Theory Comput Syst (2015) 56:347-371
DOI 10.1007/s00224-014-9553-9

Estimating the Volume of Solution Space
for Satisfiability Modulo Linear Real Arithmetic

Min Zhou - Fei He - Xiaoyu Song - Shi He -
Gangyi Chen - Ming Gu

Received: 11 June 2013 / Accepted: 6 May 2014 / Published online: 13 June 2014
© Springer Science+Business Media New York 2014

Abstract Satisfiability Modulo Theories techniques can check if a formula is sat-
isfiable. In many cases, not only the qualitative judgment (satisfiable or not) but
also the quantitative judgment (the dimension and size of the solution space) are
of practical interest. For instance, the volume of path condition formula reflects the
probability of the corresponding program path being taken. However, existing algo-
rithms are not practical because they only work for small instances. Given a formula
with Boolean structures, its volume is typically obtained by first decomposing it to
a series of conjunctions (of linear constraints) with disjoint solution spaces and then
accumulating the volume of each one. For the former step, we propose a BDD-based
search algorithm which sharply reduces the number of conjunctions. For the latter
one, we propose a Monte-Carlo integration with a ray-based sampling strategy, which

This work was supported by the Chinese National 973 Plan under grant No. 2010CB328003, the
NSF of China under grants No. 11326070, 61272001, 60903030, 91218302, the Chinese National
Key Technology R&D Program under grant No. SQ2012BAJY4052, the Tsinghua University
Initiative Scientific Research Program, and the Importation and Development of High-Caliber
Talents Project of Beijing Municipal Institutions under grant No. YETP0167

M. Zhou (<) - FE. He - S. He - M. Gu
School of Software, Tsinghua University, Beijing 100084, China
e-mail: zhoumin03 @gmail.com

M. Zhou - F. He - S. He - M. Gu
Key Laboratory for Information System Security, MOE, Shanghai, China

M. Zhou - F. He - S. He - M. Gu
Tsinghua National Laboratory for Information Science and Technology (TNList), Beijing, China

X. Song
Electrical and Computer Engineering, Portland State University, Portland, OR 97207, USA

G. Chen
School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China

@ Springer

mailto:zhoumin03@gmail.com

348 Theory Comput Syst (2015) 56:347-371

approximates the volume efficiently and accurately. Furthermore, degenerate solu-
tion spaces, which are not considered by other algorithms, could be handled properly
by ours. Experimental results show that our method can handle formulas with up to
20 variables, which will cover many practical cases in software engineering

Keywords Satisfiability modulo theories - Linear arithmetic - Volume estimation -
Monte-Carlo integration

1 Introduction

Satisfiability Modulo Theories (SMT) techniques [6] are getting increasingly popular
in the field of software engineering. An SMT solver takes a formula given in a spe-
cific fragment of first order logic and returns a judgment telling whether the formula
is satisfiable. A formula is satisfiable if and only if there exists at least one valuation
under which the formula evaluates to true. In software engineering, SMT techniques
are often used for software analysis and testing [19, 29] in which the path conditions
are formulated as SMT formulas and their feasibility is checked by SMT solvers.

While the qualitative judgment of satisfiability is useful, the quantitative judgment
of the solution space volume could be used to reveal more program properties [20].
In symbolic execution, the solution space volume of the path condition reflects the
probability that the path is followed in execution. Such information could be used to
detect hot/cold path in the program [9] and thus could be utilized to generate evenly
distributed test data [30]. Furthermore, the volume of the branching conditions could
be used for branch prediction, which provides important information for compiler
optimization [5].

In this paper, we focus on the theory of linear real arithmetic, which is also the
most commonly used background theory. To compute the volume of SMT formulas,
the first challenge is to deal with the Boolean structure. Since an SMT formula may
be an arbitrary Boolean combination of linear constraints, it is difficult to compute its
volume directly. Typically, the formula is first decomposed to a series of conjunctions
of linear constraints! with disjoint solution spaces. Then the volume of each conjunc-
tion is computed and summated to obtain the volume of the original formula. The
decomposition scheme is not necessarily unique. Because each conjunction will be
passed to the volume computation algorithm, which is time-consuming, the number
of conjunctions will significantly affect the performance.

The bounded solution space of a conjunction of linear constraints is a polytope.
When dealing with problems from software engineering, we can assume that solu-
tion spaces are bounded since primitive float values stored in computers are bounded.
Computing the volume of a polytope is difficult in general. The complexity is #P-hard
and no known algorithm can compute the exact volume of a polytope in polyno-
mial time [15]. However, the results of applying randomized algorithms is somehow

ISince linear constraints are by default conjuncted, we use “linear constraints” short for “a conjunction of
linear constraints” if no ambiguity is caused.

@ Springer

Theory Comput Syst (2015) 56:347-371 349

surprising. Polynomial time randomized algorithms are presented in [14, 18, 22, 23].
Notice that the solution space may be degenerate, i.e, the actual dimension may
be strictly less than the number of variables. For instance, the solution space of
0 <x <yAy<ux <lisaline segment in the plane. Existing volume computation
algorithms do not consider the degenerate cases at all while such degenerate cases
are indeed quite common in practice. Our algorithm can handle them properly.

In this paper, we address the volume computation problem for SMT formulas. We
aim at designing an estimation algorithm that solves problem instances of practical
interest. One possible application of our algorithm is to analyze the path conditions
extracted from the control flow of computer programs. Statistics of Java libraries
such as Apache Math, Colt, etc. has shown that over 99 % of conditional expressions
involve less than 10 variables. With the help of variable substitution, many practical
cases can be solved if we are able to solve formulas with up to 20 variables.

The contributions of this paper are:

— We propose a method for approximating the volume of polytopes based on
Monte-Carlo integration. Our method uses a ray-based sampling strategy and the
average relative error converges to 5 % quickly.

— Degenerate cases could be handled by our method. We transform the degenerate
input problem to a compact form where the number of variables equals to the
actual dimension. The volume of the original problem is then computed from
that of the compact form.

— We propose a BDD-based search algorithm which reduces the number of calls to
volume computation as well as the overall execution time.

This paper is organized as follows: Section 2 shows a motivating example.
Section 3 explains the notations and terminologies. The proposed method is intro-
duced in Section 4. Then experimental results are presented in Section 5. Related
works are discussed in Section 6. Finally, conclusion and future works are given in
Section 7.

2 Motivating Example

Figure 1 is a function that takes 3 parameters x, y and z. When it is invoked, x, y, z
need to be sorted in ascending order before doing the real business. It is meaningful

function foo(double x, double y, double z) {
if (y < x)
swap(x, y);

if (z <y) {
swap(y, z);

if (y < x) {
swap(x, y);

// the following operation requires: x <= y <= z
doSomething(x, y, z);
}

Fig. 1 A motivating example

@ Springer

350 Theory Comput Syst (2015) 56:347-371

Table 1 The probability that each swap is executed

Line Statistics Path condition Vol. Fig.
3 0.5001445 D =y<x 1/2 2a
6 0.6667387 Dy:=z<xVz<y 2/3 2b
0.3333531 Di:=(y<xAz<y)
Vx < yAz<x) 1/3 2c

to know how frequently those swap functions will be executed. In software engi-
neering, such information can be used for compiler optimization [9] or to select a set
of evenly distributed test data in test data generation [30].

Since there is not any assumption on the distribution of x, y, z, we assume they are
uniformly distributed over [0, 1]. Table 1 shows the frequency of each swap being
executed after feeding 107 random inputs. On the other hand, the path conditions for
each swap could be obtained by symbolic execution. For instance, the path condition
of the first swap (line 3) is D := y < x. The solution set for D is shown in Fig. 2a
and its volume is exactly 1/2. For the second and third swap (line 6, 9), their path
conditions are more complex. The solution space for D3 is a polytope (with volume
1/3) while that for D, is the union of two polytopes (with volume 2/3). They are
depicted in Fig. 2b and c respectively. As we could see, the statistics results are very
close to the theoretical values 1/2, 2/3, 1/3 respectively. It will be quite helpful if
such volume can be computed mechanically. That is the motivation of this paper.

3 Preliminaries

In this work we focus on volume computation for SMT formulas in the theory of
linear real arithmetic (denoted by T'). It is one of the most commonly used theory

~
10

10
(a) Solution space for Dq (b) Solution space for Do (C) Solution space for D3

10
Fig. 2 Solution spaces for the path conditions

@ Springer

Theory Comput Syst (2015) 56:347-371 351

that can formulate linear operations and constraints over real variables. We assume
that the solution space is bounded since real values are often encoded in the float-
ing point format proposed by IEEE? and the range of real values are actually
bounded.

Throughout this paper, Boolean values are denoted by {ff, tt}, Boolean variables
are denoted by p, numeric variables are denoted by x, y and numeric constants
are denoted by a, b. T-atoms are linear constraints in the form of >/, a; - x; < b
where a; € R are coefficients, x; are free variables and < is one of the predi-
cates {<, #}. The vector form is a'x < b where superscript - means transpose
of a vector or a matrix. An example of linear constraints is x; + 2x; — x3/2 <
1/2. Notice that other predicates {=, >, >, <} can be expressed using {<, #}. For
instance | = r is equivalent to (! < r) A (r < [) and /[< r is equivalent
to ! <r)yA(# r). AT-formula f is a Boolean combination of linear con-
straints. Its propositional skeleton is a propositional formula f” which has the same
Boolean structure with f and each linear constraint is replaced with a propositional
variable.

A valuation v is a map from numeric variables to real values R. Given a valuation
v, the truth value of f is denoted by v(f). A propositional (partial) assignment ¢« is
a map from (a subset of) propositional variables to truth values and the truth value of
f? under « is denoted by a(f”). In propositional logic, the truth value o (f?) can
be evaluated even if « is a partial function. For instance, by A (b2 V b3) evaluates
to ff whenever by is ff. A partial assignment « can be refined to a set of T-atoms
ref(w) = U{l, | a(p) =t} UJ{—I, | a(p) = ff} where [, is the linear constraint
corresponding to p. refe is also called the refinement of «.

A T-formula f is T-satisfiable if and only if there is at least one valuation v such
that v(f) = tt, denoted by v =7 f. A propositional formula f? is satisfiable if and
only if there is at least one assignment « such that a(f?) = tt, denoted by o = f7.
A partial assignment « is T-consistent if ref (o) is T -satisfiable. The solution space
of f is denoted by [f]. The volume of f is denoted by vol f.

We use B,, to denote the n-dimensional unit ball in R”. Specially, rB,, is the unit
ball scaled by the factor r (the radius).

4 The Proposed Method

Since a T-formula may have arbitrary Boolean structures, it is impossible to compute
its volume directly. But the volume of a set of linear constraints can be computed.
The first two subsections focus on volume computation for a conjunction of linear
constraints. The revised simplex method is used to check the feasibility of the con-
straints and a randomized algorithm is proposed to compute the volume. The third
subsection discusses the dimension issue and our solution. We extend the algorithm
to formulas with Boolean structures in the last subsection.

2http://en.wikipedia.org/wiki/IEEE _floating_point

@ Springer

http://en.wikipedia.org/wiki/IEEE_floating_point

352 Theory Comput Syst (2015) 56:347-371

Table 2 Initial

X y b
sy 1 -1 0
55 -1 -1 1
sy 0 -1 12
sy 0 1 —1/4

4.1 Checking T -satisfiability of Linear Constraints

The decision procedure that can check the T -satisfiability of a conjunction of 7'-
atoms is called the T-solver. For the theory of linear real arithmetic, the T -solver is
typically based on the well-known simplex algorithm. To integrate it into an SMT
framework, we use a revised simplex method (RSM) which solves a stack of T literals
incrementally. Thus the T-consistency checking is time efficient. Since reference
[12] already contains a basic description of RSM, we only explain the incremental
part which is specific in our work.

As a matter of fact, RSM also provides extra interfaces for implicit equation
detection (checking whether a constraint is an implicit equation) and dimension com-
putation (computing the dimension of the current solution space). Those details are
introduced later in the corresponding subsections.

4.1.1 Asserting a Linear Constraint

The input of RSM consists of two parts: (1) a set P of variables that are restricted
to be nonnegative and (2) a set of linear constraints in the form of aiT x = b; where
aiT x is a linear combination and b; is a constant. Constraints in other forms are
preprocessed by the following steps:

El For constraints in form of ¢; x < b;, it is rewritten to st = b; — g; " x and then
the slack variable sT is added to P+.

E2 The constraint a; | x = b; is rewritten to s = a; " x — b; and we check whether
s = 0 is entailed.?

The preprocessed linear constraints are expressed as a tableau. Asserting a linear
constraint will add a row to the tableau. Take {x > y,x +y <1,y <1/2,y > 1/4}
for example. It is first rewritten to {sfr =x—y, s;’ =1l—-x—y, s;r =1/2—y, s[f =
y — 1/4} (the restricted variables are PT = {sf’, s;r , s;r , sj'}). Then these 4 linear
constraints are incrementally asserted, i.e., pushed to the stack and inserted to the
tableau. Then the tableau becomes like Table 2. Its T'-consistency is checked through
a series of pivot operations (as shown in Tables 3 and 4). One feasible solution is

x = y = 1/4 and the entire solution space is the triangle shown in Fig. 5a.

3This is done by checking whether the maximal and minimal value of s are both 0. The technique is similar
to that used for implicit equation detection, which will be introduced later in Section 4.3.

@ Springer

Theory Comput Syst (2015) 56:347-371 353

Table 3 Pivot(y, s4)

+
X N b
sy 1 -1 —1/4
55 -1 -1 3/4
sy 0 -1 1/4
¥ 0 1 1/4

4.1.2 Canceling a Linear Constraint

When canceling a linear constraint, all its effects should also be canceled so that
the solution space could be restored. In an incremental RSM, linear constraints are
maintained as a stack and only the last constraint could be canceled. Thanks to
the introduction of slack variables, each constraint could be canceled easily in the
following way:

1. Pivot the corresponding slack variable to row.
2. Remove the entire row.

The intuition is that while a variable is in row, its coefficients in others rows are all
0. When this variable is a slack variable, which is specific to a linear constraint, it
implies that the constraint is not added to any other row. Although this procedure is
quite simple, it is guaranteed that the solution space is restored exactly to that before
adding the constraint.

Take the above example, to cancel the last linear constraint y > 1/4 (slack variable
s4), the table is first pivoted to Table 5 and then removed the corresponding row as
in Table 6. Canceling the y < 1/2 (slack variable s3) is easier because s3 is already
in the row and we just have to remove the entire row, as shown in Table 7. The
remaining tableau corresponds to the first two constraints {x > y,x +y < 1} and
the one feasible solutionis x =y = 0.

4.2 RVC: Ray-based Volume Computation
Once the linear constraints are satisfiable, its volume can be computed. We focus on

conjunctions of linear constraints at first. Boolean combination are considered later
in this section.

Table 4 Pivot(x, s1)

st sy b
x 1 1 1/4
s -1 -2 1/2
55 0 -1 1/4
y 0 1 174

@ Springer

354 Theory Comput Syst (2015) 56:347-371

Table 5 Pivot(ss, y)

sf' y b
X 1 1 0
55 -1 -2 1
sf 0 -1 172
sy 0 1 —1/4

This subsection presents a randomized volume computation algorithm based on
Monte-Carlo integration. We mention the fact that there are already randomized algo-
rithms for volume computation [14, 18, 22, 23]. The theoretical time complexity is
polynomial. The absence of implementation is somehow a surprise. So we imple-
mented the algorithm proposed in [18] but found that it takes too long to solve even
simple cases with only 3 variables. Thus we tend to believe that there is still distance
between theoretical result and practical implementations.

The firm obstacle for using randomized algorithms is called “the curse of
dimensionality*”. When dimension increases, the probability of sampling inside the
solution space decreases sharply. Assume we are estimating the volume of B, by
sampling uniformly over x € [—1, 1]". The probability that Pr{x € n} decreases
dramatically from 0.0025 to 8.9 x 1078 as n increases from 10 to 20. Under such
circumstances, it is almost not possible to sample enough points inside B, in reason-
able time, let alone computing its volume. The ray-based sampling strategy used in
this paper may solve the problem to some extent.

Let C be the set of linear constraints, each in the form of a; ' x < b; ora; ' x # b;.
The following lemma holds:

Lemma 1 If C’ is obtained by removing constraints in the form of a; ' x # b; from
C to C is T-consistent, then dim(C) = dim(C’) and vol(C) = vol(C’).

Rigorous prrof for this lemma is omitted but the intuition behind the proof is
explained. Because [C] = [C’]]\I[al.Tx = b;]), if [C] is nonempty, the removed part
must have lower dimension than [C’]. Excluding a lower dimensional subset does
not change its dimension and volume.

Lemma 1 assures that we do not have to take into account those constraints in the
form of a; " x # b;. Therefore, we assume the input is purely inequalities in the form
of a,-Tx < b;. The matrix form is Ax < b, denoted by K for short. For simplicity,
we assume that [K] is full-dimensional in this subsection, i.e, dim(K) = n where n
is the number of variables. Techniques for handling degenerate solution spaces will
be introduced in the next subsection.

Our algorithm is based on Monte-Carlo integration. Intuitively, the volume of K
can be approximated directly by randomly sampling points in a n-dimensional cube
that contains K. But the approximation could be very inaccurate because the number
of sample points inside K will become very small when n increases. Experimental

“http://en.wikipedia.org/wiki/Curse_of_dimensionality

@ Springer

http://en.wikipedia.org/wiki/Curse_of_dimensionality

Theory Comput Syst (2015) 56:347-371 355

Table 6 Cancel sj

s y b
X 1 1 0
55 -1 -2 1
sf 0 -1 12

results that support this statement are reported in Section 5. Therefore, we propose
a ray-based approach for volume approximation. Different from direct Monte-Carlo
methods, we make sure that every sample point is located inside K. Each sample
defines a direction and we calculate the length from the origin point to K along
the direction. Then the volume is approximated by computing the average value of
each sample. Despite the exponential time complexity, our approach works well for
many practical cases. The proposed method consists of two phases: rounding and
sampling.

4.2.1 Rounding

Before sampling, the solution space K is rounded, i.e., it is affinely transformed to
another space K’ such that B, € K’ C (n + 1)B,,. Intuitively, sampling in K’ is
easier and more efficient.

In this subsection, A is an n x n positive definite matrix and a is an n x 1 vector.
E(A,a) is the ellipsoid {x e R" | (x —a) TA™'(x —a) < 1} and 8E(A,a) = {x €
R" | (x —a)TA™'(x — a) < 8%} is E(A, a) scaled by a factor of 8. Technically,
assume K is a full-dimensional, nonempty and bounded polytope. Theorem (3.1.9)
in [16] assures that there exists an ellipsoid E(A, a) such that rllE (A,a) C K C
E(A, a). Such ellipsoid is called the Lowner-John Ellipsoid (LJE [16]) for K. In
general, it is hard to compute exactly the LJE for a polytope K. Thus we relax the
constant from % to ,,lﬁ and compute it iteratively using the shallow-cut ellipsoid
method [16]. Once an approximated LJE is found, an affine transformation which
transforms K to K’ is also obtained.

The rounding algorithm is shown in Algorithm 1. It terminates when the space K
is properly rounded or vol(K) is found to be less than a small constant €. Throughout
the algorithm, it holds that K € E(A, a). Thus vol(K) < vol(E (A, a)). In each iter-
ation, we check whether the current ellipsoid has volume smaller than € or E(A, a)
is already a good candidate. In the former case, the algorithm terminates and the vol-
ume of K is reported to be 0. In the latter case, there is one linear constraint cTx < y

Table 7 Cancel 55

5 y b
X 1 1 0
sy —1 -2

@ Springer

356 Theory Comput Syst (2015) 56:347-371

Algorithm 1 Rounding

Input: The solution space K, a positive constant number €
Output: A rounded polytope K’ such that B, C K’ C (n+1)B,
E(A,a) + an ellipsoid s.t. a € K C E(A4, a);

while vol(E(A,a)) > e A (A7 E(4,0) £ K) do

(¢,7) + a constraint in K such that (—= 1 E(A,a) € [cTz <A]);

n+1

E(A,a) +sce(E(A,a)N[e'z <cla+ Vel Ad);
end
f vol(E(A,a)) > € then

// assume A1 =QTQ
return K/ ={x e K |(n+1)-Q-(x —a)};
else

| Exit with vol(K) = 0;
end

71+1

e

which does not contain the whole ellipsoid #E (A, a). In the shallow-cut ellipsoid
method, a minimum volume ellipsoid that contains

1
n+1

E(A, a)ﬂ[[c x<c a-+ CTACH

is computed by the formula

/o _ Ac
{ AT
’ _ LAcc A
Al=¢-0 (A T T)
_ 1 n3(n+2) __2 _ 1
P=%r2 %= w2 T ¢

n(n+1)° T 2n2(n+1)2

which is done in the function sce. Then the next iteration could start. The whole
algorithm is guaranteed to terminate in polynomial time (Theorem (3.3.9) in [16]). If
a candidate ellipsoid E (A, a) is found, the matrix A must be a positive definite matrix
(so is A~1). Thus there is some Q such that A~! = QT Q. An affine transformation
(Ty, o) with Ty = (n + 1) Q and tp = —(n + 1) Qa could transform K to a position

such that B, € K’ C (n + 1)B,,. More importantly, vol(K) = \det(T0)|VOI(K) =
1 , .. .

VA AT WVOI(K). Then the original problem is reduced to computing the volume

of K'.

An example is shown in Fig. 3a where K is the triangle AABC. The candidate
ellipsoid is plotted every 20 iterations and the last candidate E(A, a) along with
n+] E(A, a) is plotted in black. Since ﬁE C K C E, an affine transformation is
obtained and K is transformed to K’ as shown in Fig. 3b. Compared with K, K’ is at
a place better for sampling.

@ Springer

Theory Comput Syst (2015) 56:347-371 357

2 3
1 7
15 K ﬁE 1 / (n * 1) Bn\
L\)-\/ ’ 4 // N\
1 (\Q\\ >/ E / /// /K’ \
0s 4 e B\ ‘ \
/// / n \‘ \
: < |
0.5 - \ \\\ / //
- ~. /
4 N [
1 \\ \\\ /
1.5 4 7 AN ~ /
Il L L Il Il L \ — //
a -3 -2 -1 0 1 2 3 4 -2) 3 1 2 3
(a) Rounding steps (b) Rounding result

Fig. 3 Rounding example

4.2.2 Sampling

The rounded polytope is still denoted by K. Since B, C K, the origin and the n-
dimensional unit ball are both contained in K. Thus the volume of K can be obtained
by the following integration:

vol(K) = ‘/(nil) Vu(e(r))dr (1)

where S”~D is the (n — 1)-sphere (the surface of the n-dimensional unit ball),
V,(u) = vol(uB,) = u" - vol(B,,) is the volume of a n-dimensional ball with radius u
and e(r) = sup{d > 0|8 - r € K} is the maximum length of line segment along the
direction r. Since B, € K C (n + 1)B,,, it always holds that 1 < e(r) < (n + 1).

The idea (for 2 dimension) is depicted in Fig. 4. The integration is actually sum-
mating the volume of small sectors. The n-dimensional variable r is sampled from
the S"~! and e(r) is the length from the origin to K along the direction of 7. Then
V.. (e(r)) is the volume of n-dimensional ball with radius e(r) and vol(K) is obtained
by averaging such volume.

Fig. 4 The idea of sampling

@ Springer

358 Theory Comput Syst (2015) 56:347-371

Y Cr=[z>y Y Cr=[z>y Y Cs=[z>y
z+y<l z<y z<y
y<1/2 1k z+y<1 1% z+y<1
y>1/4 {2 y>1/4 z+y>3/4
e ///\}’ o

7/
0 1
(a) Solution for Cy (b) Solution for Cs (C) Solution for C3

Fig. 5 Examples of full-dimensional and degenerate solution spaces

Monte-Carlo integration is used to estimate the integration in Eq. (1). Algo-
rithm 2 shows the detailed steps. Let vol(K) be the approximation for vol(K). A
n-dimensional vector r is first sampled uniformly on $"~!, and then e, = e(r) is
computed. The approximation for the integration is the average value of those V), (e,).
By the law of large numbers, vol(K) converges to vol(K).

4.3 The Dimension Issue
Constraints over the same set of variable may have solution spaces in various dimen-

sions. For example, Fig. 5a, b and ¢ show three cases where each has 4 linear
constraints over 2 variables. The solution space for C is a triangle (2-dimension)

Algorithm 2 Volume approximation

Input: B,, C K C B, (n + 1), the maximum number of iterations M
Output: Approximation of vol(K)
o+ 0; // the approximation
v < vol(B,,) ; // the volume of n-dimensional unit ball
for i < 1 to M do
r <—samplegn-1)();
€ < +00;
foreach constraint a; 'z < b; of K do

// it must hold b; > 0 because the origin is in K

if a;'r > 0 then

| e min{bi/(a;"7), e}

end
end
// e, must be finite because K is bounded
o+ o+el-v/M;
end
return o;

@ Springer

Theory Comput Syst (2015) 56:347-371 359

while those for C; and C3 degenerate to line segments (1-dimension). In principle, a
solution space with higher dimension is strictly larger than that with lower dimension.
If they are extracted from two path conditions, then the path with higher dimensional
solution space is likely to be reached more often than that with the lower one (while
assuming the inputs are uniformly distributed). Quantitative comparison of volume
only makes sense for two solution spaces of the same dimension. For instance, [C1]]
is larger than both [[C>]] and [[C3]]. Moreover, [C,] is larger [C3]]. Degenerate solu-
tion spaces are quite common in practice. For instance, the solution space of an
equality x==y is degenerate. This issue is discussed in this section.

Randomized methods rely on sampling in a full-dimensional polytope because the
probability of sampling inside degenerate solution spaces is 0. In our method, the
input linear constraints are first transformed to its compact form which has the same
solution space with the original problem. The support part of the compact form is
full-dimensional and the volume of the original problem can be calculated from that
of the support part.

Definition 1 (Dimension) The dimension, dim(C), for a polytope C C R” is the
number of affinely independent points in C minus 1.

While the definition is mathematical, the concept of dimension is intuitive. By
definition, the dimension can be -1 (if C is empty), O (when C consists of a single
point), 1 (when C is a line segment), and up to n when C is in R". In the last case,
we say that C is full-dimensional otherwise it is degenerate. For instance, a cube in
R3 is full-dimensional and a line segment in R is degenerate.

Definition 2 (Implicit equation) Let aiTx < b; be one constraint from Ax < b. We
say a; ' x < b; is an implicit equation (with respect to Ax < b) if and only if Ax < b
entails aiTx =b;.

For instance, y < x and x < y in C; are both implicit equations. Detection of
implicit equations can be done by maximizing the slack variable corresponding to
the equation. Assume sl.+ is the slack variable corresponding to a; ' x < b;. Once a
feasible solution is found, a new row that encodes the objective function f = s;r is
introduced to the tableau. Then we check if it is possible to increase the value of f
while preserving feasibility (similar to the procedure for picking a column variable in

[12]). a; "x < b; is an implicit equation if and only if the maximal value of sl.+ is 0.

Definition 3 (Compact form) Given an input problem Ax < b, its compact form
(which has the same solution set as Ax < b) is

Xxp = Apxs +b, projection part
Asxs < by support part

where the variable set x is partitioned to x, U xy and the support part Agx; < by is
full-dimensional.

@ Springer

360 Theory Comput Syst (2015) 56:347-371

Given Ax < b, its compact form can be obtained by the following steps: (1)
Maximize each slack variable in P to find all implicit equations. (2) Rewrite all
implicit equations to equations. (3) Apply Gaussian elimination on the set of equa-
tions and remove those trivial equations in the form of 0 = 0. Then the equations are
in reduced row echolon form 3. (4) Choose each variable corresponding to the lead-
ing coefficients of each row as x,. The equations are in the form of x, = A,x; +b).
(5) Eliminate variables in x,, from the inequalities by substitution and remove triv-
ial inequalities in the form of ¢; < ¢, where ¢;, ¢, are constants and the value of ¢;
is less than ¢, to obtain the support part Agx; < by. Specially, if Ax < b is already
full-dimensional, its compact form is just Ax < b itself and the projection part is
empty.

Theorem 1 (Actual dimension) Given C a group of T-consistent linear constraints
and (xp = Apxs + bp) A (Asxs < by) its compact form, then dim(C) equals to the
dimension of the vector x;.

For instance, C; in Fig. 5b has 4 constraints and two of them are implicit equations
({x = y,x < y}). Its compact form is:

y=x projection part

|: _11 :| x < |: };3] support part 2)

which contains 1 variable in the support part. Thus its dimension is 1.

The volume of the support part can be approximated using the method introduced
above. The correspondence between the volume of Ax < b and its support part is
formulated by the following theorem.

Theorem 2 (Volume) Given a group of T-consistent linear constraints Ax < b, let
(xp = Apxs+bp) N(Agxg < by) be its compact form. The following equation holds:

Vol(Ax < b) = \/det(I + A, A,) - vol(Asx; < by)

Proof Without loss of generality, we assume b, = 0 (i.e., x, = A,x;) because
removing the offset does not change the volume.

Assume the dimension of x; and x, are ny and n, respectively. Thus A, is a
np X ng matrix. The support part is actually a polytope Ko := A;x; < by in the ny
dimensional subspace and the actual polytope K := Ax < b is in ny; + n, dimen-
sion due to the projection part. The idea of proof is that there exists an orthogonal
matrix M such that M can rotate K to K’ which is in the same subspace of the Ky
and vol(K’) = vol(K). Furthermore, the relation between K’ and K| is established
by a linear transformation thus their volumes are related by the determinant of the
transformation matrix.

Shttp://en.wikipedia.org/wiki/Gaussian_elimination

@ Springer

http://en.wikipedia.org/wiki/Gaussian_{e}limination

Theory Comput Syst (2015) 56:347-371 361

First of all, there is some orthogonal matrix M which rotates K to K K’. Assume

that
My My
M =
[le Mzz}

. . T T T. .

it should satisfy (0, xéT) =M. (x,,T, xs ') where (0, xéT is the coordinate of
a point in K'. Actually, K’ is obtained from K by a linear transformation and the
relation between x; and x; is:

xg = Mp1xp + Mapxy = (M1 Ap + Map)x,
Let Q = (M21 A, + M) be the transformation matrix.

Since M is orthogonal, it should hold that ||(xpT, xs || = ||(x;,T, 0[], i.e:
Xp Xp+Xs Xy = x;,Tx;,

— (Apxs)TApxs +xssz = (st)Tst
— xsT(I + ApTAp)xs = xsTQTst

The above equation holds for all x;, therefore I + A pTA p = Q" Q. Then the import
relation holds that (det(Q))? = det(I + A;',—A p)- The conclusion of this theorem can
be proved:

vol(K") = vol(Q(Kp)) = | det(Q)| - vol(Ko) = y/det(I + A, A) - vol(Ko)

O

In case that the projection part is empty, the determinant is considered to be 1.
To avoid diving into the technical details, we take C in Fig. 5b as an example. Its
compact form is shown in Eq. (2). The support part is essentially 1/4 < x < 1/2
which has the volume (length) of 1/4. A, is a 1 x 1 matrix [1];x; and A;AP =

[1]1x1. Therefore, volCy = «/5-(1 /4) = «/5/4, which is consistent with our intuition.
Given a set of constraints, its compact form is not necessarily unique. However,
the volume is unique no matter which one is used in computation.

4.4 Enumerating Partial Models

Given a T-formula f, its propositional skeleton f? can be obtained by replac-
ing each atom in 7 with a propositional variable. Then the computation for vol f
is decomposed to computing the volume of a series of conjunctions of linear con-
straints. If a partial assignment « satisfies that « F f? and « is T -consistent (refo
is T-satisfiable), we call « a (propositional) partial model. Given A a set of par-
tial models, we call A a partition for f if and only if [f] = Ugea[ref(e)] and
[ref(a)]N[ref(a;)] = P forall @, oj € A and @; # «j, i.e, the entire solution space
of f is partitioned to disjoint regions in A and its volume is computed by:

vol(f) = Z vol(ref(a))

aeA

It is known that volume computation is relatively time consuming, thus the size of
A dominates the algorithm performance. Usually, the partition A is obtained by an

@ Springer

362 Theory Comput Syst (2015) 56:347-371

extended DPLL(T) algorithm [28] which is originally designed for finding one par-
tial model. The intuition is that: when a partial model « is found, it is excluded from
the solution space by replacing f with f A —« and the search continues until no
more partial model could be found. Reference [24] is based on this idea and it fur-
ther reduces the number of calls to volume computation by minimizing each partial
model and incorporating with theory learning. Their algorithm is much better than the
straightforward approach for the formulas given in Conjuntion Normal Form (CNF).

In this work, we use Binary Decision Diagram [1] (BDD) to facilitate the proposi-
tional model finding. BDD is a directed acyclic graph that encodes the propositional
formula f7. Each BDD has a root gg and two terminal nodes {qy, g}. Each non-
terminal node ¢ is associated with a decision variable var(q) and two edges labeled
with {0, 1} respectively. The 0-edge corresponds to assigning ff to var(g) and the 1-
edge corresponds to assigning tt to var(g). Each route from the root node g¢ to g
corresponds to a partial assignment that satisfies f7. Although constructing the BDD
for f? requires exponential time in the worst case, it is still cheaper than volume
computation. Then propositional partial models can be enumerated by searching on
the BDD. We incorporate an incremental 7-solver which further filters out those 7 -
inconsistent partial assignments. Using BDD, it is not necessary to introduce extra
proxy variables when transforming the formula into CNF, thus the number of par-
tial assignments is reduced. Moreover, the dimension information is also used to
prune the search space. Experimental results show that our method largely reduces
the number of calls to RVC as well as the execution time.

The idea of our search algorithm is depicted in Fig. 6 and it is described as a
Depth-First-Search (DFS) procedure in Algorithm 3. It is essentially a DFS procedure
incorporated with theory-learning and backtracking. It starts with the root node go.
stack is used to maintain the context. Each element in stack is a triple (g, a, e) where
q is a node, a is the assignment that is associated with the incoming edge to ¢ and e
records whether g has been explored. The partial assignment « is maintained during
the search and once the search reaches gy, the current assignment refo is checked for

p1
Gtt is reachable from all non-terminals.

backtrack when ref(c) is inconsistent.

P2 . .
backtrack when the dimension of ref ()
is smaller than the current largest

P3

yzt

qff qtt

Fig. 6 The idea of partial model enumeration

@ Springer

Theory Comput Syst (2015) 56:347-371 363

Algorithm 3 Partial model enumeration

Input: A T-formula f
Output: vol(f)

S+ 0; // the accumulated volume
bdd +construct (f?) ; // construct the BDD
stack «+ [(root(bdd), nil, ff)] ; // the stack used in DFS
a+; // the partial assignment

while stack # || do
(9,0, €) <—pop(stack);

if —e then /* q is not explored */
push(stack, (g, a,tt)) ; // set q as explored
push(a, a);
if ¢ = qu V ¢ = g then /* q is terminal node */

if ¢ = gyt then
if consistenty(ref(a)) then
| S« S+ vol(ref(a));
else /* backtrack and restore the context */
level <—analyze(«);
(stack, o) <—backtrack(level);
end

end

else /* non-terminal, push the children */
push(stack, (childi(q),var(a), ff));

push(stack, (childg(q), —var(a),ff));

end

else /* pop « when ¢ is explored */

| pop(a);
end

end
return S;

T -consistency. Its volume is computed and accumulated if it is 7T-consistent. Oth-
erwise, we analyze the conflict and backtrack to a proper level (the search context
stack and o are modified accordingly). The backtracking is chronological and the
backtrack level is the latest level that is 7-consistent.

The search space is pruned in three ways: (1) gy is reachable from all non-terminal
nodes, which is ensured by the BDD construction rule. This property actually assures
that the search procedure will not waste time in propositional unsatisfiable assign-
ments. (2) Once a propositional model « is found, it is checked for T-consistency. If
refa is inconsistent, the search will be backtracked immediately to the conflict. We
use an incremental 7 -solver so that search and backtrack could be done incremen-
tally. (3) While « is satisfiable, its dimension is calculated. It is guaranteed that the
deeper it goes during the search, the smaller dimension it has. If the dimension is

@ Springer

364 Theory Comput Syst (2015) 56:347-371

smaller than the current discovered largest, we can backtrack immediately. With all
the optimization strategies, our algorithm yields much smaller number of invocations
to the T-solver and volume computation, which significantly reduces the execution
time.

5 Implementation and Experimental Results

Our algorithm is implemented in Matlab (version 7.10) and tested on a PC (Intel
E5300 Dual-Core 2.60GHz, 4G RAM, Ubuntu 10.10). Our tool is named RVC. It
accepts T-formulas with arbitrary Boolean structures.

There are several implementation issues. The first is that the volume of B,
(denoted by V) is needed for computation. It is calculated efficiently by the recur-
sion formula: Vi = 2, V, = wand V,, = 2n/n) - V,— for all n > 2 (see [2]).
Another issue is to sample uniformly on S”~1. We follow the method proposed in
[25]. Let x = (x1, x2, ..., x,) and each x; be generated in N (0, 1) (the standard nor-
mal distribution). The vector x/|x| is then uniformly distributed on =1, The BDD
implementation used in the experiments is CUDD®.

The T-solver is based on an incremental implementation of the revised simplex
method. Le, it maintains a stack of linear constraints and stays online. The upper-
level search algorithm could communicate with the T-solver during the search by
pushing a new constraint, popping out one or checking the satisfiability of the current
stack. The T'-solver is efficient when re-checking the T-consistency after modifying
the constraints set.

Evaluation of our method is done in the following manner: (1) First of all, RVC is
experimented on a group of randomly generated conjunctions of linear constraints.
The convergence and accuracy of RVC are shown and the time consumption is com-
pared with the tool LRS’ which is an implementation of the Lexicographic Reverse
Search algorithm [4]. Although there are various exact algorithms [8], we choose
LRS because it has the best performance when solving our randomly generated
instances. Convergence and accuracy are not compared since the exact algorithm is
designed to be accurate. For a fair comparison, all conjunctions are full-dimensional
although RVC could handle cases with degenerate solution space. (2) Then we imple-
ment a direct Monte-Carlo method and compare its convergence and accuracy with
RVC. Actually, we also implemented the polynomial time randomized algorithms
in [18] but the implementation is slow® and thus could not be used for compari-
son. (3) Finally, the experimental results for solving formulas with arbitrary Boolean
structures are presented.

Test cases used in the experiments are randomly generated. To generate a lin-
ear constraint, we randomly select a vector of coefficients and variable names and

Shttp://vlsi.colorado.edu/~fabio/CUDD/
Thttp://cgm.cs.mcgill.ca/~avis/C/Irs.html

8The reason is that their algorithm contains constants such as 801, 1600 in nested loops. It takes hundreds
of seconds to solve a 3-dimensional case.

@ Springer

http://vlsi.colorado.edu/~fabio/CUDD/
http://cgm.cs.mcgill.ca/~avis/C/lrs.html

Theory Comput Syst (2015) 56:347-371 365

Convergency in 3-dimension Convergency in 5-dimension Convergency in 7-dimension

Relat

0 10 20 3 40 5 6 70 8 o 50 100 150 200 250 300 350 0 200 400 600 800 1000 1200 1400
Heration teration Heration

(a) 3 dimension) (b) 5 dimension (C) 7 dimension

Fig. 7 Convergence in lower dimensions

product them into a linear constraint. Various settings of the number of variables
and constraints are given so that test cases of different scale are generated. For a
Boolean combination of atomic formulas, the generation is done recursively. In each
level, we have several options: (1) generate an atomic formula and return, (2) recur-
sively generate a conjunction of sub-formulas, (3) recursively generate a disjunction
of sub-formulas, (4) recursively generate a negation of a sub-formula. The probabil-
ity of taking each option is given by a group of parameters. Various settings of these
parameters are used in the experiments, so that our algorithm is tested under different
scenarios. We intentionally select those cases with nonempty solution space because
T-inconsistent cases are filtered out early at the consistency checking phase thus will
not trigger the volume computation procedure. For each case, we make sure that the
origin is contained in its solution space and we also put an n-cube to bound it. For a
fair comparison, no other selection is applied.

The implementation (including the source code) and test cases are publicly
available as a Google Code project’.

5.1 Performance of RVC

Figure 7a, b and ¢ show convergence of RVC in the dimension of 3, 5 and 7. Each
curve in the figure shows the change of relative error while the number of iteration
grows. As we could see, the maximum relative error for each case reaches about 15 %
quickly (the horizontal bars indicates 10 %).

The temperature for relative errors are shown in Fig. 8a. The data for each scenario
(fixing the number of variables and constraints) is averaged from 50 cases. As we
can see, the relative error is below 7 % in most scenarios and no one exceeds 10 %.
The histogram is shown in Fig. 8b and the average relative error over all cases is as
small as about 5 %.

The accuracy data for higher dimensional cases are currently not available because
the actual volume for higher dimensional solution spaces can not be computed by
the exact algorithms. For instance, LRS takes hundreds of seconds to solve a single
instance in 8 dimension or higher. On the other hand, RVC could handle those cases
and the convergence situation is similar.

9http://code.google.com/p/rve/

@ Springer

http://code.google.com/p/rvc/

366

Theory Comput Syst (2015) 56:347-371

#Constraints
w £

Average relative error

3 4 5 6 7

0.1

0.09
0.08
0.07
0.06
0.05
0.04
0.03

1000

800

700

600

500

400

300

200

100

Trequency mmm

#Variables

0 0.1 0.2 0.3 0.4 05

(a) Temperature of relative error (b) Histogram of relative error

Fig. 8 Experiments on the accuracy of RVC

5.2 Compare RVC with the Exact Algorithm

In the previous subsection, we found that the relative error gets quite small after n - 2"
iterations where n is the dimension (number of variables). In the rest of this section,
we fix M = n - 2" as the maximum number of iterations. Though it is exponential,
this number is acceptable when n is as large as 20. Then the time consumption of
RVC and LRS are compared in Fig. 9. In the maximal allowed runtime (10 minutes),
LRS handles 7 variables while RVC could handle up to 18, which will cover many
practical cases. Notice that the the vertical axis is in logarithmic scale.

5.3 Compare RVC with Direct Monte-Carlo Method
It is worthwhile to compare RVC with direct Monte-Carlo method. Given a test case
after rounding, it is bounded in the n-dimensional cube [—(n + 1), (n 4+ 1)]*. The

direct Monte-Carlo method is implemented in such a way that (1) it samples in the
cube and counts the ratio of points locates inside K, say the ratio is z. (2) return

Comparison of time with LRS

RVC ——

1e+04
1e+03
1e+02
1e+01
1e+00
1e-01
1e-02
1e-03 ff
1e-04

time(sec.)

011
#Variables

21
31415161718 T 20

Fig. 9 Time consumption of RVC and LRS

@ Springer

Theory Comput Syst (2015) 56:347-371 367

Comparsion of accuracy with direct Monte Carlo Comparison of accuracy with direct Monte Carlo

l RV
18" 18 Direct Monte Carlo (sample in (n+1) unit cube) -

Average relative error
{

Direct Monte Carlo (sample in (n+1) unit cube)

o W
0 02 04 06 08 1 12 14 16 18 2 3 4 5 6 7
RVC #Variables

(a) Accuracy for individual cases (b) Average accuracy

Fig. 10 Compare RVC with a direct Monte-Carlo method

volK = z- (2(n + 1))*. The accuracy for individual cases is shown in Fig. 10a. It
is obvious that RVC outperforms the direct Monte-Carlo method. Figure 10b shows
the average accuracy for different dimensions. RVC is much better than the direct
Monte-Carlo method. Moreover, when the dimension increases, the approximation
returned by the direct Monte-Carlo method converges to O (relative error converges
to 100 %) because there is no sample point that lies in the solution space. We also
tried to sample in (n + 1)B,, and the result is similar.

5.4 Handling T-formulas with Boolean Structures

RVC is also tested on formulas with logical connectors {A, Vv, —}. To the best of
our knowledge, the closest work is [24], which is based on DPLL(T). They aimed
at minimizing the number of calls to volume computation and two methods were
proposed (although there is not significant performance difference between them). In
this part, we implement their framework and compare with them on the number of
calls to the T-solver and the number of calls to the volume computation. Since [24]

Fig. 11 Runtime comparison Overall time consumption
with the DPLL(T)-based 1e+04 . T T T T T
approach . < *
1e+03 | Lt el e e
£, e e *
10402 F et .
L
° PR "
2 Tre,e o+
s le+01 *+:+:+:} T
= Lt B
E FERACN a
T qe+00 |1 et
[MRS .
& s ?:ﬁ
g
1e-01 p § i
te-02 1
fn
1e-03
1e-03 1e-02 1e-01 1e+00 1e+01 1e+02 1e+03 1e+04
BDD-based

@ Springer

368

Theory Comput Syst (2015) 56:347-371

The number of T-solver invocations

The number of volume computation invocations

1e+06 1e+06
1e+05 F ot 1e+05 | e T
ey e T
+ oy T + + et +

1e+04 o A 1e+04 o e

e+ dhea e+ SEL T
- . Fert e 1 ° + Sy ROV
2 1 * @ L I
7] + wh FE ** 17} by o+ A
< 1e+03 | ARt S 1e+03 | & - uHEE N
<2 W3Sty o e ey
Py + . 4 = + R - L
= Ry 5 Vg

T
i 1e+02 *tf {Qtﬁ«» d 1e+02 gi iy ¥
a § R Ky a ; yhd i
H N
tesot bt . te+01 | 1 ¥
il il
b :
1e+00 F 1e+00 |
1e

16-01 L L . . . L
1e-01 1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06
BDD-based

(b) Invocations to RVC

,01 1 L L L I L
1e-01 1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06
BDD-based

(a) Invocations to the T-solver

Fig. 12 Comparison with the DPLL(7')-based approach

is just a framework in which the volume computation algorithm is parameterized, we
use our algorithm RVC for a fair comparison of time consumption.

Experimental results are shown in Figs. 11, 12a and b. Notice that all the fig-
ures are in logarithmic coordinates. The comparison of runtime is in Fig. 11 and the
comparison of invocations to the T-solver and RVC are in Fig 12a and b respec-
tively. Our approach (BDD-based) outperforms the DPLL(T)-based one on both the
number of T-solver invocation and volume computation invocation. The overall time
consumption of our approach is hundreds of times (about 832) smaller than the
DPLL(T)-based one.

The accuracy for handling formulas with Boolean structures is shown in Fig. 13a
and b. The result is even better than solving conjunctions of constraints. The average
relative error is less than 5 %.

Degenerate solutions spaces are handled properly by RVC. The dimension infor-
mation is also helpful to bound the search when handling formulas with Boolean
structures.

Histogram of relative error

Average relative error

#Constraints

(a) Temperature of relative error

45
40
35
30
25
20
3 4 5 6 7

#Variables

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0

Froquency

(b) Histogram of relative error

Fig. 13 Experiments on the formulas with Boolean structure

@ Springer

Theory Comput Syst (2015) 56:347-371 369

Recall the motivating example at the beginning of this paper. RVC is used to com-
pute the volume of the 3 path conditions. Each path condition is estimated for 10
times and the average volumes are 0.50, 0.67, 0.34 respectively, which is very close
to the theoretical value 1/2,2/3, 1/3. Each invocation of RVC finished in about 0.5
second.

6 Related Works

The satisfiability of SMT formulas can be decided by the state-of-the-art solvers
(Z3 [11], Yices [13], CVC3 [7], etc.). A model could also be obtained while the for-
mula is satisfiable. The more interesting question “how well the formula is satisfied”
is not well studied.

While there are various underlying theories in SMT, the most commonly used
one is the linear real arithmetic. Linear operations and constraints can be encoded
in the theory and there are efficient algorithms that can solve its satisfiability. The
most well-known algorithm is the simplex method which is initially proposed by
Dantzig [10]. Given a set of linear constraints, the worst-case time complexity of
simplex method (with any known pivoting strategy) is exponential. However, it is
also proven that the time complexity is polynomial [31] on average. To utilize the
simplex method for SMT formulas, revised versions are proposed in [12, 26, 27],
which are easier to be integrated into SMT solving frameworks that incorporates
multiple theory solvers. In this paper, we further develop the revised simplex method
for implicit equation detection and dimension computation.

We mention the fact that the ellipsoid algorithm can check the satisfiability of
linear constraints in polynomial time. However, it is not faster than the simplex
method in practice. Furthermore, it is difficult to be integrated into the SMT solving
framework. In this paper, we employ ellipsoid algorithm to help rounding a polytope.

Generally speaking, an SMT formula may be an arbitrary Boolean combination of
linear constraints. As in this paper, the volume computation typically consists of two
steps: (1) enumerating all propositional models and (2) summating the volume of the
linear constraints corresponding to each propositional model.

For the first step, it is essentially partitioning the solution space to disjoint regions.
This is usually done by analyzing the Boolean structure of the input formula. The
algorithm iteratively finds propositional models for the Boolean skeleton of the input
formula, each corresponding to a region. This is similar to propositional model count-
ing [32]. In practice, partitioning is often done by a modified DPLL(T) [24, 28]
algorithm or by searching on certain data structure that is compiled from the input
formula [17]. In the former manner, we search iteratively for propositional models.
Once a model is found, it should be excluded in the following search in order to avoid
counting the same region for multiple times. In the latter manner, we should develop
a search strategy that better utilizes the theory solver. For instance, in this paper, we
incorporate the theory solver and dimension detection to prune the search space. In
both ways, the number of partial models should be reduced as much as possible since
it dominates the number of calls to volume computation for a conjunction of linear
constraints. The closest work to this paper is [24].

@ Springer

370 Theory Comput Syst (2015) 56:347-371

The second step is to compute the volume of each propositional model. Each
proposition variable corresponds to a linear constraints and thus the propositional
model corresponds to a set of linear constraints. Its volume is computed either by
exact algorithms [3, 8] or approximation algorithms [14, 18, 22, 23]. The (bounded)
solution space for linear constraints is a polytope. In exact algorithms, the polytope
is often triangulated to simplices whose volume is easy to compute. In approxima-
tion algorithms, the volume is computed by a multi-phase Monte-Carlo procedure. A
known fact is that the complexity of exact algorithms is proven to be #P-hard [15]
while the randomized algorithms could reach a given accuracy with a given proba-
bility in polynomial time. Actually, the series of works after the path-breaking paper
[14] has reduced the theoretical complexity from O*(n?3) to O*(n*). What’s more
interesting is the absence of any implementation for such algorithms. Despite the
beautiful theoretical result, the intrinsic complexity of such randomized algorithms
is rather high which makes them impractical. While the volume computation is of
practical interest, there is also research that aims at practically estimating the vol-
ume without pursuing beautiful theoretical complexity. In [21] the author proposed
a direct Monte-Carlo method. However, only simple examples in 3 dimension are
given. The major obstacle to use direct Monte-Carlo method is called the curse of
dimensionality, i.e, when the dimension increases, the probability of a uniformly
sampled point lies inside a polytope decreases fast. The approximation could be very
inaccurate when there is not enough sample points inside the polytope. For degen-
erate cases, theoretical volume (in full-dimension) is 0. Thus we are not even likely
to have any sample point inside. To the best of our knowledge, there is not much
related work on dealing with degenerate cases. But we believe the ability to handle
degenerate cases is required for a practical volume computation algorithm.

7 Conclusion

In this paper, we proposed a randomized algorithm for volume approximation. Our
algorithm can solve problem instances of practical interest. Experimental results
show that our method is accurate and time-saving. It consumes much less time than
the exact algorithms and is more accurate than the randomized algorithms. It is help-
ful for estimating the volume of path conditions and thus can be used in software
engineering.

Acknowledgments I would like to thank Feifei Ma, a coauthor of the related work [24], for the insightful
suggestions. I benefited from discussing with her when carrying out this work.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. 100(6), 509-516 (1978)

2. Athreya, K.: Unit ball in high dimensions. Resonance 13(4), 334-342 (2008)

3. Avis, D.: Computational experience with the reverse search vertex enumeration algorithm. Optim.
Methods Softw. 10(2), 107-124 (1998)

@ Springer

Theory Comput Syst (2015) 56:347-371 371

10.
11.

13.

14.

15.

16.

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

32.

. Avis, D.: A revised implementation of the reverse search vertex enumeration algorithm. In: Poly-

topescombinatorics and Computation, pp. 177-198. Springer (2000)

. Ball, T., Larus, J.R.: Branch prediction for free. In: Proceedings of PLDI’93, pp. 300-313. ACM, New

York (1993)

. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. Handb. Satisfiabil-

ity 185, 825-885 (2009)

. Barrett, C., Tinelli, C.: CVC3. In: Computer Aided Verification, pp. 298-302. Springer (2007)
. Biieler, B., Enge, A., Fukuda, K.: Exact volume computation for polytopes: a practical study. In:

Polytopes-Combinatorics and Computation, pp. 131-154. Springer (2000)

. Buse, R.P,, Weimer, W.: The road not taken: estimating path execution frequency statically. In:

Proceedings of ICSE’09, pp. 144-154. IEEE Computer Society (2009)

Dantzig, G.B.: Linear Programming and Extensions. Princeton university press (1998)

De Moura, L., Bjgrner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for the Construction
and Analysis of Systems, pp. 337-340. Springer (2008)

. Dutertre, B., De Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Proceedings of CAV’06,

pp- 81-94. Springer (2006)

Dutertre, B., De Moura, L.: The yices SMT solver. Tool paper at http://yices.csl.sri.com/tool-paper.
pdf, 2, 2, (2006)

Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating the volume
of convex bodies. JACM 38(1), 1-17 (1991)

Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a polyhedron. SIAM J.
Comput. 17(5), 967-974 (1988)

Grotschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization.
Springer (1988). http://eudml.org/doc/204187

. Huang, J., Darwiche, A.: Using DPLL for efficient OBDD construction. In: Theory and Applications

of Satisfiability Testing, pp. 157-172. Springer (2005)

. Kannan, R., Lovdsz, L., Simonovits, M.: Random walks and an O* (n°) volume algorithm for convex

bodies. Random Struct. Algoritm. 11(1), 1-50 (1997)

King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385-394 (1976)

Liu, S., Zhang, J.: Program analysis: from qualitative analysis to quantitative analysis (nier track). In:
Proceedings of ICSE’11, pp. 956-959. IEEE (2011)

Liu, S., Zhang, J., Zhu, B.: Volume computation using a direct monte carlo method. In: Computing
and Combinatorics, pp. 198-209. Springer (2007)

Lovész, L., Simonovits, M.: Random walks in a convex body and an improved volume algorithm.
Random Struct. Algoritm. 4(4), 359-412 (1993)

Lovész, L., Vempala, S.: Simulated annealing in convex bodies and an O*(n4) volume algorithm. J.
Comput. Syst. Sci. 72(2), 392-417 (2006)

Ma, F., Liu, S., Zhang, J.: Volume computation for boolean combination of linear arithmetic
constraints. In: Proceedings of CADE’09, pp. 453—468. Springer (2009)

Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Stat. 43(2), 645-646 (1972)
Necula, G.C.: Proof-Carrying Code. Design and Implementation. Springer (2002)

Nelson, C.G.: Techniques for program verification. XEROX Research Center (1981)

Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an abstract
Davis—Putnam-Logemann-Loveland procedure to DPLL(T). JACM 53(6), 937-977 (2006)
Pasareanu, C.S., Visser, W.: A survey of new trends in symbolic execution for software testing and
analysis. Softw. Tools Technol. Transfer 11(4), 339-353 (2009)

Poulding, S., Clark, J.A.: Efficient software verification: Statistical testing using automated search.
IEEE Trans. Softw. Eng. 36(6), 763-777 (2010)

Smale, S.: On the average number of steps of the simplex method of linear programming. Math.
Program. 27(3), 241-262 (1983)

Wei, W., Selman, B.: A new approach to model counting. In: Theory and Applications of Satisfiability
Testing, pp. 324-339. Springer (2005)

@ Springer

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf
http://eudml.org/doc/204187

	Estimating the Volume of Solution Space for Satisfiability Modulo Linear Real Arithmetic
	Abstract
	Introduction
	Motivating Example
	Preliminaries
	The Proposed Method
	Checking T-satisfiability of Linear Constraints
	Asserting a Linear Constraint
	Canceling a Linear Constraint

	RVC: Ray-based Volume Computation
	Rounding
	Sampling

	The Dimension Issue
	Enumerating Partial Models

	Implementation and Experimental Results
	Performance of RVC
	Compare RVC with the Exact Algorithm
	Compare RVC with Direct Monte-Carlo Method
	Handling T-formulas with Boolean Structures

	Related Works
	Conclusion
	Acknowledgments
	References

