm, then MCðCÞ n
MCðC1Þ ¼MCðRÞ, where

R ¼ fC _ :p1; C _ p1 _ :p2; . . . ; C _ p1 _ � � � _ :pmg: ð1Þ

Proof. To prove MCðRÞ ¼MCðCÞ nMCðC1Þ, we must prove the

following three formulas: MCðRÞ �MCðCÞ, MCðRÞ \
MCðC1Þ ¼ ; and MCðC1Þ [MCðRÞ ¼ MCðC1Þ [MCðCÞ.

1. We show MCðRÞ �MCðCÞ. In (1), we see that, for any
clause C0 in R, LiteralsðCÞ � LiteralsðC0Þ, Using
Lemma 1, we know MCðC0Þ �MCðCÞ. Hence,
MCðRÞ �MCðCÞ.

2. We showMCðRÞ \MCðC1Þ ¼ ; here. In (1), we see that,
for any clause C0 in R, it has a complementary pair of
literals with clause C1. According to definition 3, C0 is
mutually independent from C1. Using Lemma 2, we
k n o w MCðC0Þ \MCðC1Þ ¼ ;. H e n c e , MCðRÞ \
MCðC1Þ ¼ ;.

3. To show that MCðC1Þ [MCðRÞ ¼MCðC1Þ [MCðCÞ,
we use the following steps:

C ¼ C _ ð:p1 ^ p1Þ
¼ ðC _ :p1Þ ^ ðC _ p1Þ
¼ ðC _ :p1Þ ^ ðC _ p1 _ ð:p2 ^ p2ÞÞ

..

.

¼ R ^ Cf;

while Cf ¼ C _ p1 _ p2 _ � � � _ pm. Hence,

MCðC1Þ [MCðCÞ ¼MCðC1Þ [MCðRÞ [MCðCfÞ:

Since the literals in C1 are all contained in Cf , we can use
Lemma 1 to obtain: MCðCf Þ �MCðC1Þ. Hence,

MCðC1Þ [MCðRÞ [MCðCf Þ ¼MCðC1Þ [MCðRÞ:

Therefore, MCðC1Þ [MCðCÞ ¼MCðC1Þ [MCðRÞ. tu
LetR be the result of taking operationMCðCÞ nMCðC1Þ. NoteR

may be a clause set. Now we need to compute the maxterms covered

by R but not by T 0 ¼ T n C1. We use the following approach:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012 421

Fig. 1. Definition of relativeMaxtermðC; T Þ.
Fig. 2. A satisfiable example.

MCðRÞ nMCðT 0Þ ¼
[m
i¼1

MCðCiÞ nMCðT 0Þ

¼
[m
i¼1

ðMCðCiÞ nMCðT 0ÞÞ:

At this point, we have established the core steps of our approach.
Given a clause set T , we can compute relativeMaxtermð�; T Þ using
the following formula:

relativeMaxtermð�; T Þ
¼MCð�Þ nMCðT Þ
¼MCð�Þ nMCðC1Þ nMCðT 0Þ
¼MCðRÞ nMCðT 0Þ

¼
[m
i¼1

ðMCðCiÞ nMCðT 0ÞÞ

¼
[m
i¼1

ðrelativeMaxtermðCi; T 0ÞÞ:

ð2Þ

In (2), T ¼ T 0 [C1, MCðRÞ ¼MCð�Þ nMCðC1Þ, and R ¼
Sm
i¼1 Ci.

From the formula, we can see that it is a recursive process, and
our satisfiability algorithm is outlined in Algorithm 1. If
relMaxtermCompð�; T Þ returns 1, relativeMaxtermðC; T Þ 6¼ ;,
clause set T is satisfiable, otherwise it is unsatisfiable.

Algorithm 1. Basic Satisfiability Algorithm

1: procedure RELMAXTERMCOMP(clause C, clause set T)

2: if (T ¼¼ ;) return 1; // SAT

3: select a clause C1 from T ;

4: if (C and C1 are mutually independent) R ¼ C
5: else R ¼MCðCÞ nMCðC1Þ // by Theorem 2

6: T 0 ¼ T n C1;

7: for each Ci 2 R
8: if (relMaxtermCompðCi; T 0Þ ¼¼ 1)

9: return 1; // SAT

10: return 0;

11: end procedure

3 OPTIMIZATION STRATEGIES

T h e c r i t i c a l s t e p of o u r a l g o r i t h m i s t o c o m p u t e

relativeMaxtermðC; T Þ. Our method compares clause C with one
of the clauses of set T , and removes intersecting maxterms of the

compared clause from the maxterms of C. However, the result R of
removing maxterms of one clause from maxterms of another clause,

must be represented by multiple clauses (using Theorem 2). Then

for every clauseCi inR, we must compute relativeMaxtermðCi; T 0Þ,
respectively, where T 0 denotes the set of surplus clauses. If we keep

doing this, the computation time of relative maxterms would
increase exponentially. Hence, we have to find some optimization

strategies for simplification, thus improving the effectiveness of the
approach. We devise eight heuristic strategies as follows:

3.1 Strategy 1: Remove Independent Clauses

I n c o m p u t i n g relativeMaxtermðC; T Þ, s u c h t h a t T ¼
fC1; C2; . . . ; Cmg, we have to compare C with one clause in set T ,
and remove maxterms from C that also appear in the compared
clause, and then compute relativeMaxtermðCi; T 0Þ for every clause
Ci in R. However, some clauses in the original clause set T ¼
fC1; C2; . . . ; Cmg may be mutually independent from clause C, so
they have no intersecting maxterms with C. Therefore, we should
first remove these clauses from the set T . Otherwise, if we leave
them in T 0, and compare each clause in R (or the clauses produced
by them) with these independent clauses, then it would waste
tremendous amount of time.

3.2 Strategy 2: Look for Dominant Clauses

Definition 4. Clause C1 is the dominant clause of clause C2 if and only if

the literals of C1 is a subset of the literals of C2, i.e.,

LiteralsðC1Þ � LiteralsðC2Þ.

For example, if we have two clauses, C1 ¼ p _ :q and

C2 ¼ p _ :q _ r, t h e n LiteralsðC1Þ ¼ fp;:qg, LiteralsðC2Þ ¼
fp;:q; rg. We have LiteralsðC1Þ � LiteralsðC2Þ. Hence, C1 is the

dominant clause of C2.

Theorem 3. If clause set T ¼ fC1; C2; . . . ; Cmg contains Ci which is a

dominant clause of C, then relativeMaxtermðC; T Þ ¼ ;.
Proof. Since clause Ci is a dominant clause of clause C, using

L e m m a 1 , w e h a v e MCðCÞ �MCðCiÞ. H o w e v e r ,

MCðCiÞ �MCðT Þ. Therefore, MCðCÞ �MCðT Þ. Based on

t he def in i t ion of re la t ive maxterms , we h ave

relativeMaxtermðC; T Þ ¼ ;. tu

With Theorem 3, before computing relativeMaxtermðC; T Þ,
we can scan each clause in T . If we find a dominant clause of C

from the scanned clauses, we can directly deduce that

relativeMaxtermðC; T Þ ¼ ;.
As an example, suppose we have C ¼ p _ q _ r, T ¼ fq _ s _ t;

:p _ r _ s; r _ t _ u;:r _ s _ v; p _ qg, and we want to compute

relativeMaxtermðC; T Þ. Since the set T contains clause p _ q which

is a dominant clause of C, we can directly deduce that

relativeMaxtermðC; T Þ ¼ ;. With Theorem 3, we may avoid a lot

of clause comparisons, thus accelerating the solver.

3.3 Strategy 3: Look for Subdominant Clauses

Definition 5. Clause C1 is a subdominant clause of clause C2 if and

only if clause C1 has one and only one literal that is missing from

clause C2, i.e., LiteralsðC1Þ n LiteralsðC2Þ ¼ fpxg, where px is a

literal.

For example, if we have two clauses, C1 ¼ p1 _ :p2 _ p3 and

C2 ¼ p1 _ :p2 _ p4 _ :p5, then LiteralsðC1Þ n LiteralsðC2Þ ¼ fp3g.
Hence, C1 is a subdominant of C2.

Theorem 4. If clause Ci is a subdominant of clause C, then MCðCÞ n
MCðCiÞ can be expressed by one single clause R ¼ fC _ :pxg where

px is the missing literal of Ci from C.

Proof. Without loss of generality, suppose Ci ¼ p1 _ � � � _ pm _ px,

C ¼ p1 _ � � � _ pm _ q1 _ � � � _ qn, where Ci has only one literal

px that is missing from C. With Theorem 2, MCðCÞn
MCðCiÞ ¼MCðRÞ, where R ¼ fC _ :p1; C _ p1 _ :p2; . . . ;

C _ p1 _ � � � _ :pm; C _ p1 _ � � � _ pm _ :pxg. Since clause C

contains literals p1; . . . ; pm, the first m items in the above

expression for R must be TRUE. As a result, it can be

simplified to R ¼ fC _ :pxg. tu

Theorem 4 is very important because the resulting R contains

only one clause, and with the new literal, we can use Strategy 1, 2,

and 3 again. In our approach, we apply Strategy 1, 2, and 3

recursively, until they cannot be applied anymore. In the process, if

Strategy 2 is applicable, we will have relativeMaxtermðC; T Þ ¼ ;
immediately. Even if Strategy 2 is not applicable, the number of

clauses in the clause set T would be substantially reduced in

general.
B y u s i n g s t r a t e g i e s 1 t o 3 , w e c a n c o m p u t e

relativeMaxtermðC; T Þ by the algorithm in Algorithm 2, where R

is the expression that contains the remaining maxterms by

removing maxterms from C that intersects with clause C1 in T . If

relativeMaxtermðC; T Þ ¼ ;, then the algorithm returns 0, otherwise

it returns 1.

422 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Algorithm 2. Computing relativeMaxtermðC; T Þ with strategies 1

to 3

1: procedure RELMAXTERMCOMP(clause C, clause set T)

2: // Prune clauses from T using strategies 1 to 3

3: do {

4: for each clause Ck 2 Tf
5: if (Strategy 1 is applicable to Ck)

6: T ¼ T n fCkg
7: else if (Strategy 2 is applicable to Ck)

8: return 0;

9: }

10: for each clause Ck 2 Tf
11: if (Strategy 3 is applicable to Ck){

12: // the result R has only one clause

13: C ¼MCðCÞ nMCðCkÞ
14: T ¼ T n fCkg; break;

15: }

16: }

17: }while (Strategy 3 is applicable to some Ck);

18: if (T ¼¼ ;) return 1; // SAT

19: select a clause C1 from T ;

20: R ¼MCðCÞ nMCðC1Þ // by Theorem 2

21: T 0 ¼ T n C1;

22: for each Ci 2 R
23: if (relMaxtermCompðCi; T 0Þ ¼¼ 1)

24: return 1; // SAT

25: return 0;

26: end procedure

3.4 Strategy 4: Clause Ordering

Strategies 1 to 3 take advantage of common variables between

clauses. Strategy 1 harness their mutual independence, i.e., same

variable, opposite polarity. Strategies 2 and 3 use common literals,

i.e., same variable, same polarity. If we can put the same variables

together, we can better employ the above three strategies. This idea

would require us to order the clauses based on their common

variables.
Our ordering approach is as follows: first, we count the number

of occurrences of each variable in all clauses, and store the

statistical result in the array of var num. Then we compute the

weight WC of each clause C. If the variables in C are p1; p2; . . . ; pn,

the weight of C is

WC ¼
Xn
i¼1

var num½pi�:

The clause ordering algorithm is outlined as follows:

1. Scan all clauses, gather the number of occurrences of each
variable in all clauses. Store the result in the array of
var num.

2. Compute the weight WCi of each clause Ci.
3. Sort the clauses based on their weights WCi .

Overall, there is no change to the clauses in set T , so there is no

change to the maxterms covered by T . Only the sequence (order) of

clauses was rearranged. Consequently, the execution sequence (of

relativeMaxterm computation) is affected. We cannot guarantee

optimal clause ordering here, but it is the best clause ordering

method that we have found so far. The experimental result

indicates that clause ordering speeds up the process by several

orders of magnitude for problems with many clauses.

3.5 Strategy 5: Remove Single Polarity Variables

The above four strategies exploit common variables between

clauses. But if none of the clauses in the set shares any common

variable, or if the number of independent clauses is very small, it

would be very difficult to utilize the above four strategies. To

avoid this scenario, we need to ensure that each variable will occur

with both positive and negative polarities in T. Our strategy is

based on the following theorem:

Theorem 5. Given a clause set T with n clauses, where variable p occurs

in only one polarity. We can split T into two partitions: fC1; . . . ; Ckg
and fCkþ1; . . . ; Cng, where fC1; . . . ; Ckg are the clauses that contain

variable p, and fCkþ1; . . . ; Cng are the clauses that do not contain

variable p. The satisfiability of T is equivalent to the satisfiability of

fCkþ1; . . . ; Cng.
Proof. Without loss of generality, assume that variable p occurs in

the problem clause set with positive polarity only.

1. If fCkþ1; . . . ; Cng is satisfiable, we have � as a set of
variable assignments (a solution) that satisfies
fCkþ1; . . . ; Cng. We can add another assignment p ¼ 1
to �, then fC1; C2; . . . ; Cng can also be satisfied.

2. If fCkþ1; . . . ; Cng is unsatisfiable, fC1; C2; . . . ; Cng will
also be unsatisfiable regardless of the value assignment
to p.

Therefore, the above theorem is valid for both satisfiable and
unsatisfiable cases. tu

Based on Theorem 5, if any variable p occurs with only one

polarity, we can directly remove all clauses that contain such

variable. With this strategy, we can first remove all clauses that

contain variables with single polarity occurrences. Thus the

probability of clauses with variables of complementary polarities

is much higher. Other approaches similar to this strategy were also

used in DPLL [19] and in [21]. Although single polarity variables

rarely occurred, its runtime cost is nearly zero, so it is anyway a

good idea to adopt the strategy for some special cases.

3.6 Strategy 6: Compare Two Clauses Simultaneously

Strategy 1 to 3 can trim down the number of clauses in T

substantially. Shall we then resort to Theorem 2 to process the

remaining clauses in T? In fact, there are more chances for further

optimization. If there are two mutually independent clauses in T ,

we can compare our clause C simultaneously with the two clauses.
Suppose we want to remove the maxterms from C that

intersects with clauses C1 and C2, where C1 and C2 are mutually

independent, we can obtain the result R as shown in (3).

C1 ¼ t12 _ p1 _ � � � _ pm
C2 ¼ :t12 _ q1 _ � � � _ qn

�
) R ¼

C _ t12 _ :p1

..

.

C _ t12 _ p1 _ � � � _ :pm
C _ :t12 _ :q1

..

.

C _ :t12 _ q1 _ � � � _ :qn

:

8>>>>>>>><
>>>>>>>>:

ð3Þ

It is easy to deduce (3). First, we apply Theorem 2 to compute R

from C and C1. Then we apply the method again for each clause in

R with C2, and we obtain the new R in (3). This scenario is

important because removing maxterms from C that are intersect-

ing with maxterms from C1 and C2 will attain a clause set R with at

most mþ n clauses, which is much smaller than the general case

with ðmþ 1Þ�ðnþ 1Þ clauses in R. Therefore, it will substantially

reduce the complexity of subsequent comparisons.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012 423

3.7 Strategy 7: Choosing Mutually Independent
Clauses C1; C2

In Strategy 6, we compare clause C with a pair of mutually

independent clauses C1; C2 simultaneously. In practice, there could

be many pairs of mutually independent clauses. Which one should

we select? In fact, Strategy 4 (clause ordering) also considers this

question. The first pair of mutually independent clauses that we

can find using the clause ordering of Strategy 4 would suffice.

However, to reduce the number of subsequent comparisons, we

want to minimize the number of clauses in the remaining clause set

R after this comparison. In Strategy 6, the expression for R will

have less clauses if there are more common variables shared by

C1; C2 with C. Accordingly, we want to choose a pair of mutually

independent clauses that has the smallest number of variables that

are different from C.
For each clause in C1 and C2, there are at least two literals that

are not included in C. Otherwise, if any clause has only 0 or 1

variable that is not included in C, we can apply Strategy 2 or 3, and

eliminate this clause before Strategy 6. Hence C1; C2 in total has at

least four variables that are not included in C (here we consider

the common variable of C1 and C2 as different variables). Our

algorithm for choosing the clause pair is shown in Algorithm 3.

Algorithm 3. Choosing Mutually Independent clauses C1; C2

1: procedure INDEPPAIRSELECT(clause C, clause set T)

2: int min ¼ 1, diffs, i1, i2;

3: for (i ¼ 1 to kTk � 1){

4: for (j ¼ iþ 1 to kTk){
5: if (clauses i; j are mutually independent){

6: diffs ¼ # vars in clauses i; j missing in C;

7: if (min > diffs){

8: min ¼ diffs, i1 ¼ i, i2 ¼ j;
9: if (min ¼¼ 4) return hi1; i2i;

10: }

11: }

12: }

13: }

14: end procedure

3.8 Strategy 8: Splitting the Universal Set into Multiple
Partitions

Our basic idea is to determine whether the number of relative

maxterms covered by the empty clause with respect to clause set T

is 0 or not. In practice, we can pick k variables to split the universal

set into 2k partitions, and compute their relative maxterms with

respect to clause set T , respectively. If there is any relative

maxterm found in any partitions, the problem is satisfiable.

Otherwise, the problem is unsatisfiable.
This strategy has two advantages. First, for both satisfiable and

unsatisfiable cases, we can choose k variables with the most

occurrences, and use Strategy 1, 2, and 3 to delete many clauses at

once which accelerates the process. Second, for satisfiable cases, if

we can first search optimally the partition that is most likely to find

the satisfiable solution, then we can solve the problem without

searching much of the remaining partitions. In Fig. 3, we split the

universal set into 8�8 ¼ 64 partitions. (The actual search space is

n-dimensional, where n is the number of variables. For the ease of

presentation, we depict them all as 2D in the figure.) We must

separately find the relative maxterms of each of these 64 partitions

with respect to clause set T . If we can prioritize the search to first

work on the dark region in the figure (the region with solutions),

then we can quickly find the solution before searching other

partitions.

Suppose the number of occurrences for any variable pi in the

clause set T is var num½pi�, we can pick the k variables with the most

occurrences, i.e., the variables with the largest var num½pi�. Hence,

we can eliminate more clauses from T at the very beginning, and we

have more opportunities to find clauses that are applicable to

Strategies 2 and 3. Thus, the efficiency is greatly improved.
After picking k variables, we search these 2k partitions in the

following manner:

1. Sort the k variables based on their occurrences in the
problem from high to low as p1; p2; . . . ; pk.

2. For each variable pi, if the number of its occurrences with
positive polarity is greater than those with negative
polarity, we pick pi ¼ 0. Otherwise, pick pi ¼ 1. Then we
procure a k-bit Boolean vector: p1p2 . . . pk.

3. Search the 2k partitions sequentially, where the ith partition
is: ðp1p2 . . . pkÞ 	 i, for i ¼ 0; 1; 2; . . . ; 2k � 1.

4 EXPERIMENTAL RESULTS

In this section, we list the experimental results of our algorithm

with different optimization strategies, and compare our SAT solver

implementation with zChaff 2007, MiniSAT 2.0, and the ER solver.

All of our experiments are conducted on a computer with Intel

Core2 Duo CPU E7200 2.53 GHz with 2 GB memory.

4.1 Experiments on Optimization Strategies

It has been reported that some of the hardest SAT problems are the

3-SAT problems at phase transition region with density 4.3 (the

ratio of the number of clauses to the number of variables) [22], [23],

[24]. Accordingly, we use the benchmarks from SATLIB [25] in our

experiments. These benchmarks provide 3-SAT problems at the

phase transition region for variable count at 50; 75; 100; . . . ; 250. In

our experiments, we used the problems with 50, 175, 200, 225, and

250 variables, each with a group of 100 instances that are satisfiable,

and another group of 100 instances that are unsatisfiable.
Table 1 shows the average runtime (in seconds) over the 100

problems in our results. The problem groups with name “uf” are

all satisfiable, “uuf” are all unsatisfiable, the number following

“uf” or “uuf” represents the number of variables in the

corresponding group. The Basic Algorithm is the algorithm shown

in Algorithm 1; version A is the algorithm with strategies 1, 2, and

3, i.e., algorithm shown in Algorithm 2; version B is the algorithm

with strategies 1, 2, 3, and 4; and the algorithm with all strategies is

denoted by version C. Since the Basic Algorithm easily blows up,

we also randomly generated 100 SAT and 100 UNSAT instances

for 30 variables (uf30 and uuf30) for better comparison. From

Table 1, we can see that the capability of Basic Algorithm is limited,

it can only handle 3-SAT problems for 50 variables, but when

enhanced by Strategies 1, 2, and 3, it can handle problems with

200 variables. Strategy 4 also brings several orders of magnitude

speedup to the algorithm, with it the algorithm can handle

424 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

Fig. 3. Split the universal set into 2k partitions, and prioritize the search to first work
on the green region in the figure (the region with solutions).

problems with 250 variables. Although other strategies did not

play such a great role in the algorithm as strategies 1, 2, 3, and 4,

they can also accelerate the algorithm by a factor of around two.

4.2 Maxterm Covering versus zChaff and MiniSAT

In Table 2, we compare our algorithm with zChaff and MiniSAT on

3-SAT problems for both SAT and UNSAT instances with 200, 225,

and 250 variables. All these problems come from SATLIB. In this

table, our Maxterm Covering algorithm is abbreviated as “MC.” The

columns of “zChaff time,” “MiniSAT time,” and “MC time” give the

average runtime(s) of zChaff, MiniSAT, and Maxterm Covering,

respectively, and “zChaff/MiniSAT/MC” lists the number of

problems within the group that zChaff, MiniSAT, or MC win over

other two solvers, respectively. For example, 19/29/52 means in the

group of 100 problems, there are 19 instances zChaff runs the fastest,

29 instances MiniSAT runs the fastest and 52 instances Maxterm

Covering runs the fastest.
In Table 3, we compare our algorithm with zChaff and MiniSAT

on 100 randomly generated 4-SAT, 5-SAT, and 6-SAT instances,

respectively. As presented in [26], 4-SAT, 5-SAT, and 6-SAT

instances at the phase transition region are instances in which

M=N are about 10, 21, and 44, respectively, where M and N denote

the number of clauses and variables, respectively, in the

corresponding instance. So to generate instances for 4-SAT,

5-SAT, and 6-SAT at the phase transition region, the numbers of

variables for these three kinds of SAT problems are limited to be

100, 60, and 40, respectively, and the numbers of clauses are

limited to be 1,000, 1,260, and 1,760 respectively.

From Tables 2 and 3, we can observe that the Maxterm Covering

algorithm is 3-50 times faster than zChaff for both satisfiable and

unsatisfiable problems. In fact, for all unsatisfiable instances,

Maxterm Covering wins over zChaff. For satisfiable instances, as

the search process may find a satisfying assignment by sheer luck,

no SAT solver can win over another for all instances, but our

algorithm is still faster than zChaff for most of the instances.
When compared to MiniSAT, from Table 2, we can see that the

performances of these two solvers are similar with 3-SAT

problems. Among 600 instances in Table 2, there are 241 problems

MiniSAT runs fastest, and 279 problems Maxterm Covering runs

fastest. While in Table 3, among the 300 random generated k-SAT

instances, we can observe that, our solver ran 1.1-3 times faster

than MiniSAT on average; and within each problem group, our

solver won MiniSAT for more problems (especially for unsatisfia-

bility cases).
Both zChaff and MiniSAT are popular SAT solvers based on

DPLL and depth-first search of variables. The main difference

between our algorithm and the other two algorithms is that our

algorithm is based on clauses while zChaff and MiniSAT are

based on variables. In our algorithm, we continually select clauses,

and decompose the problem according to the selected clause,

while in DPLL it is purely according to the selected variable. This

is the fundamental difference between our approach and existing

SAT algorithms. Tables 2 and 3 demonstrate the efficiency of our

approach.

TABLE 2
SATLIB 3-SAT Benchmark Results Compared with zChaff and MiniSAT

TABLE 3
Random k-SAT Experimental Results Compared with zChaff and MiniSAT

TABLE 1
Experimental Results with and without Optimization Strategies

4.3 Maxterm Covering versus Extension Rule

Maxterm Covering and Extension Rule both use Theorem 1 to
determine the satisfiability of a clause set, i.e., a clause set is
unsatisfiable if and only if the number of maxterms it contained is
2n. But to decide if the number of maxterms it contained is 2n, the
ER algorithm tries to extend every clause in the set into maxterms,
or use the inclusion-exclusion rule, while in our algorithm we
compute the relative maxterms that are covered by the universal set
but not covered by the clause set T . The original ER algorithm was
first presented in [20]. Subsequently, an improved version ER1 was
presented in [21]. In this paper, we implemented the ER1 algorithm
and compared it with our algorithm. For the k-SAT (k � 3)
problems shown in Tables 1, 2, and 3, ER1 cannot solve any of
them within the time limit (600 seconds). The reason is due to the
extension rule algorithm has very strong requirement on the value
of CF (complementary factor) for a SAT instance. The extension
rule algorithm needs CF � 0:5 [20], which means more than half of
the clause pairs have complementary literals, where in most of
3-SAT problems (for example, those from SATLIB), the values of
CFs are less than 0.1.

To make a comparable experiment with the extension rule
algorithm, we randomly generated some SAT instances with small
size (20 to 30 variables) as the benchmarks used in [20], [21]. The
experimental results are shown in Table 4. In the “Problem Group”
column, the triple of values denote the number of variables, the
number of clauses, and the length of each clause, respectively. The
“CF” column gives the average value of CF among all problems in
the group. From Table 4, it is obvious that our solver runs several
orders of magnitude faster than extension rule for all instances, no
matter what the value of CF is. Another fact to be noted is that,
when the value of CF grows, our algorithm can still quickly find
the solution with Strategy 1. We believe our solver runs much
faster than the extension rule solver is due to its optimization
strategies. Unlike the ER algorithm, our algorithm computes the
relative maxterms to decide the satisfiability.

5 CONCLUSION

In this paper, we propose a SAT solver based on maxterm
covering. Our algorithm computes the relative maxterms covered
by the empty clause with respect to the clause set T , and
determines the satisfiability of the problem based on whether the
number of relative maxterms is greater than 0. We propose a set of
optimization strategies to enhance our approach. The experimental
results show our algorithm with the eight optimization strategies
runs faster than zChaff and MiniSAT for most of k-SAT (k � 3)
problems, and is several orders of magnitude faster than the
extension rule algorithm for almost all the problems.

ACKNOWLEDGMENTS

This work was supported in part by the Chinese National 973 Plan
under grant No. 2010CB328003, the National Science Foundation of
China under grants No. 60903030 and 90718039. F. He is the
corresponding author.

REFERENCES

[1] S.A. Cook, “The Complexity of Theorem-Proving Procedures,” Proc. Third
ACM Symp. Theory of Computing, pp. 151-158, 1971.

[2] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiability,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 11, no. 1,
pp. 4-15, Jan. 1992.

[3] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu, “Symbolic Model
Checking Using SAT Procedures Instead of BDDs,” Proc. Design Automation
Conf., pp. 317-320, 1999.

[4] W.N.N. Hung and N. Narasimhan, “Reference Model Based RTL
Verification: An Integrated Approach,” Proc. IEEE Int’l High Level Design
Validation and Test Workshop (HLDVT), pp. 9-13, Nov. 2004.

[5] W.N.N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski, “Optimal
Synthesis of Multiple Output Boolean Functions Using a Set of Quantum
Gates by Symbolic Reachability Analysis,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, vol. 25, no. 9, pp. 1652-1663, Sept.
2006.

[6] W.N.N. Hung, C. Gao, X. Song, and D. Hammerstrom, “Defect Tolerant
CMOL Cell Assignment via Satisfiability,” IEEE Sensors J., vol. 8, no. 6,
pp. 823-830, June 2008.

[7] R.G. Wood and R.A. Rutenbar, “FPGA Routing and Routability Estimation
via Boolean Satisfiability,” Proc. Int’l Symp. Field-Programmable Gate Arrays,
pp. 119-125, 1997.

[8] X. Song, W.N.N. Hung, A. Mishchenko, M. Chrzanowska-Jeske, A.
Kennings, and A. Coppola, “Board-Level Multiterminal Net Assignment
for the Partial Cross-Bar Architecture,” IEEE Trans. Very Large Scale
Integration Systems, vol. 11, no. 3, pp. 511-514, June 2003.

[9] W.N.N. Hung, X. Song, T. Kam, L. Cheng, and G. Yang, “Routability
Checking for Three-Dimensional Architectures,” IEEE Trans. Very Large
Scale Integration Systems, vol. 12, no. 12, pp. 1398-1401, Dec. 2004.

[10] W.N.N. Hung, X. Song, E.M. Aboulhamid, A. Kennings, and A. Coppola,
“Segmented Channel Routability via Satisfiability,” ACM Trans. Design
Automation of Electronic Systems, vol. 9, no. 4, pp. 517-528, 2004.

[11] F. He, W.N.N. Hung, X. Song, M. Gu, and J. Sun, “A Satisfiability
Formulation for FPGA Routing with Pin Rearrangements,” Int’l J.
Electronics, vol. 94, no. 9, pp. 857-868, Sept. 2007.

[12] J.P. Marques-Silva and K.A. Sakallah, “GRASP: A New Search Algorithm
for Satisfiability,” Proc. IEEE/ACM Int’l Conf. Computer-Aided Design
(ICCAD ’96), pp. 220-227, Nov. 1996.

[13] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik, “Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver,” Proc. IEEE/ACM Int’l
Conf. Computer-Aided Design (ICCAD), Nov. 2001.

[14] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust SAT Solver,”
Proc. Design Automation and Test in Europe Conf. Exhibition, pp. 142-149, 2002.

[15] N. Eén and N. Sörensson, “An Extensible Sat-Solver,” Proc. Sixth Int’l Conf.
Theory and Applications of Satisability Testing, pp. 502-518, 2003.

[16] B. Selman, H.A. Kautz, and B. Cohen, “Noise Strategies for
Improving Local Search,” Proc. 12th Nat’l Conf. Artificial Intelligence
(AAAI ’94), pp. 337-343, 1994.

[17] B. Selman, H. Levesque, and D. Mitchell, “A New Method for Solving Hard
Satisfiability Problems,” Proc. 10th Nat’l Conf. Artificial Intelligence (AAAI),
pp. 440-446, 1992.

[18] M. Davis and H. Putnam, “A Computing Procedure for Quantification
Theory,” J. ACM, vol. 7, pp. 201-215, 1960.

[19] M. Davis, G. Logemann, and D. Loveland, “A Machine Program for
Theorem Proving,” Comm. ACM, vol. 5, pp. 394-397, July 1962.

[20] L. Hai, S. Jigui, and Z. Yimin, “Theorem Proving Based on the Extension
Rule,” J. Automated Reasoning, vol. 31, no. 1, pp. 11-21, 2003.

[21] X. Wu, J. Sun, S. Lv, and M. Yin, “Propositional Extension Rule with
Reduction,” Int’l J. Computer Science and Network Security, vol. 6, no. 1A,
pp. 190-197, Jan. 2006.

[22] P. Cheeseman, B. Kanefsky, and W.M. Taylor, “Where the REALLY Hard
Problems Are,” Proc. 12th Int’l Joint Conf. Artificial Intelligence (IJCAI ’91),
pp. 331-337, 1991.

[23] J.M. Crawford and L.D. Auton, “Experimental Results on the Crossover
Point in Satisfiability Problems,” Proc. 11th Nat’l Conf. Artificial Intelligence
(AAAI ’93), pp. 21-27, 1993.

[24] C. Coarfa, D.D. Demopoulos, A.S.M. Aguirre, D. Subramanian, and M.Y.
Vardi, “Random 3-Sat: The Plot Thickens,” Proc. CP ’02: Sixth Int’l Conf.
Principles and Practice of Constraint Programming, pp. 143-159, 2000.

[25] SATLIB—Benchmark Problems, http://www.cs.ubc.ca/hoos/SATLIB/
benchm.html, 2001.

[26] S. Kirkpatrick and B. Selman, “Critical Behavior in the Satisfiability of
Random Boolean Expressions,” Science, vol. 264, pp. 1297-1301, 1994.

426 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 3, MARCH 2012

TABLE 4
Experimental Results Compared with Extension Rule

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

