
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, JANUARY 2024 1

Leveraging Datapath Propagation in IC3 for
Hardware Model Checking

Hongyu Fan , and Fei He , Member, IEEE

Abstract—IC3 is a famous bit-level framework for safety
verification. By incorporating datapath abstraction, a notable
enhancement in the efficiency of hardware verification can be
achieved. However, datapath abstraction entails a coarse level of
abstraction where all datapath operations are approximated as
uninterpreted functions. This level of abstraction, albeit useful,
can lead to an increased computational burden during the
verification process as it necessitates extensive exploration of
redundant abstract state space.

In this paper, we introduce a novel approach called datapath
propagation. Our method involves leveraging concrete constant
values to iteratively compute the outcomes of relevant data-
path operations and their associated uninterpreted functions.
Meanwhile, we generate potentially useful datapath propagation
lemmas in abstract state space and tighten the datapath ab-
straction. With this technique, the abstract state space can be
reduced, and the verification efficiency is significantly improved.
We implemented the proposed approach and conducted extensive
experiments. The results show promising improvements of our
approach compared to the state-of-the-art verifiers.

Index Terms—datapath abstraction, datapath propagation,
hardware verification, reachability safety

I. INTRODUCTION

IC3 algorithm [1] (also known as PDR [2]) is one of the
most successful and widely applied technique for verifying

reachability of safety property in hardware model checking.
The IC3 algorithm incrementally explores the design’s state
space and tries to construct a proof of correctness. However,
bit-level IC3 algorithms [3]–[5] suffer from the state space
explosion problem. As the bit-width and complexity of the
hardware design increase, the IC3 algorithm’s performance
degenerates rapidly, threatening its scalability.

In Verilog RTL design, the datapath is responsible for pro-
cessing and manipulating data as it flows through the system.
Datapath operations refer to the specific procedures performed
within the datapath, typically involving arithmetic, logical, and
data movement operations. They are the most essential units
in the design. Complex functions usually consist of many
datapath operations. A popular approach [6]–[8] integrates
the IC3 algorithm with datapath abstraction [9], which denotes
datapath operations as uninterpreted functions (UF) instead
of their explicit implementation details. Therefore, UFs serve
as over-approximations for datapath operations. Importantly,
the verification process does not entail defining the specific
logic or functionality encapsulated within these functions. This

Fei He is the corresponding author. The authors are with the School of
Software, KLISS, BNRist, Tsinghua University, Beijing 100084, China.
Email: fhy18@mails.tsinghua.edu.cn, hefei@tsinghua.edu.cn.

This work was supported in part by the National Natural Science Foundation
of China (No. 62072267 and No. 62021002).

abstraction facilitates a higher level of generality, enabling a
more abstract representation of the overall datapath behavior.

Constraint solving for UF [10] is much faster than bit-vector
(BV) [11], [12]. Therefore, each IC3 call on abstract state
space is mostly several orders of magnitude more efficient than
the bit-level IC3 call. However, abstraction may bring spurious
counterexamples. For each abstract counterexample returned
by IC3, the counterexample-guided abstraction refinement
(CEGAR) [13] procedure checks if the abstract counterexam-
ple is spurious. If it is, then the refinement procedure generates
datapath refinement lemmas to prune the abstract state space
and tighten the current abstraction. Each datapath lemma is a
constraint formula over UFs. Then, the verification procedure
calls the IC3 iteratively until either the property holds or a
real counterexample is found.

Although integrating the IC3 with datapath abstraction and
refinement is shown to be successful and practical [14], [15],
the iteration of the CEGAR is also a crucial factor to the over-
all efficiency of the verification process. However, the CEGAR
is designed as a general framework for abstraction-based veri-
fication. The knowledge of datapath operations cannot be fully
utilized. Roughly abstracting all the datapath operations as
uninterpreted functions makes the verification procedure lose
all the semantics of datapath operations. Constraint solving
can assign arbitrary values to UFs. Therefore, the verification
procedure may find numerous spurious counterexamples, even
if they are trivial, and require many rounds of refinement
to tighten the abstraction. On the other hand, applying this
knowledge in CEGAR may be useful for pruning the abstract
state space and thus improving the overall efficiency.

Our basic idea is to utilize the knowledge of datapath
operations in abstract state space by propagating the accurate
values to the corresponding UFs and guiding the datapath
abstraction-based IC3 for hardware verification. A straight-
forward attempt for this idea is constant propagation [16],
[17], an optimization technique that aims to identify and
propagate constant values throughout a system. It replaces
variables or expressions with their known constant values,
eliminating unnecessary computations and improving runtime
performance. However, constant propagation is performed in
the concrete state space.

In this paper, we propose a datapath propagation that
propagates constant values from concrete state space to ab-
stract state space. In more detail, for each abstract constraint
formula, we first recognize constant values and related UFs.
Then, we consider the original semantics of UFs, i.e., their
corresponding datapath operations. We propagate constant
values to drive the outcomes of these datapath operations and

https://orcid.org/0000-0002-6135-7308
https://orcid.org/0000-0002-4266-875X

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, JANUARY 2024

assign the outcomes to the corresponding UFs. Subsequently,
we substitute these UFs with their outcomes and continue
the iterative propagation. With this technique, some UFs are
assigned with accurate values, or relations between UFs and
constants can be determined. Therefore, we prune redundant
abstract space and tighten the datapath abstraction.

Moreover, we propose to generate datapath propagation
lemma (DPL), which is another type of datapath lemma
generated during the propagation process. It can be generated
in two situations. First, once the propagation deduces that the
current formula is unsatisfiable, we generate DPL to record the
core reason and block the possible spurious counterexample.
Second, if some predicates or binary relations referring to
datapath operations are determined during the propagation, we
generate DPL to record this information and facilitate further
verification. The generated DPLs can also eliminate spurious
counterexamples and, more importantly, reduce the number of
CEGAR iterations. Our method is performed in the abstract
state space, independent of CEGAR. Combining our approach
and refinement in CEGAR can further prune the abstract state
space. The verification efficiency is thus improved.

We implemented the proposed method on top of AVR [14],
which is the champion tool of the latest Hardware Model
Checking Competition (HWMCC). Our implementation is
called AVRdp. We collected benchmarks from HWMCC 2019
and 2020 – the last two competitions. We compare AVRdp with
state-of-the-art hardware verification tools, including AVR,
IC3IA [18], Pono [19], ABC [3], nuXmv-ic3 [20], and Avy [4].
The experimental results show that AVRdp solves more cases
than competitor tools. Counting on both-verified cases, AVRdp
achieves 1.46x, 20.04x, 2.01x, 2.09x, 2.84x, 3.65x speedup
over AVR, IC3IA, Pono, ABC, nuXmv-ic3, and Avy, respec-
tively. Especially, AVRdp generates 3923 datapath propagation
lemmas and reduces 29.5% refinements than AVR.

The contributions of this paper are summarized as follows:
• We proposed a novel datapath propagation approach in

abstraction-based IC3 for hardware verification.
• We devised a datapath propagation lemma generation

procedure, with which the deduced results can be kept
to facilitate further verification.

• We implemented the proposed method on top of AVR and
conducted extensive experiments. Experimental results
show the promising performance of our approach.

The rest of this paper is organized as follows. Section II
introduces necessary preliminaries. Section III uses an exam-
ple to motivate our approach. Section IV details the datapath
propagation. Section V shows how to combine datapath prop-
agation with IC3. Experimental results and analysis are pre-
sented in Section VI, followed by related works in Section VII
and conclusion in Section VIII.

II. PRELIMINARIES

A. Notations

In first-order logic (FOL), a term is a variable, a constant,
or an n-ary function applied to n terms; an atom is ⊥, ⊤, or
an n-ary predicate applied to n terms; a literal is an atom
or its negation. A cube is a conjunction of literals and a

IC3

✖…
?

𝑭𝟎=𝑰

𝑷

𝑭𝒌

𝑭𝟏

𝑭𝟐

…
𝑭𝒌 𝟏

𝒔 ¬𝑷

𝑃 holds

𝑭𝒌 𝟏

Fig. 1. Overview of the IC3 algorithm.

clause is a disjunction of literals. A first-order formula is built
from literals using Boolean connectives and quantifiers. An
interpretation (or model) M consists of a non-empty object set
dom(M), called the domain of M , an assignment that maps
each variable to an object in dom(M), and an interpretation
for each constant, function, and predicate, respectively. A
formula Φ is satisfiable if there exists a model M so that
M |= Φ; Φ is valid if for any model M , M |= Φ.

A first-order theory T is defined by a signature and a
set of axioms. The signature consists of constant symbols,
function symbols, and predicate symbols allowed in T ; the
axioms prescribe the intended meanings of these symbols.
A T -model is a model that satisfies all axioms of T . A
formula Φ is T -satisfiable if there exists a T -model M so
that M |= Φ; Φ is T -valid if it is satisfied by all T -models.
The satisfiability modulo theories (SMT) [10], [21] problem
is a decision problem for formula ϕ in some combination of
first-order theories. For each theory T in ϕ, there is a T -solver
that can check the T -satisfiability of conjunctions of literals
in T .

B. Model Checking

A hardware design can be represented as a netlist or a model
in a hardware description language such as Verilog. Let X be
the set of state variables in the design; let X ′ be the primed
copy of X representing the next-state variables. The design’s
behavior can be encoded as a model checking problem via
a 4-tuple P := ⟨X, I, T, P ⟩, where I(X) is a formula for
the initial states, T (X,X ′) is a formula for the transition
relation, and P (X) is a formula for the desired safety property.
Specifically, the next-state variables in T are represented as
functions of present-state variables. Input variables are treated
as state variables whose next states are unconstrained.

A state s is an assignment to all variables in X . A trace is
a sequence of states s0, s1, . . . , sk such that I(s0) holds, and
T (si, si+1) holds for 0 ≤ i ≤ k − 1. The property formula
P asserts that all reachable states satisfy P , i.e., P should be
invariant for the design. Otherwise, there must be a finite trace
s0, s1, . . . , sk, which is a counterexample that P (sk) does not
hold. An inductive invariant F is a formula satisfying: (1)
I → F , and (2) F is closed under the transition relation, i.e.,
F ∧ T → F ′.

HONGYU ET AL: LEVERAGING DATAPATH PROPAGATION IN IC3 FOR HARDWARE MODEL CHECKING 3

Algorithm 1 IC3 (I, T, P)
1: if I ∧ ¬P or I ∧ T ∧ ¬P ′ then
2: return counterexample trace;
3: k = 1, Fk = P ;
4: while true do
5: Fk+1 = P ;
6: while Fk ∧ T ∧ ¬P ′ do
7: let s be the satisfying assignment;
8: if Reachable(s, I) then
9: return counterexample trace;

10: else
11: Block(s, k + 1);
12: if Fi = Fi−1 for some 2 ≤ i ≤ k + 1 then
13: return empty trace; // P hold
14: k++;

C. IC3 Algorithm

IC3 (or PDR) is a well-known algorithm for determining
whether a hardware design satisfies a given safety property
P . It represents a major advance over previous SAT-based
induction methods [22]–[24]. Alg. 1 lists the pseudocode of
IC3. Taking I, T, P as input, it first looks for 0-step and 1-
step counterexample traces (line 1). If none are found, the
algorithm instantiates frontier Fk, the over-approximation of
k-step reachable states (k ≥ 1), to P (line 3). Then, the IC3
algorithm iteratively checks if Fk can reach ¬P states in one
transition (line 6). Each satisfying assignment s is checked to
determine if it is reachable from I (line 7). If unreachable,
e.g., the green trace in Fig. 1, s is blocked and used to tighten
the frontiers F1 to Fk+1 (line 10). This check continues until
either a counterexample trace of the length k + 1 is found
(line 8), or all the states that violate P in one transition are
unreachable from I . If the algorithm finds Fi = Fi−1 for
some 2 ≤ i ≤ k + 1, it returns an empty trace indicating that
P holds (line 11), and Fi is an inductive invariant that satisfies
P (Fk → P). Otherwise, the IC3 algorithm increments k and
continues to check the existence of counterexample traces on
longer transitions (line 13).

The pseudocode shows a sketch of the algorithm and hides
many details. It consists of numerous 1-step backward reacha-
bility checks processed in order. These reachability checks are
represented as formulas using the BV theory. Therefore, the
state space is exponential in the bit width of state variables.
Given P with n total bits, each bit can be 0 or 1, and there
are up to 2n states in the concrete state space. Therefore, as
the bit width increases, the scale of the state space grows
exponentially, and the efficiency of IC3 degenerates rapidly.

D. Datapath Abstraction

Abstraction is a common technique for improving the ef-
ficiency and scalability of verification. It creates an abstract
model that captures the critical behavior and properties of
the system while approximating certain details as needed.
The abstract model brings higher-level representation and
simplified views of the original system. In this way, an abstract
state can represent a cluster of concrete states. Therefore, it

module Example (clk);
input wire clk;
reg [1:0] x, y;
initial begin

x = 2’d0; y= 2’d0;
end
always @ (posedge clk) begin

x <= (x<y)? x : (y!=x)? y : x+1;
y <= (y==x)? y+1 : (x<y)? y : x;

end
wire P = (y<=x);

endmodule

Fig. 2. Verilog description of an example sequential circuit with a specified
safety property. The state variables are 2-bit unsigned integers x = x1x0

and y = y1y0. The main sequential logic involves computing the next-state
values of x and y. The safety property asserts that y ≤ x is always satisfied.

reduces the proof of a property on an infinite or large concrete
state space to a proof on an abstract state space.

Datapath abstraction [6] replaces state variables and datap-
ath operations with uninterpreted functions (UF). It returns the
abstract version of the original problem P := ⟨X, I, T, P ⟩ as
P̂ := ⟨X̂, Î, T̂ , P̂ ⟩. P̂ over-approximates the original system
and is a sound abstraction, i.e., if P̂ is proved safe on the
abstract state space, so is P on the concrete state space.
However, a counterexample that violates P̂ on the abstract
state space may be spurious on the concrete state space due
to the coarse abstraction.

III. MOTIVATION

This section motivates our approach with a simple example.
We introduce IC3 with datapath abstraction and emphasize the
overlooked significance of datapath operation knowledge.

A. IC3 with Datapath Abstraction
Consider the example design in Fig. 2. The design’s behav-

ior can be encoded as a model checking problem P where
x, y are state variables and I, T, P are:

I : x = 0 ∧ y = 0

T : x′ = (x < y) ? x : (y ̸= x) ? y : x+ 1 ∧
y′ = (y == x) ? y + 1 : (x < y) ? y : x

P : y ≤ x

IC3 can be enhanced with the datapath abstraction. The
enhanced algorithm, called DP-IC3 [6], is shown in Alg. 2.
It first calls DP-Abstract to perform the datapath abstraction
(line 1). For the example design, we have:

Î : x̂ = 0̂ ∧ ŷ = 0̂

T̂ : x̂′ = LT (x̂, ŷ) ? x̂ : (ŷ ̸= x̂) ? ŷ : ADD(x̂, 1̂) ∧
ŷ′ = (ŷ == x̂) ?ADD(ŷ, 1̂) : LT (x̂, ŷ) ? ŷ : x̂

P̂ : LE(ŷ, x̂)

P̂ uses uninterpreted sort and converts datapath operations
(e.g., <,+) with UFs (e.g., LT, ADD). Note that state variables
or constants are denoted as 0-ary UFs.

Then, IC3 runs on the abstract state space. Let Φdrl be
the conjunction of datapath refinement lemmas derived in
CEGAR. It is initialized to true (line 2). Lines 3-11 are the
main body of DP-IC3. It calls the modified version of IC3 in

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, JANUARY 2024

Alg. 1 that operates on abstract formulas. Note that Φdrl serves
as the fourth argument and augments all the queries that IC3
performs. If IC3 returns an empty trace, no counterexample is
found in the abstract or concrete state space. Alg. 2 terminates
with the conclusion that P holds (lines 5-6). Otherwise, a non-
empty trace representing an abstract counterexample (ACEX)
is found. DP-IC3 calls DP-Concrete to generate CEX as the
bit-level version of ACEX and checks its feasibility (line 8).
If CEX is feasible, Alg. 2 returns CEX as a counterexample
trace that witnesses the violations of P (line 10). If CEX is
infeasible, Alg. 2 calls DP-Refine to eliminate the spurious
counterexample by generating datapath refinement lemmas
(line 11). Then, DP-IC3 invokes the next round of IC3.

Consider the example design in Fig. 2, IC3 first checks
0-step safety by calling an SMT solver. Î is safe iff the
query formula Î ∧ ¬P̂ is unsatisfiable. A 0-step abstract
counterexample acex1: {x̂ 7→ 0̂, ŷ 7→ 0̂, LE(ŷ, x̂) 7→ false} is
returned, where a 7→ b means b is the assignment of a by the
SMT solver. To check its feasibility, DP-concrete returns cex1
as its bit-level counterpart: x = 0 ∧ y = 0 ∧ ¬(y ≤ x). Then,
cex1 is bit-blasted and feasibility checking is performed using
the BV theory solver. Apparently, cex1 is BV-unsatisfiable.
DP-IC3 realizes that acex1 is spurious and invokes DP-Refine
to eliminate it. DP-Refine can refute the spurious counterex-
ample by adding the negation of the abstract counterexample,
i.e., ¬acex1 to Φdrl. This procedure can tighten the current
abstraction and prevents acex1 from appearing again.

To derive more powerful datapath refinement lemmas, DP-
Refine can extract minimal unsatisfiable subsets (MUSes)
from the concretized cube cex1. An MUS is a subset of a
CNF formula such that (1) a conjunction of the MUS is still
unsatisfiable; (2) removing any clause from the MUS makes
it satisfiable. A possible MUS of cex1 is ¬(y ≤ x) ∧ y = 0,
which can be simplified to ¬(0 ≤ x). Since cex1 → ¬(0 ≤ x),
then 0 ≤ x → ¬cex1, and we have LE(0̂, x̂) → ¬acex1 after
abstraction. Therefore, combining LE(0̂, x̂) instead of ¬acex1
to Φdrl can prune more redundant abstract state. The datapath
refinement lemmas derived from MUSes can refute more
spurious counterexamples than ¬acex1. DP-Refine derives the
datapath refinement lemma drl1 : LE(0̂, x̂) and adds it to Φdrl.

In the second iteration, IC3 checks 1-step safety (Î∧T̂¬P̂ ′∧
drl1) and returns a 1-step ACEX acex2. We don’t show the
trace for brevity. The corresponding bit-level formula cex2:

x = 0 ∧ y = 0 ∧ x ≥ y ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ y′ > x′

is found to be infeasible by the SMT solver. Then, the
refinement procedure refutes acex2 by generating datapath
refinement lemma drl2:

¬(x̂ = 0̂ ∧ ŷ = 0̂∧x̂′ = ADD(x̂, 1̂) ∧ŷ′ = ADD(ŷ, 1̂)∧¬LE(ŷ′, x̂′))

The third iteration also returns a 1-step ACEX acex3,
which is found to be infeasible and refuted by datapath
refinement lemma drl3 : ¬(ŷ = x̂∧LT(x̂, ŷ)). Finally, after six
refinements, DP-IC3 succeeds in finding an inductive invariant
ŷ = x̂ and proves that P̂ (and P) holds.

B. Datapath Knowledge is Important
The inherent advantage of the DP-IC3 is that the reacha-

bility computation is performed on the abstract model of the

Algorithm 2 DP-IC3 (I, T, P)

1: Î , T̂ , P̂ = DP-Abstract(I, T, P);
2: Φdrl = true; // initialize datapath lemmas
3: while true do
4: ACEX = IC3(Î , T̂ , P̂ ,Φdrl);
5: if ACEX is empty then
6: return empty trace; // P holds
7: else
8: CEX = DP-Concrete(ACEX);
9: if CEX is feasible then

10: return CEX; // P fails
11: Φdrl = Φdrl ∧ DP-Refine(ACEX);

hardware design, which hides the bit-level details of datapath
operations. From the angle of the SMT solver, constraint
solving for UFs is much faster than when bit-level facts must
be involved. Therefore, each IC3 call is expected to be more
efficient than the bit-level IC3 call. However, the bit-level IC3
is only called once, but DP-IC3 may call IC3 iteratively in
abstract state space because of the spurious counterexamples.
Therefore, the number of CEGAR iterations is crucial to the
overall verification efficiency.

Applying the knowledge of datapath operations can reduce
the CEGAR iterations. Consider the 0-step safety check of the
example design in Fig. 2. Since predicate LE is uninterpreted
for SMT solver, and there are no other constraints on it,
LE(ŷ, x̂) can be assigned to any boolean values, which results
in the spurious counterexample acex1. Each CEGAR iteration
is complex. DP-IC3 needs to generate the bit level counterex-
ample cex1, checking its feasibility, then invokes DP-Refine
to generate datapath refinement lemmas that refute acex1. In
contrast, 0 ≤ 0 (even 0 ≤ x) is trivial for ≤, considering its
semantics. Therefore, conveying the information that LE(0̂, 0̂)
or LE(0̂, x̂) to DP-IC3 is useful for avoiding the spuriousness
and reducing CEGAR iterations.

Moreover, applying the knowledge datapath operations can
reduce the size of the query formula. In DP-IC3, every query
formula is augmented by Φdrl. As the size of Φdrl grows along
with the CEGAR iterations, the size of the query formula also
grows rapidly. Therefore, reducing the CEGAR iterations can
also reduce the size of the query formula in abstract space and
achieves higher constraint solving efficiency.

However, the knowledge of datapath operations is neglected
by DP-IC3. Datapath operations are the essential arithmetic
or logical units in the design which comprise complex func-
tionalities. Roughly treating all datapath operations as UFs
causes coarse abstraction, which may bring numerous spurious
counterexamples and put a heavy burden on the CEGAR
framework. Instead, for a query formula φ̂ in abstract state
space, utilizing the knowledge of datapath operations may
prune the redundant search space, reduce the number of
CEGAR iterations, and improve the verification efficiency.

One may consider all the semantics of datapath operations.
Then, DP-IC3 degenerates to the bit-level IC3 algorithm since
no abstraction exists and it suffers from the state space explo-
sion problem. We propose a datapath propagation procedure

HONGYU ET AL: LEVERAGING DATAPATH PROPAGATION IN IC3 FOR HARDWARE MODEL CHECKING 5

to take advantage of DP-IC3 and utilize the knowledge of
datapath operations.

IV. DATAPATH PROPAGATION

This section details the datapath propagation. We introduce
the supported datapath operations and we show the propaga-
tion rules that carry the knowledge of datapath operations.
Then, we show the workflow of the propagation procedure.

Let φ be a bit-level formula in conjunctive normal form
(CNF), e.g., φ = C1 ∧ C2 ∧ . . . Cn where Ci, 0 ≤ i ≤ n, is a
clause. Denote α and γ as the DP-Abstract and DP-Concrete
functions in Alg. 2. Therefore, α replaces constants, variables,
or datapath operations with UFs; γ is just the opposite. α and
γ maintain the correspondence between an abstract entity and
its bit-level counterpart in datapath abstraction. Let u be a
constant, a variable, or a CNF formula, we use û = α(u) to
represent its abstract version and u = γ(û). Tab. I lists the
abstract version of supported datapath operations, which can
be divided into several categories:
• Arithmetic Operations: mathematical computations on

data, including addition (+), subtraction (-), multiplication
(×), division (/), and modulo (%) operations.

• Relational Operations: data comparison operations that
returns a Boolean value, including < and ≤. We use their
negation to represent ≥ and > to reduce the types and
facilitate the further analysis.

• Bitwise Operations: logical operations manipulate binary
data using Boolean logic, including Bitwise AND (&),
Bitwise OR (|), Bitwise XOR (∧), Bitwise NOT (∼), and
negations of the first three operations.

• Reduction Operations: logical operations that reduce a set
of data elements to a Boolean value, including reduction
AND, OR, XOR, and their negation.

• Shift Operations: data movement operations that shift the
binary representation of data to the left or right, including:
logical left shift (<<) and logical right shift (>>) where the
empty bits are filled with zero; arithmetic left shift (<<<)
and arithmetic right shift (>>>) where the sign bit is used
to fill the empty bit positions.

Let symb(φ̂) be a set of symbols appearing in φ̂. For example,
suppose that φ̂ is x̂ = 0̂∧ ŷ = ADD(x̂, 1̂)∧LT (ŷ, x̂) we have
symb(φ̂) = {x̂, ŷ, 0̂, 1̂,LT,ADD}.

The main idea of datapath propagation is to first recognize
constant symbols in φ̂ and propagate them to related UFs.
We consider the original datapath operations of these UFs and
try to obtain the outcomes of the original datapath operations.
Moreover, the knowledge of datapath operations is not limited
to the constant symbols, we also devise the propagation rules
to utilize this knowledge and obtain the outcomes of related
datapath operations. Then we assign the outcomes back to the
corresponding UFs and continue the iterative propagation. In
the following, we introduce the propagation rules.

A. Propagation Rules

Propagation rules vary with the datapath operation’s type.
Let x̂, ŷ, ẑ be 0-ary UFs that represent abstract state variables
after datapath abstraction. Denote 0-ary UFs 0̂, 1̂, . . . the

TABLE I
ABSTRACT DATAPATH OPERATIONS

Type After DP-Abstract

Arithmetic ADD, SUB/Minus, MUL, DIV, MOD

Relational LT, LE

Bitwise BitWiseAnd, BitWiseOr, BitWiseXor, BitWiseNAnd,
BitWiseNor, BitWiseXNor, BitWiseNot

Reduction ReductionAnd, ReductionOr, ReductionXor,
ReductionNAnd, ReductionNor, ReductionXNor

Shift ShiftL, ShiftR, AShiftL, AShiftR

constant symbols. Let MAXx be 2x.width()−1. Tab. II lists the
essential propagation rules for supported datapath operations.

The first row shows the propagation rules for arithmetic
operations. We take MUL(x̂, ŷ) = α(x× y) as an example:

• if x̂ is not equal to any constant symbol in symb(φ̂) and
ŷ = 0̂, MUL(x̂, ŷ) is propagated to 0̂.

• if x̂ is not equal to any constant symbol in symb(φ̂) and
ŷ = 1̂, MUL(x̂, ŷ) is propagated to that x̂.

The other two symmetric cases have the same result. More-
over, φ̂ is a CNF formula, i.e., φ̂ = Ĉ1 ∧ Ĉ2 ∧ . . . Ĉn. If φ̂ is
satisfiable, both Ĉi, 0 < i ≤ n should be satisfiable. Therefore,
for some Ĉi that are equalities between UFs, we put these UFs
into a set (called equality closure).

Example1: For example, suppose φ̂ is

x̂ = ŷ ∧ û = SUB(x̂, ŷ) ∧ v̂ = 0̂ ∧ LT(û, v̂) ∧ . . .

we maintain equality closures {x̂, ŷ} and {v̂, 0̂} to facilitate
further propagations. Consider the propagation rules about
arithmetic operations in Tab. I, x̂ and ŷ belong to the same
equality closure, then SUB(x̂, ŷ) should be 0̂. Since 0̂ ∈
symb(φ̂), we have û = 0̂, and we add û to the second equality
closure. Since û = v̂, the propagation rule about relational
operations in Tab. I can be applied. We have ¬LT(û, v̂), which
contradicts the predicates LT(û, v̂) in φ̂.

Note that he parameters of UFs can be other UFs, e.g.,
(x̂ = ŷ) → LE(ADD(x̂, 1̂),ADD(ŷ, 1̂)). Additionally, there
are some special rules for reduction operations. For example,
suppose x̂ is determined to be unequal to 0̂ in some Ĉi and
ReductionOr(x̂) appears in φ̂, we replace ReductionOr(x̂)
with 1̂ if 1̂ ∈ symb(φ̂). Therefore, the propagation builds
equality between the UF and the constant symbol, which is
unknown to the SMT solver.

Thirdly, there are some special rules for relational opera-
tions. Consider the second row in Tab. I, if LT and LE appear
in φ̂ and they have the same set of parameters, we have
propagation rules LT(x̂, ŷ) → ¬LE(ŷ, x̂) since x < y means
¬(y ≤ x) and LE(x̂, ŷ) → ¬LT(ŷ, x̂) since x ≤ y means
¬(y < x). Moreover, < and ≤ are transitive; Fig. 3 provides an
intuitive illustration of these propagation rules. In (a), suppose
that some Ĉi in φ̂ are predicates LT(x̂, ŷ) and LT/LE(ŷ, û) (the
solid line), and LT/LE(x̂, û) appears in φ̂. Since x < y∧y < u
implies x < u and x < y∧y ≤ u implies x < u, we propagate
LT(x̂, û) and LE(x̂, û) to true (the green checkmark). On the
contrary, the predicates LT(û, x̂) and LE(û, x̂) are propagated
to false (the red cross) if they appear in φ̂.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, JANUARY 2024

TABLE II
PROPAGATION RULES FOR ARITHMETIC, RELATIONAL, BITWISE, REDUCTION, AND SHIFT OPERATIONS

Type Propagation rules

Arithmetic

ADD(x̂, 0̂) = x̂ ADD(0̂, ŷ) = ŷ SUB(x̂, 0̂) = x̂ (x̂ = ŷ) → SUB(x̂, ŷ) = 0̂ MUL(x̂, 0̂) = 0̂

MUL(0̂, ŷ) = 0̂ MUL(x̂, 1̂) = x̂ MUL(1̂, ŷ) = ŷ (x̂ = ŷ) → DIV(x̂, ŷ) = 1̂ DIV(0̂, ŷ) = 0̂

MOD(x̂, 1̂) = 0̂ MOD(0̂, x̂) = 0̂ (x̂ = ŷ) → MOD(x̂, ŷ) = 0̂

Relational

¬LT(x̂, x̂) (x̂ = ŷ) → ¬LT(x̂, ŷ) LT(x̂, ẑ) ∧ LT(ẑ, ŷ) → LT(x̂, ŷ) LT(x̂, ŷ) → LE(x̂, ŷ)

¬LT(x̂, 0̂) LE(x̂, ŷ) → ¬LT(ŷ, x̂) LE(x̂, ẑ) ∧ LE(ẑ, ŷ) → LE(x̂, ŷ) LT(x̂, ẑ) ∧ LE(ẑ, ŷ) → LT(x̂, ŷ)

LE(0̂, x̂) (x̂ = ŷ) → LE(x̂, ŷ) LE(x̂, ẑ) ∧ LE(ẑ, ŷ) → LE(x̂, ŷ)

LE(x̂, x̂) LT(x̂, ŷ) → ¬LE(ŷ, x̂) LE(x̂, ẑ) ∧ LT(ẑ, ŷ) → LT(x̂, ŷ)

Bitwise

BitWiseAnd(x̂, 0̂) = 0̂ BitWiseOr(x̂, 0̂) = x̂ BitWiseNor(ˆMAXx, ŷ) = 0̂ (x̂ = ŷ) → BitWiseAnd(x̂, ŷ) = x̂

BitWiseAnd(0̂, ŷ) = 0̂ BitWiseOr(0̂, ŷ) = ŷ BitWiseOr(x̂, ˆMAXx) = ˆMAXx (x̂ = ŷ) → BitWiseOr(x̂, ŷ) = x̂

BitWiseAnd(x̂, ˆMAXx) = x̂ BitWiseOr(ˆMAXx, ŷ) = ˆMAXx BitWiseNAnd(x̂, 0̂) = ˆMAXx (x̂ = ŷ) → BitWiseXor(x̂, ŷ) = 0̂

BitWiseAnd(ˆMAXx, ŷ) = ŷ BitWiseNor(x̂, ˆMAXx) = 0̂ BitWiseNAnd(0̂, ŷ) = ˆMAXx (x̂ = ŷ) → BitWiseXNor(x̂, ŷ) = ˆMAXx

Reduction
ReductionAnd(x̂) = 0̂ where ¬(x̂ = ˆMAXx) ReductionOr(x̂) = 1̂ where ¬(x̂ = 0̂) ReductionNOr(x̂) = 1̂ where ¬(x̂ = 0̂)

ReductionNAnd(x̂) = 0̂ where ¬(x̂ = ˆMAXx) ReductionXNOr(x̂) = 1̂ where ¬(x̂ = ˆMAXx)

Shift
ShiftL(x̂, 0̂) = x̂ ShiftL(0̂, x̂) = 0̂ ShiftR(x̂, 0̂) = x̂ ShiftR(0̂, x̂) = 0̂

AShiftL(x̂, 0̂) = x̂ AShiftL(0̂, x̂) = 0̂ AShiftR(x̂, 0̂) = x̂ AShiftR(0̂, x̂) = 0̂

In contrast, consider LE(x̂, ŷ) and LE(ŷ, û) in (b). Since
x ≤ y ∧ y ≤ u implies x ≤ u, we propagate LE(x̂, û) to true
(the green checkmark) and LT(û, x̂) just the opposite (the red
cross). Note that LT(x̂, û) is still unknown if it appears in φ̂.
Moreover, since x ≤ y∧y < z implies x < z, the bottom half
of (b) has the same propagation results as (a).

B. Propagation Procedure

Given an abstract CNF formula φ̂, datapath propagation is
a procedure that tries to construct a formula ψ̂, s.t., φ̂ ∧ ψ̂ is
unsat and |=T ψ where symb(ψ̂) ⊆ symb(φ̂) and ψ = γ ˆ(ψ).
In more detail, ψ̂ is a formula over UFs and ψ = γ(ψ̂)
its bit-level counterpart. |=T ψ means ψ is a tautology
under first order theory T , e.g., bit-vector theory. Datapath
propagation tries to find a formula ψ̂ over UFs that φ̂ ∧ ψ̂
is unsatisfiable. symb(ψ̂) ⊆ symb(φ̂) indicates that all the
symbols appeared in ψ̂ also appear in φ̂, i.e., ψ̂ does not
introduce new uninterpreted constants, variables, predicates,
or functions that are not in symb(φ̂).

Example2: Let φ̂ be x̂ = 0̂ ∧ ŷ = ADD(x̂, 1̂) ∧ LT (ŷ, x̂),
a possible assignment returned by the SMT solver is:

{x̂ 7→ 0̂, ŷ 7→ v1, ADD(x̂, 1̂) 7→ v1 LT(ŷ, x̂) 7→ true}

where v1 can be any uncertainty value that does not exceed
the maximum value in its bit width. In contrast, datapath prop-
agation may find a formula ψ̂ : ADD(0̂, 1̂) = 1̂ ∧ ¬LT(1̂, 0̂).
It is easy to see that φ̂ ∧ ψ̂ is unsat and the bit-level formula
ψ : 0 + 1 = 1 ∧ ¬(1 < 0) is tautology under BV theory.
Meanwhile, symb(ψ̂) ⊆ symb(φ̂).

Datapath propagation is restricted to only adding con-
stants/symbols or function composition terms appeared in
symb(φ̂). The reason for this restriction is straightforward.
Firstly, if the propagation adds a new symbol s that is

(a)

𝑦
𝐿𝑇(𝑥, 𝑦) 𝐿𝑇/𝐿𝐸(𝑦, 𝑢)

𝐿𝑇/𝐿𝐸(𝑥, 𝑢)

𝐿𝑇/𝐿𝐸(𝑢, 𝑥)

(b)

𝑦
𝐿𝐸(𝑥, 𝑦)

𝐿𝐸(𝑥, 𝑢)

𝐿𝑇(𝑢, 𝑥)

𝐿𝑇/𝐿𝐸(𝑥, �̂�)

𝐿𝑇/𝐿𝐸(�̂�, 𝑥)

Fig. 3. Propagation rules about relational operations

not in symb(φ̂), s is treated as a free variable and has
no contributions to prune the abstract state space. Secondly,
introducing new symbols may lead to a longer search of the
propagation. For example, suppose a new constant symbol 2̂ is
introduced by ADD(1̂, 1̂) and 2̂ is not appeared in symb(φ̂).
Then, the propagation procedure may generate 3̂ by ADD(2̂, 1̂)
and 4̂, 5̂ . . . , which leads to redundant propagation and gen-
erates numerous useless formulas. Thirdly, creating function
composition terms that are not in symb(φ̂) is useless; and it
leads to a longer search of the propagation. Finally, introducing
new uninterpreted constants or functionally composed UFs to
the vocabulary without any restrictions may lead to divergence
in the word-level IC3 algorithm within the abstract space.

For each query formula, datapath propagation terminates in
three situations: 1) success in finding formula ψ̂; 2) no more
propagation can be conducted; 3) failure to find ψ̂ within the
specific number of iterations. For the first situation, since ψ is
a bit-level fact and φ̂∧ψ̂ is unsatisfiable, ψ̂ is a datapath lemma
that eliminates spurious ACEX. In the last two situations, no
more propagation can be applied, or the size of φ̂ is too big
to finish the propagation, then φ̂ is passed to the SMT solver.

HONGYU ET AL: LEVERAGING DATAPATH PROPAGATION IN IC3 FOR HARDWARE MODEL CHECKING 7

Algorithm 3 Datapath propagation (φ̂, bound,Φdpl)

1: φ̂p = φ̂, φ̂q = true, k = 0, ψ̂ = true;
2: while φ̂p ! = φ̂q and k < bound do
3: φ̂q = φ̂p;
4: let Ĉ be constant symbols in φ̂p;
5: for ĉ ∈ Ĉ do
6: UFc = update related UF(ĉ, φ̂p);
7: for uf ∈ UFc do
8: if parameters are all constant symbols in uf then
9: res = γ(uf), ˆres = α(res);

10: if ˆres ∈ symb(φ̂p) then
11: φ̂p = replace UF with const(φ̂p, uf, ˆres);
12: ψ̂ = ψ̂ ∧ (uf = ˆres);
13: else
14: ψ̂ = ψ̂ ∧ ¬(uf = û) foreach û ∈ Ĉ;
15: else
16: ψ̂, φ̂p = apply propagation rule(uf);
17: if φ̂p ∧ ψ̂ is unsat then
18: Φdpl = Φdpl ∧ ψ̂;
19: return unsat;
20: ψ̂, φ̂p = apply propagation rule(φ̂p);
21: if φ̂p ∧ ψ̂ is unsat then
22: Φdpl = Φdpl ∧ ψ̂;
23: return unsat;
24: k = k + 1;
25: Φdpl = Φdpl ∧ ψ̂;
26: return unknown;

However, some bit-level facts λ can also be propagated in the
last two situations. λ̂ = α(λ) is a datapath lemma that reduces
the abstract state space and facilitates further verification. We
call ψ̂ or λ̂ datapath propagation lemma (DPL).

Alg. 3 details the datapath propagation. The inputs include
an abstract query formula φ̂, a maximal propagation depth
bound, and a formula Φdpl that records datapath propagation
lemmas (DPLs). The algorithm tries to construct a formula ψ̂
that |=T ψ and φ̂ ∧ ψ̂ is unsat. It returns unsat if successful,
or unknown in other situations. First, we set two formulas
φ̂p = φ̂ and φ̂q = true. They are used to check if propagation
continues. k = 0 is the current depth of the propagation, and
ψ̂ is initially assigned true (line 1).

The while loop in lines 2-24 is the main procedure, which
exits when φ̂p = φ̂q or k ≥ bound (line 2). Since φ̂q is the
query formula before executing the loop and φ̂p is the query
formula after the loop, φ̂p = φ̂q means no propagation is
conducted in the last iteration. k ≥ bound means the number
of iterations exceeds the specific depth. In the loop, we first
assign φ̂p to φ̂q (line 3) and let Ĉ be the set of constant
symbols in φ̂ (line 4).

For each constant symbol ĉ ∈ Ĉ, we propagate ĉ to related
UFs in φ̂ and use UFc to collect the updated UFs (line 6). In
more detail, suppose that φ̂ is

x̂ = 0̂ ∧ ŷ = x̂ ∧ ẑ = 1̂ ∧ v̂ = ADD(û, ŷ) ∧ LT(x̂, ẑ)

propagating 0̂ to UFs in φ̂ returns ẑ = 1̂ ∧ v̂ = ADD(û, 0̂) ∧
LT(0̂, ẑ). Then, ADD(û, 0̂) and LT(0̂, ẑ) are added to UFc.

For each uf ∈ UFc (line 7), if all the parameters of uf
are constant symbols; the algorithm considers the original
datapath operation γ(uf) and tries to obtain its outcome. Let res
represents the outcome and ˆres = α(res) its abstract version
(line 9). If α(res) exists in symb(φ̂), we update φ̂ by replacing
uf with res (line 11). Moreover, we build an equality between
ˆres and uf and combines the equality into ψ̂ (line 12). However,

if ˆres introduces new symbol that does not exist in symb(φ̂),
we combine inequalities ¬(uf = û) into ψ̂ for each û in C
(line 14). For example, suppose ADD(x̂, ŷ) appears in φ̂ and
we know that x̂ = 1̂ and ŷ = 1̂. Since 1 + 1 = 2, we check
if 2̂ ∈ symb(φ̂). If so, we replace ADD(x̂, ŷ) with 2̂ in φ̂ and
combine ADD(1̂, 1̂) = 2̂ into ψ̂. If only 0̂, 1̂, and 3̂ appear in
φ̂, then we combine ¬(ADD(1̂, 1̂) = 0̂), ¬(ADD(1̂, 1̂) = 1̂),
and ¬(ADD(1̂, 1̂) = 3̂) into ψ̂.

If at least one parameter is not a constant symbol in uf
(line 15), we may not obtain the value outcome of γ(uf). In
this situation, we apply propagation rules described in the last
section, which consider the original semantics of supported
datapath operations (line 16). If the updated formula φ̂∧ ψ̂ is
unsat, ψ̂ is enough to demonstrate that φ is T̂ -unsatisfiable.
Then, the algorithm combines ψ̂ to Φdpl and returns unsat
(lines 17-19). Otherwise, the algorithm continues to pick the
next uf ∈ UFc (line 7). If all the UFs in UFc are processed,
the algorithm continues to operate the next constant symbol
in Ĉ (line 5). In summary, the nested loop from lines 5 to 19
propagates constant symbols to related UFs.

Next, Alg. 3 performs propagations beyond constant sym-
bols using propagation rules in Tab. II (line 20). If φ̂ ∧ ψ̂ is
unsat, the algorithm combines ψ̂ to Φdpl and returns unsat
(lines 21-23); Otherwise, k = k + 1 and it continues the next
round of datapath propagation (line 24). Finally, if φ̂p = φ̂q ,
i.e., no more propagations can be conducted, or k exceeds
the maximal depth, Alg. 3 combines ψ̂ to Φdpl and returns
unknown (lines 25-26).

Datapath propagation iteratively utilizes the above propaga-
tion rules and tries to obtain the outcomes of related UFs. We
have the following theorem:

Theorem 1: Datapath propagation is sound and incomplete.

The theorem is straightforward. Propagation rules are orig-
inated from the original semantics of datapath operations.
Datapath propagation applies these rules to UFs, which is
apparently a sound procedure. For completeness, since we
only support part of datapath operations and iterations are not
exhaustive, datapath propagation is an incomplete procedure.

V. APPLYING DATAPATH PROPAGATION IN DP-IC3

Fig. 4 shows a high-level overview of the DP-IC3 with
datapath propagation. Taking a model checking problem P :=
⟨X, I, T, P ⟩ as input, we obtain P̂ after DP-Abstract and
initialize Φdpl and Φdrl to true, which record the datapath prop-
agation lemmas and datapath refinement lemmas, respectively.
Both Φdpl and Φdrl are global lemmas that apply to all queries
in the current (and future) abstract space.

IC3 is performed in the abstract space. An abstract query
formula φ̂ encodes a top frame query F̂k ∧ T̂ ∧ ¬P̂ or an

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, JANUARY 2024

𝒫, Φ , Φ
𝒫

IC3

Encodes query formula
𝜑 ∧ Φ ∧ Φ

Encodes query formula
𝜑 ∧ Φ ∧ Φ

no
ACEX

 Φ = Φ ∧ 𝜓

Datapath propagation
 Φ = Φ ∧ 𝜓

𝜑 ∧ Φ ∧ Φ
Call SMT solver
𝜑 ∧ Φ ∧ Φ

unsatRefine

ACEX
Generate CEX

Feasibility checking

CEX

 Φ = Φ ∧ �̂�
DP-Refine

 Φ = Φ ∧ �̂�

infeasible

Overview

DP-Abstract

Fig. 4. Overview of the DP-IC3 with datapath propagation

intermediate query in the IC3 algorithm. For each query φ̂,
IC3 encodes the query formula φ̂ ∧ Φdpl ∧ Φdrl and invokes
datapath propagation. After the propagation, IC3 combines the
newly-generated DPL ψ̂ to Φdpl. If the propagation returns
unsat, IC3 continues to encode the next abstract query formula
as needed. Otherwise, the algorithm passes the query formula
φ̂ ∧ Φdpl ∧ Φdrl to the SMT solver. Then, IC3 continues until
either it returns an empty trace indicating that P̂ holds (the
green checkmark) or it returns a non-empty trace ACEX.

ACEX is passed to the refinement procedure. It first gen-
erates the bit-level counterpart CEX and performs feasibility
checking. If CEX is feasible, a real counterexample is found,
and P is violated (the red cross). Otherwise, CEX is BV-
unsatisfiable, DP-Refine generates datapath refinement lemmas
r̂ and combines r̂ to Φdrl to eliminate ACEX. Then, the
verification framework calls the next round of IC3.

Compared to DP-IC3, which puts all the burden of tighten-
ing datapath abstraction on refinement’s shoulders, applying
datapath propagation has two main advantages. Firstly, we
convey the knowledge of datapath propagations to abstract
state space by assigning some UFs with accurate values or
building the relation between some UFs. This knowledge is
unknown to the SMT solver but can avoid spurious coun-
terexamples. Secondly, we generate DPLs during the datapath
propagation. Since datapath propagation is independent of CE-
GAR, combining our method with DP-IC3 can further prune
the abstract state space and reduce the number of CEGAR
iterations. The verification efficiency is thus improved.

We develop some strategies to make datapath propagation
a lightweight and fast procedure. First, the query formula
φ̂ = F̂k ∧ T̂ ∧ ¬P̂ ′ may be called many times in IC3
(line 6 in Alg. 1). Therefore, for each abstract query formula
φ̂∧ Φ̂drl∧ Φ̂dpl, if no DPL is generated from the current prop-
agation and no new syntax term is introduced in refinement,
we skip the datapath propagation for its next query. Second,
we want more concise datapath lemmas. If the size of a query
formula is too big, the generated DPL may be too long and
thus too weak to eliminate spuriousness. Therefore, we set a
maximal propagation depth bound (currently 20) to limit the
search depth. Actually, in most cases, the datapath propagation
terminates within bound for each abstract query formula φ̂;

either because it finds DPL ψ̂ that φ̂∧ ψ̂ is unsat, or no more
propagations can be conducted.

Example3: Considering the example design in Fig. 2, we
show how the datapath propagation works with the DP-IC3
algorithm. First, the 0-step abstract query formula φ̂ = Î∧¬P̂ ,
i.e., x̂ = 0̂ ∧ ŷ = 0̂ ∧ ¬LE(ŷ, x̂). If φ̂ is satisfiable, x̂ = 0̂
and ŷ = 0̂ should satisfiable too. Therefore, we propagate 0̂
to LE(ŷ, x̂) and obtain LE(0̂, 0̂). Since |=T 0 ≤ 0, we have
LE(0̂, 0̂) is true. Consequently, its negation is propagated to
false. Datapath propagation returns unsat for φ̂ and generate
DPL LE(0̂, 0̂). Additionally, since x̂ and ŷ are in the same
equality closure, we obtain another DPL x̂ = ŷ → LE(ŷ, x̂).

The 1-step abstract query formula φ̂ = Î ∧ T̂ ∧ ¬P̂ :

x̂ = 0 ∧ ŷ = 0 ∧ x̂′ = LT(x̂, ŷ)?x̂ : (ŷ! = x̂)?ŷ : ADD(x̂, 1̂)∧
ŷ′ = (ŷ == x̂)?ADD(ŷ, 1̂) : LT(x̂, ŷ)?ŷ : x̂ ∧ ¬LE(ŷ′, x̂′)

First, the literals x̂ = 0̂ and ŷ = 0̂ are deduced true. Then,
0̂ is propagated to related UFs. Since |=T ¬(0 < 0), LT(x̂, ŷ)
is propagated to false. Meanwhile, ŷ! = x̂ is also false. φ̂ is
updated to x̂′ = ADD(0̂, 1̂) ∧ ŷ′ = ADD(0̂, 1̂) ∧ ¬LE(ŷ′, x̂′).
Next, since |=T 0 + 1 = 1 and 1̂ ∈ symb(φ̂), we replace
ADD(x̂, 1̂) with 1̂, and we get DPL ADD(0̂, 1̂) = 1̂. φ̂ is
updated to x̂′ = 1̂ ∧ ŷ′ = 1̂ ∧ ¬LE(ŷ′, x̂′). Since |=T 1 ≤ 1,
LE(ŷ′, x̂′) is propagated to true. Meanwhile, we get DPLs
LE(1̂, 1̂) and x̂′ = ŷ′ → LE(ŷ′, x̂′). Finally, ¬LE(ŷ′, x̂′) is
deduced to fasle, datapath propagation finds ψ̂ that φ̂ ∧ ψ̂ is
unsat and returns unsat for φ̂. Therefore, datapath propagation
reports unsat to DP-IC3 and combines ψ̂ to Φdpl.

The next abstract query formula φ̂ = P̂ ∧ T̂ ∧ ¬P̂ ′. Since
y ≤ x |=T ¬(x < y), LT(x̂, ŷ) is propagated to false. Then,
no more propagations can be conducted because φ̂p = φ̂q

after the first iteration in Alg. 3. Therefore, φ̂ ∧Φdrl ∧Φdpl is
passed to SMT solver. Finally, an inductive invariant ŷ = x̂ is
found after a few rounds of SMT queries. To verify the ex-
ample design, DP-IC3 invokes six refinements in the CEGAR
framework, but applying datapath propagation generate DPL
ψ̂ beyond CEGAR and does not call refinement.

VI. EVALUATION

This section reports the experimental results and detailed
analysis with state-of-the-art verification tools.

A. Implementation and Setup

We implemented our approach in AVR with around 8K lines
C++ codes1. We integrate the datapath propagation and lemma
generation procedures into the original verification framework.
Our implementation is called AVRdp. We compare AVRdp with
recent well-known hardware verification tools:

• AVR2: a tool that implements the IC3-style reachability
checking; It is the champion tool of the latest hardware
model checking competition (HWMCC 2020)3.

1Artifact is available: https://doi.org/10.5281/zenodo.7333164
2https://github.com/aman-goel/avr/commit/dbc3371
3https://fmv.jku.at/hwmcc20/

https://doi.org/10.5281/zenodo.7333164

HONGYU ET AL: LEVERAGING DATAPATH PROPAGATION IN IC3 FOR HARDWARE MODEL CHECKING 9

405

86
122

197 219

0

100

200

300

400

500

0-300 300-600 600-900 900-1200 >1200

State variables

213

470

333

21
52

0

100

200

300

400

500

0-30 30-60 60-90 90-120 >120

Constants
520

103

250

146
70

0

100

200

300

400

500

600

0-2000 2000-4000 4000-6000 6000-8000 >8000

Datapath operations

Fig. 5. The number of state variables, constants, and datapath operations of 1089 benchmarks.

• Pono (also known as CoSA2)4: an SMT-based model
checker that implements various reachability checking tech-
niques. It is the champion tool of HWMCC 20195.

• IC3IA6: a tool that implements implicit predicate abstrac-
tion. It performs reachability checking at the boolean level of
the abstract state and eliminates spurious counterexamples
by adding a sufficient set of new predicates.

• ABC7: a famous and widely applied system for sequential
logic synthesis and formal verification. It implements the
IC3-style reachability checking.

• nuXmv-ic38: a recent variant of nuXmv with branching
and refer-skipping heuristics [20]. It is a symbolic model
checker for analyzing synchronous finite-state and infinite-
state systems.

• Avy9: an AIGER model checker that combines interpolation
and property directed reachability.

For each verification task, AVRdp and AVR runs in 8
default configurations, namely, default, sa, split,
sa8, sa16, sa32, level0, level5. Pono runs in
4 default configurations, namely, ic3sa, mbic3, ind,
sygus-pdr, and IC3IA runs in a 1 default configuration, pa.
ABC runs in 2 configurations, pdr and ind, nuXmv runs in 5
configurations, namely, ic3, ic3-heuristics, aic3,
ind, itp, and Avy runs in its HWMCC configuration.
We omit the details of these configurations for brevity. A
tool is deemed capable of solving a verification task if any
of its configurations can do so. In cases where multiple
configurations can yield a solution for a verification task, the
fastest one is reported as the result. Such a portfolio/proof-race
strategy is essential to achieve rapid verification performance
because, generally, no single technique excels in all scenarios.

We collect all the verification tasks of the last two HWM-
CCs as benchmarks. We first attain 1089 word-level bench-
marks for AVRdp, AVR, Pono, and IC3IA. Fig. 5 shows the
details of the scale of the benchmarks, including the number
of state variables, constants, and datapath operations. Consider
the first bar in the first histogram, indicating 405 cases with 0-
300 state variables. The last bar in the third histogram shows
70 cases with more than 8000 datapath operations. All the
word-level benchmarks are written in BTOR2 [25] format, an
intermediate language for verification, and can be synthesized
from Verilog by the Yosys [26] tool-chain. Note that IC3IA

4https://github.com/upscale-project/pono/commit/b243ce
5https://fmv.jku.at/hwmcc19/
6https://es-static.fbk.eu/people/griggio/ic3ia/index.html
7https://github.com/berkeley-abc/abc/6ca7eab
8https://github.com/youyusama/i-Good Lemmas MC/tree/master
9https://arieg.bitbucket.io/avy/

only supports VMT format, an extension of SMT-LIBv2; we
utilize vmt-tools 10 to translate BTOR2 files into VMT files.
For AVR and Pono, we use 1089 BTOR2 files as input.
For IC3IA, we use 1089 VMT files as input. As for ABC,
nuXmv-ic3, and Avy, we attain all 536 HWMCC 2019-2020
benchmarks in AIGER format [27].

All the experiments are conducted on a server with AMD
EPYC 7H12 128-core CPU and 1 TB memory, and the oper-
ating system is Ubuntu 20.04 LTS. Following the competition,
the timeout for each verification task is set to 3600 seconds.

B. Overall Experimental Results

Tab. III summarizes the results of the above tools and AVRdp
on all the benchmarks. Columns Total and Unknown list the
number of collected benchmarks that exceed the time limit or
reported parse error, respectively. Columns 4-8 display the data
about the verified cases, where Num is the number of verified
cases, and CPU-Time is the accumulated wall clock time,
Safe and Unsafe are the number of cases that satisfy or
violate the specified safety property. The last three columns
display statistics of tasks that can be verified by the listed tool
and AVRdp. The speedup greater than 1.0x means that AVRdp
is faster than the selected tool.

There are 1089 BTOR2 benchmarks in total. AVR verifies
706 cases in 57483.4 seconds, and AVRdp verifies 793 cases in
37918.9 seconds – AVRdp verifies 87 more cases and achieves
1.52x speedup than AVR. Both AVR and AVRdp can verify
689 cases. Considering these cases, AVR spends 38723.1
seconds whereas AVRdp costs 26538.0 seconds – AVRdp is
1.46x times faster than AVR to verify these same cases. The
third row displays the comparative results of Pono and AVRdp.
Pono verifies 313 cases in 11051.7 seconds and times out
for 776 cases. Considers 295 both-verified cases, Pono costs
7164.3 seconds whereas AVRdp only cost 3567.9 seconds –
AVRdp is 2.01x faster than Pono. The fourth row of Tab. III
shows the comparative results of IC3IA and AVRdp. IC3IA
verifies 313 tasks in 121810.1 seconds and timeout for 771
tasks. Considering the 235 both-verified cases, IC3IA spends
98675.7 whereas AVRdp only costs 4829.8 seconds – AVRdp
is 20.04x faster than IC3IA.

Among 536 AIGER benchmarks, AVRdp verifies 345 cases
in 20592.8 seconds, ABC verifies 153 cases in 7898.2 seconds,
nuXmv-ic3 verifies 363 cases in 66817.7 seconds, and Avy
verifies 96 cases in 24871.6 seconds. Consider 108 cases that
can be verified by AVRdp and ABC, ABC costs 6597.1 seconds
whereas AVRdp costs 3154.2 seconds – AVRdp is 2.09x faster

10http://es-static.fbk.eu/people/griggio/ic3ia/vmt-tools-latest.tar.gz

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, JANUARY 2024

TABLE III
SUMMARY OF EXPERIMENTAL RESULTS

Verifier Total Unknown
Verified Both Verified

Num CPU-Time (s) Safe Unsafe Num CPU-Time (s) Speedup-/AVRdp

AVRdp 1089 296 793 37918.8 762 31 - - -
AVR 1089 383 706 57483.4 675 31 689 38723.1/26538.0 1.46x
Pono 1089 776 313 11051.7 301 12 295 7164.3/3567.9 2.01x
IC3IA 1089 776 313 121810.1 286 27 235 98675.7/4829.8 20.40x

AVRdp 536 191 345 20592.8 314 31 - - -
ABC 536 383 153 7898.2 99 54 108 6597.1/3154.2 2.09x
nuXmv-ic3 536 173 363 66817.7 308 54 290 41184.9/14506.2 2.84x
Avy 536 440 96 24871.6 77 19 80 14651.2/4014.8 3.65x

than ABC. Consider 290 cases that can be verified by AVRdp
and nuXmv-ic3, nuXmv-ic3 costs 41184.9 seconds, and that
number of AVRdp is 14506.2 – AVRdp is 2.84x faster than
nuXmv-ic3. Compared to Avy on 80 both-verified cases, Avy
and AVRdp cost 14651.2 and 4014.8 seconds, respectively –
AVRdp is 3.65x faster than Avy on these cases.

C. Results Analysis

Fig. 6 shows the number of verified cases of AVRdp and
the comparison tool. According to (a), 104 cases can only be
verified by AVRdp. Our approach utilizes datapath propagation
to prune abstract state space and generates at least one datapath
lemma for each of them to guide the verification procedure. 17
cases are just the opposite; AVRdp is inferior to AVR on these
cases. The inferiority is because the abstract query formulas
are too big in these cases, and no useful datapath lemma is
generated in the propagation procedure.

Fig. 6 (b) displays the number of verified cases of
AVRdp and Pono. 498 cases can only be verified by AVRdp.
Meanwhile, there are 18 cases that AVRdp is inferior to
Pono. The k-induction-based verification engine of Pono
outperformsAVRdp and AVR on these cases. Fig. 7 displays
the comparison results of AVRdp and Pono on 295 both-
verified cases. Each point in the panel corresponds to a
verification task, with the X and Y coordinates representing
the CPU-Time of Pono and AVRdp, respectively. Note that
both x- and y-axis take logarithmic coordinates, and each point
below/above the diagonal line represents a superior/inferior
case of our approach against Pono. When the cases become
complex, our method starts to show its strength.

Compared to IC3IA, 558 cases can only be verified by
AVRdp. IC3IA times out on 553 cases and throws exceptions
on the other 5 cases. Note that IC3IA is also time-consuming
for the 313 verified cases. This is because IC3IA employs
predicate abstraction, which performs IC3 on the boolean
level of abstract state space. It needs to learn a sufficient set
of predicates to tighten the abstraction. However, generating
predicates, especially useful predicates, is not easy. It may
require numerous CEGAR iterations, and maintaining so many
predicates is also a heavy burden for the verification procedure.
Therefore, IC3IA is often trapped in situations where many
arithmetic or bitwise operations are involved. On the contrary,
AVRdp is inferior to IC3IA on 78 cases since some crucial

689104 17

(a) AVR vs AVR

235558 78295498 18

108237 45 29055 68 80265 15

(c) AVR vs IC3IA(b) AVR vs Pono

(d) AVR vs ABC (e) AVR vs nuXmv-ic3 (f) AVR vs Avy

Fig. 6. The number of verified cases of AVRdp (the green circle) and the
comparison tool (the yellow circle) where the intersecting region represents
cases that both tools can verify.

predicates that witness the violation of safety property are
found by IC3IA. Fig. 8 shows the comparison results of IC3IA
and AVRdp on 235 both-verified cases. In most cases, our
approach is more efficient than IC3IA.

Fig. 6 (d)-(f) show the number of verified cases of AVRdp
and the comparison tools that take AIGER benchmarks as
input. Compared to ABC, 237 cases can only be verified by
AVRdp. Meanwhile, there are 45 cases that AVRdp is inferior to
ABC. Compared to nuXmv-ic3, 55 cases can only be verified
by AVRdp, whereas nuXmv-ic3 times out. However, there are
68 cases that AVRdp is inferior to nuXmv-ic3. AVRdp fails to
generate useful datapath propagation lemmas on these cases
because of numerous concat and extract operations. Compared
to Avy, 265 cases can only be verified by AVRdp, and the
counterpart is 15 cases.

Note that AVR is the latest champion tool in HWMCC,
i.e., it is already superior to Pono and IC3IA. Moreover, we
implement the datapath propagation and DPL generation in
AVR. Therefore, we take AVR as a baseline and compare
further to show that our approach is effective and efficient.
Fig. 9 displays the comparative results of AVR and AVRdp
on 689 both-verified cases. The points below the diagonal
represent the cases that AVRdp achieves higher efficiency than
AVR.

Among 689 both-verified cases, there are 372 cases on
which AVRdp generates at least one DPL in the propagation
for each case and 3923 DPLs in total. AVR eliminates spu-
rious counterexamples and tightens the datapath abstraction
by refinement. Instead, AVRdp can generate DPL during the

HONGYU ET AL: LEVERAGING DATAPATH PROPAGATION IN IC3 FOR HARDWARE MODEL CHECKING 11

(3600)

1024

256

64

16

4

1
1 4 16 64 256 1024 (3600)

Fig. 7. Pono (X-axis) vs. AVRdp (Y -axis) in
terms of CPU-Time for each task.

1 4 16 64 256 1024

(3600)

1024

256

64

16

4

1
(3600)

Fig. 8. IC3IA (X-axis) vs. AVRdp (Y -axis) in
terms of CPU-Time for each task.

1 4 16 64 256 1024

(3600)

1024

256

64

16

4

1

(3600)

Fig. 9. AVR (X-axis) vs. AVRdp (Y -axis) in
terms of CPU-Time for each task.

1 4 16 64 256 1024

(3600)

1024

256

64

16

4

1
(3600)

Fig. 10. AVR (X-axis) vs. AVRdp (Y -axis) in terms of CPU-Time for tasks
that successfully conduct datapath propagation.

1

10

100

1000

1 10 100 1000

Fig. 11. AVR (X-axis) vs. AVRdp (Y -axis) about the number of refine-
ments for tasks that successfully conduct datapath propagation.

propagation. These lemmas consider the original semantics of
datapath operations and tighten the datapath abstraction by
adding constraints over UFs in the abstract state space.

Fig. 10 and Fig. 11 show the comparison results of AVR and
AVRdp in terms of CPU-time and the number of refinement on
these 372 cases, respectively. In most cases, AVRdp reduces
the number of refinements by employing datapath propagation
and achieves higher efficiency. Columns 7-14 in Tab. IV also
report the statistics of these 372 cases, AVR spends 25186.2
seconds to verify these cases, and that number of AVRdp
is 8796.9 seconds – AVRdp achieves 2.86x speedup than
AVR. Moreover, AVR has 15651 refinements whereas AVRdp
has 10944 – applying datapath propagation reduces 30.1%
refinements on these cases.

There are 317 both-verified cases that AVRdp does not
generate a datapath propagation lemma. However, these 317
cases only involve 276 refinements. After analysis, we found
that the initial abstraction is accurate enough for these cases to
prove correctness or find violations. So only a few refinements
are called, and there is no room for AVRdp to generate DPL
during the propagation. These cases correspond to the points
in Fig. 9 on the diagonal or slightly above the diagonal.

Tab. IV shows the comparative results of AVR and AVRdp
on cases that successfully conduct datapath propagation. The
column Config lists the configurations of AVR and AVRdp.
Note that all means both tools run all configurations in parallel.
The tool reports the result and exits if any configuration
can solve the verification task. Columns 3-7 display the data

about the verified cases, where Num is the number of verified
cases, followed by Safe and Unsafe that are the number
of cases that satisfy or violate safety properties. DPLs is
the number of generated datapath propagation lemmas. The
last columns display statistics of tasks that both AVR and
AVRdp can verify. Column Speedup shows the speedup of
AVRdp compared to AVR. The speedup greater than 1.0x
means that AVRdp is faster than the selected tool. Columns
Refs and Percentage are the number of refinements and
the percentage of AVRdp and AVR. The percentage lower than
100% means that AVRdp reduces the number of refinements.

According to the first row, AVRdp verifies 471 cases
that successfully conduct datapath propagation. Among these
cases, AVR can verify 372 of them. AVRdp generates 7018
datapath propagation lemmas in total. The arithmetic-related
DPLs include SUB(0̂, 1̂) != 0̂, ADD(3̂, 0̂)!=3̂, MINUS(x̂[53 :
36])==0̂ etc. The relational-related DPLs include LT(0̂, 1̂),
¬LE(2̂, 0̂), and LT(0̂, x̂) ∨ x̂ == 0̂, etc. DPLs related to
Bitwise and Reduction operations include ¬ReductionOr(0̂),
ReductionAnd(7̂), x̂ == 0̂ ∨ ¬ReductionOr(x̂) == 0̂, etc.
Meanwhile, some nested lemmas, e.g., SUB(ADD(x̂, ŷ), x̂)=ŷ
can also be generated.

The following eight rows in Tab. IV display the comparative
results of AVR and AVRdp under different verification config-
urations. For CPU-time, the speedup is between 1.06x and
2.17x. Moreover, AVRdp reduces the number of refinements
between 17.15% to 41.31%. AVRdp outperforms AVR in each
configuration. It is obvious that, whether for AVR or AVRdp,

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, JANUARY 2024

TABLE IV
THE EXPERIMENTAL RESULTS OF CASES WITH SUCCESSFUL DATAPATH PROPAGATION.

Tool Config Verified Both-verified

Num Safe Unsafe DPLs Num Safe Unsafe CPU-Time (s) Speedup Refs Percentage DPLs

AVR all 372 366 6 - 372 366 6 25186.2 - 15651 - -
AVRdp all 471 464 7 7018 372 366 6 8796.9 2.86x 10944 69.93% 3923

AVR default 250 246 4 - 250 246 4 11044.4 - 20883 - -
AVRdp default 312 308 4 2743 250 246 4 8525.8 1.30x 16580 79.39% 2206

AVR sa 331 326 5 - 331 326 5 40304.3 - 1547 - -
AVRdp sa 388 382 6 5563 331 326 5 18556.5 2.17x 908 58.69% 3112

AVR split 184 180 4 - 184 180 4 10135.0 - 16704 - -
AVRdp split 361 357 4 7246 184 180 4 7299.7 1.39x 12050 72.14% 2500

AVR sa8 283 279 4 - 283 279 4 17496.1 - 15296 - -
AVRdp sa8 344 340 4 3002 283 279 4 16433.0 1.06x 11011 71.99% 2496

AVR sa16 290 286 4 - 290 286 4 27813.7 - 14761 - -
AVRdp sa16 350 346 4 2968 290 286 4 20388.1 1.36x 10006 67.79% 2593

AVR sa32 322 317 5 - 322 317 5 33277.4 - 5137 - -
AVRdp sa32 378 373 5 5200 322 317 5 27087.9 1.23x 4046 78.76% 2791

AVR level0 224 220 4 - 224 220 4 15296.8 - 19829 - -
AVRdp level0 309 305 4 2415 224 220 4 10446.0 1.46x 13341 67.28% 1964

AVR level5 270 265 5 - 270 265 5 31738.8 - 48692 - -
AVRdp level5 329 324 5 2755 270 265 5 25371.4 1.25x 40339 82.85% 2227

running multiple configurations in parallel and selecting the
fastest one is more effective than running a single configu-
ration. Each configuration may be more suitable for specific
problems, and the combined running of multiple configurations
can fully leverage the tool’s performance, achieving better
results in practice. Compared to AVR, AVRdp shows the
greatest performance improvement under the configuration all.

The sa mode disables UF solving and utilizes the BV solver
even in abstract mode. Preceding solver invocation, datapath
propagation treats operations in φ as uninterpreted functions
and applies propagation rules. If unsat is yielded, further BV
solver invocation for bit-blasting and abstract cube generation
is unnecessary. The datapath propagation lemmas are stored
in ϕdpl for subsequent verification. While these lemmas are
BV tautologies, they may contain terms not in φ but recorded
during prior query propagation in P . These terms introduce
new elements for φ solution, impacting SA+IC3’s verification
and refinement direction. AVRdp and AVR differ under sa
config. For AVR, terms are introduced via refinement, po-
tentially prematurely during datapath propagation, leading to
fewer spurious counterexamples and refinement iterations.

D. Discussions
Scalability: The datapath propagation is orthogonal to

the CEGAR framework and attempts to generate datapath
propagation lemmas over datapath operations. Although we
focus on the IC3 algorithm within the datapath abstraction
and refinement framework, the DP-IC3 algorithm serves as
an encoder that calls abstract formula queries on demand.
Instead of taking all the datapath operations as uninterpreted
and putting the heavy burden on CEGAR, lightweight strate-
gies, or heuristics may convey essential information from a
different perspective, guide the abstraction-based verification,
and improve its scalability and efficiency.

Threats to Validity: The main threats to our method’s
validity are whether the performance improvements are due
to our tactic and whether our implementation and experimen-
tal results are credible. Firstly, we implement the proposed
method in AVR and make a comparison with it. The improve-
ments over AVR must come from our tactic. Secondly, the
reduction in the number of refinements is consistent with the
theoretical analysis, which confirms that the improvements
are indeed from our approach. Thirdly, our implementation
is loosely coupled with the original verification framework.
Benchmarks are collected from the latest two HWMCCs, one
of the most representative and convincing open sources in
hardware verification. Moreover, we compare our method with
the newest version of the state-of-the-art tools. We are thus
confident in the effectiveness of our tactic.

Limitations: We currently focus on datapath operations
about arithmetic, relational, bitwise, shifting, and logical
operations. We also develop some strategies to make it a
lightweight and fast procedure. Therefore, our approach is
sound but incomplete; it may not generate datapath propa-
gation lemmas in some situations. To improve the scalability
of the proposed method, we plan to elaborate on more propa-
gations about arrays, concatenation, and extraction operations.
Moreover, elaborated strategies and heuristics for generalizing
datapath propagation lemmas are required to improve the
overall efficiency further.

VII. RELATED WORKS

A. Advanced IC3-based approach
IC3 has been the most successful and widely applied

technique for hardware verification in recent years. Various
optimizations have been developed to improve the bit-level
IC3 engine. PDR [2] proposes a simplified and faster imple-
mentation of IC3 by using three-valued simulation. PDR learns

HONGYU ET AL: LEVERAGING DATAPATH PROPAGATION IN IC3 FOR HARDWARE MODEL CHECKING 13

short clauses without numerous generalizations and achieves a
significant speedup. UFAR [28] is a hybrid word- and bit-level
solver that replaces heavy bit-level arithmetic logic with UF
in Bounded model checking (BMC) [29] or in PDR.

However, the bit-level IC3 and its variants still suffer from
the state space explosion problem. Many advanced abstraction
techniques are proposed to lift the IC3 from bit-level to word-
level. IC3IA [18] proposed a tight integration of IC3 with
implicit abstraction, a form of predicate abstraction [30], [31].
With this technique, IC3 operates at the Boolean level of the
abstract state space and generates inductive clauses over the
abstraction predicates. It eliminates spurious counterexamples
by incrementally generating and adding a set of new predi-
cates. However, IC3IA may learn numerous predicates during
the search to eliminate spurious counterexamples.

Averroes [6] integrates the IC3 with datapath abstraction,
which can be seen as two layers of the CEGAR loop. The
inner loop conducts IC3 on the abstract state space. The outer
loop tightens the current abstraction by generating datapath
refinement lemmas. These datapath lemmas refute the spurious
counterexample that the inner loop returns. However, roughly
abstracting all the datapath operations as UFs makes the
verification framework lose their semantics, which may be
useful for pruning the abstract state space. Chen [32] applies
the knowledge of the control-flow graph in SMT solving,
and Zpre [33] utilizes the knowledge of thread-interleaving
to accelerate the concurrent program verification. Inspired
by these works and considering the knowledge of datapath
operations, we propose datapath propagation.

AVR [8], [14] extends Averroes with syntax-guided ab-
straction (SA), which encodes the abstract state space using
the partition of UFs. IC3 with SA+UF allows for efficient
reasoning regardless of the bit-width of variables or the
datapath operations. AVR is the champion tool in the recent
HWMCC. Currently, our method lacks support for datapath
propagation involving bit-field extraction and concatenation.
Instead, we adhere to the approaches employed in AVR, which
incorporates a straightforward procedure introducing partial
interpretation of extract/concat operations rather than abstract-
ing them entirely as uninterpreted in the EUF logic. The
consideration of accommodating these intricate yet commonly
encountered operations is part of our future development plans.
SyGuS-APDR [19], [34] utilizes syntax-guided synthesis to
generate word-level lemmas heuristically. It includes a pre-
defined grammar template and term production rules for
generating candidate lemmas. These validated lemmas may
prune the bad state space and tighten previous frontiers.

Reberto surveyed previous works [35] that focus on adding
cheap but incomplete lemmas to the formula before invoking
a complete but expensive decision procedure for a given
theory T . The static learning [36] technique suggests a prior
some small and ”obvious” T -valid lemmas and drives the
search direction of DPLL. Layered theory solver [37] try to
establish the unsatisfiability of the current assignment u in
less expensive but much easier sub-theories. If a higher-level
solver finds a conflict, this conflict is used to prune the search
at the Boolean level; if it does not, the lower-level solver is
activated to refine the former layer. The datapath propagation

is a kind of lazy learning technique. It propagates the outcomes
of datapath operations to the abstract state space by generating
UF lemmas. These lemmas are cheap and incomplete, but they
can guide the verification procedure to prune the bad state
space and tighten the frontiers.

B. Constant propagation in Verification

Constant propagation is an optimization technique com-
monly used in compilers and software analysis. The main
goal is to replace variables or expressions with their constant
values wherever possible, reducing the complexity of the
system representation. Regarding formal verification, constant
propagation can simplify the verification process and reduce
the state space, leading to more efficient verification.

Armoni [38] uses constant propagation to simplify SAT
formulas. They build expression graph (EG), a directed acyclic
graph, for each BMC formula. The propagation starts from
the leaves that denote variables or constants and updates
the EG dynamically. Since BMC instants involve variables
in different time frames, constant propagation is useful for
pruning variables and reduces the complexity of the formulas.
Wegman [17] proposes elaborated algorithms in flow analysis.
Constants within conditional statements can be propagated if
the conditions guarantee that a certain variable will always
have a constant value under these conditions. This can lead to
the elimination of branches and further state space reduction.

Different from the above applications, we focus on datapath
operations in Verilog RTL design and perform constant propa-
gation across concrete and abstract state space. In this way, we
consider the original semantics of datapath operations, attain
their outcomes, and propagate these results to corresponding
UFs iteratively in abstract state space.

VIII. CONCLUSION

This paper presents a datapath propagation mechanism for
datapath abstraction-based hardware verification. We leverage
concrete constant values to iteratively compute the outcomes
of relevant datapath operations and their associated uninter-
preted functions in the abstract state space. Meanwhile, we
generate datapath propagation lemmas in abstract state space
and tighten the datapath abstraction. We implemented the pro-
posed method in a prototype tool named AVRdp and conducted
experiments to compare AVRdp with state-of-the-art hardware
verification tools. We collected benchmarks from hardware
model checking competition 2019-2020. The experimental
results show that our approach is effective and efficient.

REFERENCES

[1] A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI,
R. Jhala and D. Schmidt, Eds., Berlin, Heidelberg, 2011, pp. 70–87.

[2] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in 2011 Formal Methods in Computer-
Aided Design (FMCAD), 2011, pp. 125–134.

[3] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification, T. Touili, B. Cook,
and P. Jackson, Eds., Berlin, Heidelberg, 2010, pp. 24–40.

[4] Y. Vizel, O. Grumberg, and S. Shoham, “Lazy abstraction and sat-based
reachability in hardware model checking,” in 2012 Formal Methods in
Computer-Aided Design (FMCAD), 2012, pp. 173–181.

14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, JANUARY 2024

[5] Y. Vizel and A. Gurfinkel, “Interpolating property directed reachability,”
in International Conference on Computer Aided Verification. Springer,
2014, pp. 260–276.

[6] S. Lee and K. A. Sakallah, “Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction,” in
Computer Aided Verification, Cham, 2014, pp. 849–865.

[7] A. Goel and K. Sakallah, “Model checking of verilog rtl using ic3 with
syntax-guided abstraction,” in NASA Formal Methods, J. M. Badger and
K. Y. Rozier, Eds., Cham, 2019, pp. 166–185.

[8] A. Goel, “From finite to infinite: Scalable automatic verification of
hardware designs and distributed protocols,” Ph.D. dissertation, 2021.

[9] R. Hojati and R. K. Brayton, “Automatic datapath abstraction in hard-
ware systems,” in Computer Aided Verification, P. Wolper, Ed., Berlin,
Heidelberg, 1995, pp. 98–113.

[10] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo
Theories Library (SMT-LIB),” www.SMT-LIB.org, 2016.

[11] C. W. Barrett, D. L. Dill, and J. R. Levitt, “A decision procedure for bit-
vector arithmetic,” in Proceedings of the 35th Annual Design Automation
Conference, 1998, pp. 522–527.

[12] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Computer Aided Verification: 19th International Conference,
CAV 2007, Berlin, Germany, July 3-7, 2007. Proceedings 19. Springer,
2007, pp. 519–531.

[13] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in Computer Aided Verification, E. A.
Emerson and A. P. Sistla, Eds., Berlin, Heidelberg, 2000, pp. 154–169.

[14] A. Goel and K. Sakallah, “Avr: Abstractly verifying reachability,” Tools
and Algorithms for the Construction and Analysis of Systems, vol. 12078,
p. 413, 2020.

[15] H. Ma, A. Goel, J.-B. Jeannin, M. Kapritsos, B. Kasikci, and
K. A. Sakallah, “I4: Incremental inference of inductive invariants for
verification of distributed protocols,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, ser. SOSP ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
370–384. [Online]. Available: https://doi.org/10.1145/3341301.3359651

[16] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon, “Interproce-
dural constant propagation,” ACM SIGPLAN Notices, vol. 21, no. 7, pp.
152–161, 1986.

[17] M. N. Wegman and F. K. Zadeck, “Constant propagation with condi-
tional branches,” ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 13, no. 2, pp. 181–210, 1991.

[18] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Ic3 modulo theories
via implicit predicate abstraction,” in Tools and Algorithms for the
Construction and Analysis of Systems, E. Ábrahám and K. Havelund,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 46–61.

[19] M. Mann, A. Irfan, F. Lonsing, Y. Yang, H. Zhang, K. Brown, A. Gupta,
and C. Barrett, “Pono: A flexible and extensible smt-based model
checker,” in Computer Aided Verification, A. Silva and K. R. M. Leino,
Eds. Cham: Springer International Publishing, 2021, pp. 461–474.

[20] Y. Xia, A. Becchi, A. Cimatti, A. Griggio, J. Li, and G. Pu, “Searching
for i-good lemmas to accelerate safety model checking,” in Computer
Aided Verification, C. Enea and A. Lal, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 288–308.

[21] L. De Moura and N. Bjørner, “Satisfiability modulo theories:
Introduction and applications,” Commun. ACM, vol. 54, no. 9, p. 69–77,
sep 2011. [Online]. Available: https://doi.org/10.1145/1995376.1995394

[22] P. Bjesse and K. Claessen, “Sat-based verification without state space
traversal,” in Formal Methods in Computer-Aided Design, W. A. Hunt
and S. D. Johnson, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2000, pp. 409–426.

[23] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties
using induction and a sat-solver,” in Formal Methods in Computer-Aided
Design, W. A. Hunt and S. D. Johnson, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 127–144.

[24] K. L. McMillan, “Interpolation and sat-based model checking,” in
Computer Aided Verification, W. A. Hunt and F. Somenzi, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 1–13.

[25] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2 , btormc
and boolector 3.0,” in Computer Aided Verification, H. Chockler and
G. Weissenbacher, Eds., Cham, 2018, pp. 587–595.

[26] C. Wolf, “Yosys open synthesis suite,” https://yosyshq.net/yosys/.
[27] A. Biere, K. Heljanko, and S. Wieringa, “AIGER 1.9 and beyond,” In-

stitute for Formal Models and Verification, Johannes Kepler University,
Altenbergerstr. 69, 4040 Linz, Austria, Tech. Rep. 11/2, 2011.

[28] Y.-S. Ho, P. Chauhan, P. Roy, A. Mishchenko, and R. Brayton, “Efficient
uninterpreted function abstraction and refinement for word-level model
checking,” in FMCAD, 2016, pp. 65–72.

[29] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded
model checking.” Handbook of satisfiability, vol. 185, no. 99, pp. 457–
481, 2009.

[30] T. Ball, A. Podelski, and S. K. Rajamani, “Boolean and cartesian
abstraction for model checking c programs,” in Tools and Algorithms
for the Construction and Analysis of Systems, T. Margaria and W. Yi,
Eds. Springer Berlin Heidelberg, 2001, pp. 268–283.

[31] S. Graf and H. Saidi, “Construction of abstract state graphs with pvs,”
in Computer Aided Verification, O. Grumberg, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 72–83.

[32] J. Chen and F. He, “Control flow-guided smt solving for program
verification,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ser. ASE ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
351–361. [Online]. Available: https://doi.org/10.1145/3238147.3238218

[33] H. Fan, W. Liu, and F. He, “Interference relation-guided smt solving
for multi-threaded program verification,” in Proceedings of the 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 163–176. [Online]. Available:
https://doi.org/10.1145/3503221.3508424

[34] H. Zhang, A. Gupta, and S. Malik, “Syntax-guided synthesis for
lemma generation in hardware model checking,” in Verification, Model
Checking, and Abstract Interpretation: 22nd International Conference,
VMCAI 2021, Copenhagen, Denmark, January 17–19, 2021,
Proceedings. Berlin, Heidelberg: Springer-Verlag, 2021, p. 325–349.
[Online]. Available: https://doi.org/10.1007/978-3-030-67067-2 15

[35] R. Sebastiani, “Lazy satisfiability modulo theories,” Journal on Satisfia-
bility, Boolean Modeling and Computation, vol. 3, no. 3-4, pp. 141–224,
2007.

[36] A. Armando, C. Castellini, and E. Giunchiglia, “Sat-based proce-
dures for temporal reasoning,” in European Conference on Planning.
Springer, 1999, pp. 97–108.

[37] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani, “A lazy and layered smt () solver for
hard industrial verification problems,” in International Conference on
Computer Aided Verification. Springer, 2007, pp. 547–560.

[38] R. Armoni, L. Fix, R. Fraer, T. Heyman, M. Vardi, Y. Vizel, and
Y. Zbar, “Deeper bound in bmc by combining constant propagation
and abstraction,” in 2007 Asia and South Pacific Design Automation
Conference, 2007, pp. 304–309.

Hongyu Fan is a PhD student at the School of
Software of Tsinghua University. His received a
B.E. degree from College of Computer Science and
Technology, Jilin University in 2018. His research
interests include concurrent program verification,
hardware model checking, and SAT/SMT solving.
He has published several papers in academic jour-
nals and international conferences, including PLDI,
PPoPP, TOPLAS.

Fei He received the B.S. degree in computer sci-
ence and technology from National University of
Defense Technology in 2002, and the PhD. degree
in computer science and technology from Tsinghua
University in 2008. He is currently an Associate
Professor in the school of software at Tsinghua
University, Beijing, China. His research interests
include model checking, program verification and
automated logic reasoning.

https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1145/1995376.1995394
https://yosyshq.net/yosys/
https://doi.org/10.1145/3238147.3238218
https://doi.org/10.1145/3503221.3508424
https://doi.org/10.1007/978-3-030-67067-2_15

	Introduction
	Preliminaries
	Notations
	Model Checking
	IC3 Algorithm
	Datapath Abstraction

	Motivation
	IC3 with Datapath Abstraction
	Datapath Knowledge is Important

	Datapath Propagation
	Propagation Rules
	Propagation Procedure

	Applying Datapath Propagation in DP-IC3
	Evaluation
	Implementation and Setup
	Overall Experimental Results
	Results Analysis
	Discussions

	Related Works
	Advanced IC3-based approach
	Constant propagation in Verification

	Conclusion
	References
	Biographies
	Hongyu Fan
	Fei He

