810

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

PSpec-SQL: Enabling Fine-Grained Control
for Distributed Data Analytics

Chen Luo", Fei He

, Fei Peng, Dong Yan, Dan Zhang, and Xin Zhou

Abstract—Business organizations regularly collect customer data to improve their services. Organizations may want to share data within
themselves or even with third-parties to maximize data utility. Since business data contain lots of customer data, organizations must
respect customers’ privacy expounded by privacy laws. In this paper, we present PSpec-SQL, a distributed data analytics system that
automatically enforces privacy compliance for SQL queries. Our system provides a high-level language PSpec for the data owner to
specify her data usage policy. As usual, the data analyst queries data to perform data analysis, but our system checks each query to
ensure only policy-compliant queries are executed. We have implemented a prototype of PSpec-SQL on top of Spark-SQL, and carried out
a case study on the TPC benchmarks. The results show the practicability of our system with negligible overhead over query processing.

Index Terms—Access control, data analytics, privacy protection

1 INTRODUCTION

RECENT advances in cloud computing bring great oppor-
tunities for many small and medium enterprises to dis-
cover values from the business data with data analytics
techniques [1]. Cloud providers like Amazon Web Service
have already provided data analytics platforms as cloud
services. Instead of building IT infrastructures on their own,
the enterprises can directly leverage cloud infrastructures
and outsource data analytics tasks to third party data ana-
lysts to perform data analysis.

However, when analyzing business data, one major con-
cern of the enterprises is the privacy issue. As the business
data contains lots of private information such as identities and
personal preferences, misusing such data can cause privacy
breaches and severely degrade the enterprise’s reputation. A
traditional technique to protect customer’s privacy [2] is based
on syntactic anonymization. Through anonymization, data
related to private information are removed or generalized.
But anonymization lacks flexibility since the data is anony-
mized beforehand and fails to adjust the data privacy and util-
ity based on the actual needs of different data analytics tasks.

The privacy issue is even more intractable with the intro-
duction of distributed computing into the working environ-
ment. From the data providers’ viewpoint, their private data
are computed on remote, unknown, and potentially untrusted
machines. From the data analysts’ viewpoint, the input data
may originate from multiple sources. Traditional techniques

e C. Luoand F. Peng are with the School of Software, Tsinghua University,
China. E-mail: cluo8@uci.edu, pfthss2012@163.com.

F. He is with the School of Software, Tsinghua University, Beijing National
Research Center for Information Science and Technology (BNRist), and the
Key Laboratory for Information System Security, Ministry of Education,
China. E-mail: hefei@tsinghua.edu.cn.

D. Yan, D. Zhang and X. Zhou are with Intel Labs, China.

E-mail: {dong.yan, dan.d.zhang, xin.zhou|@intel.com.

Manuscript received 13 Feb. 2018; revised 21 Dec. 2018; accepted 24 Apr.
2019. Date of publication 30 Apr. 2019; date of current version 12 Mar. 2021.
(Corresponding author: Fei He.)

Digital Object Identifier no. 10.1109/TDSC.2019.2914209

<4

for centralized systems are thus not sufficient. Privacy protec-
tion for distributed data analytics is demanded.

There exist some distributed big data analytics systems,
e.g., Spark-SQL [3] and Hive [4]. These systems greatly hide
the complexities of distributed systems, while providing
simple SQL-like data models and query languages for effi-
cient large-scale data analytics. Most existing distributed
data analytics systems share a similar workflow of query
execution. The submitted query is first parsed and analyzed
in the master node, and then distributed to a set of worker
nodes. These worker nodes concurrently execute to produce
the final results.

Differential privacy [5], [6] is a privacy protection tech-
nique adopted in some distributed data analytics systems.
A carefully designed curator resolves a pre-determined set
of queries from third parties. Through noisy answers, one
can argue that private information cannot be leaked through
the curator. Designing differentially private curators how-
ever requires tedious analysis and mathematical insights.
Adopting differential privacy in organizations with varying
business data can be too challenging at present.

Thus, a more practical approach is to let the data owner
specify data use restrictions to avoid the misuse of privacy-
related data. Similar to differential privacy, a curator is
used to mediate data and queries. If a query does not access
the data according to these restrictions, the curator immedi-
ately rejects the query. One central requirement for the spec-
ification language is to get a good balance between data
privacy and data utility, such that the customer’s privacy is
well protected while the data is still usable.

Conventional access control languages, such as EPAL [7]
and XACML [8], are not suitable for privacy protection in
data analytics. A data usage specification may involve com-
plicated trigger conditions and intricate handling, which can
readily exceed the expressiveness of these languages. Con-
sider the sales information of an online retail company. The
company may be willing to share the amounts of all transac-
tions last year. It may be hesitant to share the amounts of all

1545-5971 © 2019 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2180-7749
https://orcid.org/0000-0002-2180-7749
https://orcid.org/0000-0002-2180-7749
https://orcid.org/0000-0002-2180-7749
https://orcid.org/0000-0002-2180-7749
https://orcid.org/0000-0002-4266-875X
https://orcid.org/0000-0002-4266-875X
https://orcid.org/0000-0002-4266-875X
https://orcid.org/0000-0002-4266-875X
https://orcid.org/0000-0002-4266-875X
mailto:
mailto:
mailto:
mailto:

LUO ET AL.: PSPEC-SQL: ENABLING FINE-GRAINED CONTROL FOR DISTRIBUTED DATA ANALYTICS 811

transactions associated with an IP address last year. Instead
of blindly rejecting access of sensitive information, the com-
pany may release such sensitive information after desensitiza-
tion. For instance, transaction amounts associated with
truncated IP addresses can be shared, as well as average trans-
action amounts associated with full IP addresses.

Purpose-based access control techniques [9], [10], [11],
[12], [13], which extend the traditional database systems to
enforce privacy policies, are still not fully applicable to the
distributed data analytics. These techniques allow the data
owner to declaratively specify data access privileges in the
database systems. However, their specifications directly
operate on relational data, and need be written by database
experts. To adhere to privacy laws and policies, privacy
specifications are more expected to be handled by legal
experts [14], who have little background in databases, and
the specification language is thus necessarily at an abstract
level to hide the details of data models. Such abstraction also
benefits organizations by allowing specification reuse as per-
sonal-related data concepts are often shared in spite of vari-
ous data sources. Furthermore, the semi-structured complex
data types, e.g., struct, array and map, supported by distrib-
uted data analytics systems further complicate the policy
enforcement process.

Moreover, all previous works in access control techni-
ques [7], [8], [11], [12], [13] consider information being inde-
pendent of each other, ie., accessing multiple pieces of
information together is equivalent to accessing each piece
separately. However, this is not the case for data analytics
because of the association among information. For example,
access customer’s address and health condition separately
may be acceptable, while access them together will cause
severe privacy breach since it directly leaks health condition
for each customer.

The data usage specification alone does not guarantee com-
pliance unless it can be automatically enforced. As the first
step towards enforcement, the gap between the abstract con-
cepts in the specification and the underlying data (relational
data in this paper) should be filled through a data labeling pro-
cess. For the performance consideration, we consider column-
level labeling so that queries can be statically checked with
little performance overhead. This is important for today’s
distributed big data systems, which are often targeting at
large-scale and long running data analytics queries. Never-
theless, data labeling is non-trivial for two issues. Sometimes
the proper meanings of some columns cannot be determined
statically, but rather depend on how the table is accessed with
other tables. For example, the Address table may contain both
customer addresses and store addresses, and such ambiguity
can only be resolved when the query is present. Moreover,
the complex data types as mentioned above further compli-
cate the data labeling process. But once the data is properly
labeled, the privacy specification can be enforced against sub-
mitted queries with program analysis techniques.

Putting things together, we present PSpec-SQL, a distrib-
uted data analytics system which automatically enforces
data-usage compliance. PSpec-SQL is built upon Spark-SQL,’
and provides a simple and high-level specification language
PSpec for the data owner to specify data usage restrictions. At

1. https:/ /spark.apache.org/sql/

runtime, each submitted query is checked to ensure only
specification-compliant queries are executed.

Contributions. Our main contributions in this paper are
summarized as follows:

e We introduce PSpec, a high-level data usage specifi-
cation language for distributed data analytics sys-
tems, with explicit support for data association and
desensitization.

e To link the PSpec concepts with the underlying data,
we provide comprehensive support for labeling rela-
tional data.

e We present the checking algorithm for SQL queries
with information flow analysis techniques.

e Finally, to evaluate our system, we carried out a case
study on three industry standard benchmarks [15].
The results show the usability and practicability of
our system with negligible overhead over query
execution.

A preliminary discussion of the PSpec language was
included in a conference paper [16] by the same authors.
Compared to [16], this paper makes the following new contri-
butions. First, [16] was focused on the PSpec language only,
while this paper presents a PSpec-based distributed data ana-
lytics system that automatically enforces privacy compliance
against SQL queries. Among the four contributions summa-
rized in the above paragraph, the second and third ones are
completely new compared to [16]. Second, even for the PSpec
language, it is only sketched at a very high level in [16]. In
contrast, this paper gives a full description of PSpec, includ-
ing its formal syntax and semantics.

The rest of the paper is organized as follows. Section 2
presents an overview of our system. Sections 3, 4, and 5
introduce the details of the PSpec language, data labeling,
and the privacy checking algorithm respectively. Section 6
reports our implementation and evaluation. Section 7 fur-
ther discusses some possible extensions of our system and
Section 8 briefly reviews the related works. Finally, Section 9
concludes this paper.

2 SYSTEM OVERVIEW

In this section, we discuss a motivating example and pres-
ent an overview of our system.

2.1 Motivating Example

As a motivating and running example, consider a retail
company that owns customer and sales data. The data
schema is shown in Fig. 1, where the primary keys are noted
with parentheses and the foreign key references are repre-
sented by arrows. Each table is briefly explained as follows.

e Customer: stores customers’ personal information,
and customer addresses are stored in the Address
table.

e Store_Sales: stores sales information, and refers to the
Customer, Store, and Item tables.

Item: stores items information.
Store: contains stores information, and store addresses
are stored in the Address table.

e Address: stores the addresses for customers and stores.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

https://spark.apache.org/sql/

812 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

ltem
i_id (PK)
i_name
i_brand
i_price

Store

s_id (PK)
s_name
s_open
s_addr_id

Customer
c_id (PK)
¢_name
c_gender
c_phone
c_addr_id

Store_Sales
ss_id (PK)
i_id (PK)
ss_customer_id
ss_store_id
ss_amount
Ss_price

Address
a_id (PK)
a_state
a_city
a_street
a_zip

Fig. 1. Example schema.

With the business data at hand, the company lets data ana-
lysts to query the data to perform data analysis. However, one
major concern of the retail company is that the customer data
(the Customer and Address tables) may be improperly used by
the data analyst. For example, the malicious data analyst may
query all customer names with living addresses and sell them
to other companies, which directly violates related privacy
laws and causes severe privacy breaches. Thus, to ensure the
data are properly used, the legal team in the company enacts
some privacy-related data use policies, which are expected to
be automatically enforced by data analytics systems.

2.2 PSpec-SQL Overview
The scenario considered in this paper mainly involves the
following logical participants:

e The data owner, e.g., the retail company, who owns
the business data.
e The data analyst, who queries the business data to
perform data analysis.
e The data analytics system, which manages the busi-
ness data and allows the analyst to submit queries.
Fig. 2 depicts an architecture overview of our data analyt-
ics system, i.e., PSpec-SQL. PSpec-SQL is built upon Spark-
SQL, and contains several new modules, including the PSpec
parser, label manager and policy checker. The PSpec parser
parses the PSpec policy defined by the data owner, and the
label manager manages a set of labels which connect the
abstract data concepts in PSpec with the relational data. With
the PSpec policy and the labeled data set, the policy checker
checks each submitted query during query processing phase
to ensure the specification compliance of submitted queries.
We further elaborate the work flow of our system with the
motivating example. As mentioned before, to ensure the data
are properly used, the legal team of the retail company may
have enacted several data use policies according to the
related policy and laws. Typical policies include “the direct
output of the customer name is forbidden”, “only the aggre-
gated sales price is allowed when outputted with personal infor-
mation together” and “the use of the customer living state, city,
and street together is forbidden”. The data owner may also
adjust the data use requirements based on the needs of the
data analysis tasks. With our PSpec language, these policies

Data Analyst Query Output
Policy
Checker
PSpec-SQL Spark-SQL
PSpec Label
Parser Manager
PSpec
Data Owner Lpo“cy Labeled
Data

Fig. 2. System overview.

can be easily encoded into the enforceable PSpec policies, as
shown in Section 3

Since PSpec only contains abstract data concepts, such as
the customer name and sales price, the company then needs to
label the relational data in Fig. 1 with the corresponding
data concepts. For example, the name column in the Cus-
tomer table is labeled with the customer name, while the
ss_price column in the Store_Sales table is labeled with the
sales price. Note that data labeling only happens at schema
level, which will not incur too much human effort.

Finally, with the PSpec policy and the labeled data set, the
policy checker performs information flow analysis on submit-
ted queries to detect possible violations. For example, the fol-
lowing query is stopped since it outputs the state, city, and
street together, which directly violates the third rule above.

SELECT state, city, street, avg(ss_price)
FROM Customer JOIN Store_SalesONc_id =
ss_customer_id

JOIN Address ONc_addr_id=a_id
GROUP BY state, city, street

Note that our system requires no extra effort from the data
analyst. To perform data analysis, the data analyst only needs
to write queries conforming to the data use policies as usual.

3 SPECIFICATION LANGUAGE

In this section, we present our specification language PSpec.
As mentioned, since PSpec targets at legal experts, who may
have little background in databases, it is thus designed as a
high-level language based on abstract concepts. Moreover,
PSpec is designed for specifying data use restrictions in the
distributed data analytics systems. Most of these systems pro-
vide a SQL-like query language, which allows the user to
apply a sequence of transformations to produce the final
results. The PSpec rules thus specify restrictions on these data
accesses and transformations in order for privacy protection.

In the remainder of this section, we first present the lan-
guage syntax as well as the design choices, then introduce
the formal semantics.

3.1 PSpec Syntax
Since PSpec is based on abstract concepts, we separate
PSpec into the vocabulary part and policy part as in EPAL [7].

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

LUO ET AL.: PSPEC-SQL: ENABLING FINE-GRAINED CONTROL FOR DISTRIBUTED DATA ANALYTICS 813

Analyst

Report Analyst Marketing Analyst Advertise Analyst

(a) Example User Hierarchy

Fig. 3. Example category hierarchies.

Briefly, the vocabulary part defines abstract concepts while
the policy part defines a set of the PSpec rules.

3.1.1 Vocabulary

In the vocabulary part, the data owner defines a set of
user categories and data categories. A user category rep-
resents a role of the analyst. A data category represents
a privacy-related data concept. Both user and data cate-
gories are hierarchical. In a category hierarchy, a parent
category is the generalization of its child categories; a
child category is a specialization of its parent category.
When a parent category is referred, all its descendants
are also referred.

Fig. 3 shows category hierarchies for the retail company.
The top-level user category is Analyst, which represents all
data analysts. Analyst is divided into Report Analyst, Market-
ing Analyst, and Advertise Analyst based on the tasks
assigned to them. The data categories are classified as Key
Attribute, Quasi Identifier, and Sensitive Attribute. Key Attri-
bute denotes the attributes that can uniquely identify an
individual, such as Name and Phone etc. Quasi Identifier rep-
resents the attributes that may locate individuals by associa-
tion, such as the combination of Birth, Zip, and Gender [2].
Finally, Sensitive Attribute carries sensitive personal infor-
mation, such as customer sales records.

The data owner should also identify and specify all sup-
ported desensitization operations for data categories. Infor-
mally, desensitize operations can be used to make sensitive
data categories ready for access. For example, the desensi-
tize operation for Sale_Price can be an aggregate operation,
such as Min, Max, and Avg etc., while for Zip it can be the
truncate operation. Techniques from data anonymization [2]
and differential privacy [5], [6] can also be employed to real-
ize the desensitization operation. A data category automati-
cally inherits its ancestors” desensitize operations.

3.1.2 Policy

Before introducing details, we discuss data access issues per-
taining to data analytics. In data analytics, accessing multiple
pieces of information together may not be equivalent to

Rule ::= User-Ref, Data-Assoc =>

(‘forbid’ | Restrictionj,..., Restriction,,)
User-Ref = <user> (‘exclude’ <user>+)?
Data-Assoc ::= ‘[’ Data-Refy,-::,Data-Ref, ‘]’
Data-Ref = Action <data> (‘exclude’ <data>+)?
Action = ‘access’ | ‘projection’ | ‘condition’
Restriction::= ‘[’ Desensitizej,:---,Desensitize, ‘]’
Desensitize::= ‘{’ (<operation>;,---,<operation>y)?‘}’

Fig. 4. PSpec rule grammar.

Key Quasi Sensitive
Attribute Identifier Attribute

e /N l

Name Phone Address Gender Sale_Price Sale_ltem

State City Street Zip
(b) Example Data Hierarchy

accessing each piece separately because of association. For
example, accessing a customer’s address and salary sepa-
rately may be acceptable. Yet accessing them together causes
a severe privacy breach. Instead of forbidding accessing any
sensitive information, desensitization is useful to balance
between privacy and utility in data analytics. For instance,
full IP addresses may locate individuals, and hence are con-
sidered harmful; truncated IP addresses may be acceptable
and useful to data analysis.

The data owner defines a set of PSpec rules to regulate data
access. Informally, each rule states under what restrictions
can a user category access certain data categories together. In
order to describe intricate data usage specifications, PSpec
provides explicit support for data association and desensiti-
zation. We require a user category to satisfy all the applicable
rules. The reason is that usually only a part of the business
data is related to customers’ privacy. This allows the data
owner to focus on privacy-related data.

The rule grammar of PSpec is shown in Fig. 4. Each PSpec
rule contains a scope part and a restriction part (separated by
=>). The scope part is defined by User-Ref and Data-
Assoc (short for Data Association). User-Ref refers a
user category (< user >) to specify applicable user catego-
ries. When a category is referred, all its descendants are also
referred except those excluded explicitly. Data-Assoc
specifies applicable association of data categories by a
sequence of Data-Refs. Each Data-Ref refers a data cate-
gory (< data>) with an action. An action specifies how a
data category is accessed. Two types of actions are distin-
guished in our system since they have different privacy
implications. The projection action means that the data
category is output by a query, and the condition action
denotes that the data category is used in the control flow of a
query. The actions also form a hierarchy where access is
the parent of projection and condition (see Fig. 5).
Note that from the traditional information flow point of
view, even the condition action may cause information leak-
age. We intentionally separate projection from condi-
tion since the former has a stronger implication and let the
user to balance the utility and privacy based on their needs.

access

/N

projection condition

Fig. 5. Action hierarchy.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

814 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

TABLE 1

Summary of Notations
Notation Description
Uyser the universal set of user categories
U data the universal set of data categories
Uyt the universal set of actions
U a user category
d a data category
a an action
(d,a) a data access
Uda the universal set of data accesses
T an associated data access
Uy, the set of all associated data accesses
Ugp the universal set of desensitize operations
8 a desensitize operation
8y the empty desensitize operation

a set of desensitize operations

a query

a data leakage pair

the number of data leakages in q
a PSpec rule

a rule restriction

M F R
&
S
G
(=2}
&

For Data-Assoc, data categories referred in each Data-
Ref must be disjoint, i.e., no referred data category overlaps
with each other.

A rule can forbid the query or specify desensitize require-
ments by restrictions. A restriction is a sequence of Desen-
sitizes with the same length as the data association of the
rule. Each Desensitize specifies a set of admissible
desensitize operations (< operation >), and requires the
corresponding data category in the data association be
desensitized with one of them () denotes no desensitization
required). The corresponding data category must support
the specified desensitize operations as defined in the vocab-
ulary. A query must satisfy one of these restrictions in an
applicable rule. Thus, the restriction part is essentially a dis-
junction of restrictions, while each restriction is a conjunc-
tion of restricted data categories, which makes PSpec
expressive enough to specify complex policies.

Consider the example rules in Section 2.2 again. For sim-
plicity, we assume all rules are applicable to Analyst. First,
the company forbids the analyst access any customer’s
name, which can be formalized as follows:

r1:Analyst, [access Name] =>forbid

Second, the company requires the sale price be aggre-
gated when output with personal information together.

7, :Analyst, [projection All exclude
Sensitive Attribute,
projectionSale_Price] =>[{}, {avg,max,min, sum}]

In 75, we define a data association of length two. The first
data access refers to the projection on all but sensitive data
categories. The second data access refers to the projection
on sales price. Rule r; further requires Sale_Price be aggre-
gated by one of the avg, max, min, or sum operations. Note
that 7, refers to data association and cannot be specified by
EPAL [7] and XACML [8].

Finally, the company forbids the access of state, city, and
street together.

r3:Analyst, [access State, access City,
access Street]=>forbid

Note that 3 only forbids access to them together. One
can access any one or two of them freely. Again, r3 cannot
be specified by the existing access control languages [7], [8].

The reader may have already noticed that PSpec does not
model access purpose directly, since it is difficult for data ana-
lytics systems to automatically verify the claimed purpose.
For simplicity, we assume each data analyst is assigned a
proper user category by the system administrator based on
her tasks and purposes. However, it is straightforward to
extend PSpec with other language elements like purpose and
obligation. This issue is further discussed in Section 7. Also
note that a data category is considered desensitized as long
as one of the specified desensitize operations is performed.
We do not support a sequence of desensitize operations
since it complicates both the data owner for writing the
PSpec rules and the data analyst for writing proper queries.
For this case, the data owner can simply define a new opera-
tion that combines all necessary operations inside.

3.2 Formal Semantics

After introducing the syntax of PSpec, now we discuss its
formal semantics. Recall that PSpec specifies restrictions on
data access, thus the semantics are defined against queries.
In the following, we first introduce some notions, and then
discuss the semantics of the query and the PSpec policy
respectively. All notations are summarized in Table 1.

Let User, Ugate and U, be the universal set of all user cate-
gories, data categories and actions, respectively. We use
U € Uyser, d € Uggre, and a € U,y to denote a user category,
data category, and action, respectively. Especially, we denote
the pair (d, a) a data access. Let Uy, = U oy X Uge be the set of
all data accesses with respect to U 441, and U,. An associated
data access T of size n is an n-tuple T = (11, 79, .. ., 7,,), where
7, € Uy, for 1 < i <n. Denote U/}, the set of all associated
data accesses of length n. Given two data access tuples T and
7, we say T is included in T (written T < 7') if all data accesses
contained in T are also contained in 7. Informally, if we treat
both7and 7 asaset, T < T just means T is a subset of 7'.

Let U,, be the universal set of all available desensitize oper-
ations. We use A C U,, to denote a set of desensitize opera-
tions, and 6 € U,, a desensitize operation. Specifically, denote
8y € U,, the empty desensitize operation, representing the cor-
responding data category can be directly accessed.

From the information flow point of view [17], [18], the
semantics of a query ¢ is defined upon a set of data leakages.
A data leakage is a pair ((d, a),§), where (d, a) is a data access
and § a desensitize operation. A data leakage ((d,a),d)
means that the data d is leaked through action channel a
after the desensitize operation 8. Let |¢| be the number of
data leakages in ¢. For ease of discussion, we extract the
data accesses and desensitize operations from the data lea-
kages of g, each as a |g|-tuple.

Definition 3.1 (Query). A query q is a triple ¢ = (q.user,
q.asso, q.des), where

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

LUO ET AL.: PSPEC-SQL: ENABLING FINE-GRAINED CONTROL FOR DISTRIBUTED DATA ANALYTICS 815

o q.user € Uy, is the user who submits q,

o gasso€ U!ﬂ is a tuple of data accesses, and

o qdes=(61,65,...,8)y) is the desensitize operations
inq.

To avoid semantic inconsistency, we assume any data
category occurring in a query is a leaf node in the data hier-
archy. The reason is that a data category is restricted often
implies its ancestors are also restricted. For example, Zip
should be truncated implies Address should also be trun-
cated. However, this could lead to semantic inconsistency
since the truncate operation may not be supported by
Address. To handle this, we require a query only access leaf
data categories, but this will not be a limitation in practice
since one can simply label one piece of data with multiple
data categories (see Section 4).

For example, consider Report Analyst submits a query ¢,
which projects State, City, and aggregated Sale_Price. Obvi-
ously, |¢1| = 3, and

q1.user = Report Analyst,
q1.asso = ((State, projection), (City, projection),
(Sale_Price, projection)),
q1.des = (8, 8y, avg).

Note that §j is used if one wants to access data without any
desensitization.

Since a PSpec policy contains a set of PSpec rules, we first
introduce the semantics of a PSpec rule. Note that the as-
sociated data accesses referred by a rule r have the same
size, denoted as |r|. Given a rule r, we use r.User C Uy,
and r.Asso C Ugl to denote the set of user categories and the
set of associated data accesses applicable to r, respectively.
In the grammar of Fig. 4, r.User is specified by User-Ref. It
corresponds to the descendants of the specified user cate-
gory minus the descendants of any of the excluded user cat-
egories. r.Asso is specified by Data-Assoc in the grammar.
Let r.Asso; be the set of data accesses specified by the ith
Data-Ref of Data-Assoc, which is obtained similarly as
r.User, r.Asso is the Cartisian product of r.Asso; for
1<i<n.

Given an associated data access T = ({dy, a1), (d2, as), ...,
(d,, a,)) of size n, a restriction £ is an n-tuple (A1, Ay, ..., A,),
where A; C U,, specifies the set of admissible desensitize
operations. An operation in A; must be taken to protect d;
against a,. Given a rule r, we use r.Res to denote the set of
restrictions specified in 7. Each restriction ¢; € r.Res is speci-
fied by Restriction,. in the grammar.

Definition 3.2 (Rule). A rule r is a triple r = (r.User, r.Asso,
r.Res), where
o r.User C U, is the set of user categories,
o 71.AssoC IU'CZ‘I is the set of associated data accesses, and

o r.Res={&,&,...,E,} is the set of restrictions.
Especially, r.Res = () if r is a forbidden rule.

For example, consider the following rule:

ry : Report Analyst, [projection Address, projec-
tion Sale_Price] => [{}, {sum,avg,min, max}]

Obviously, |r4| = 2, and

ry.User = {Report Analyst}

ry.Asso = {((Address, projection), (Sale_Price, projection)),
State, projection), (Sale_Price, projection)),
City, projection), (Sale_Price, projection)),

(
(«
((Street, projection), (Sale_Price, projection)),
((Zip, projection), (Sale_Price, projection))}

(

ry.Res ={(U,p, { sum, avg, min, mazx})}.

Note that for ease of discussion, Uy, is used if there is no
desensitize requirement, i.e.,, Restriction; in the gram-
mar contains no desensitize operation.

Definition 3.3. A rule r is applicable to a query ¢ (or equiva-
lently, q triggers r) if

e quser € r.User, and
o there exists at least one associated data access T in
r.Asso, such that T < q.asso.

The first condition in above definition performs user scope
check, and the second condition performs the scope check of
associated data access. The rule is applicable to the query
only if both checks are passed. Moreover, if there exists an T
in r.Asso such that the second condition holds, we further
define g.des|z as the projection of g.des to T, obtained by
removing g.des[i] (the ith element of g.des) if g.assoli] (the ith
element of g.asso) does not occur in 7 for 1 < i < |g|. The size
of ¢.des|- equals to |r|. Note that there may be more than one T
satisfying the second condition. With different 7, the set
g.des|; may be different. We thus define

gdes|, = {g¢des;|T € r.AssoandT =< g¢asso}.

Definition 3.4. A n-tuple of desensitize operations § = (61,
8, ...,8,)satisfies a restriction € = (A1, A, ..., A,) if 8 € A,
forl1 <i<mn.

Definition 3.5 (Rule Satisfaction). A query g satisfies a rule
r iff either r is not applicable to q or for any se q.des|,, there
exists at least one restriction £ € r.Res, such that § satisfies &.

Intuitively, a query satisfies a triggered rule if all data
categories accessed by the query are properly desensitized.
Consider the rule r4 and the query ¢; in this subsection. 74 is
applicable to ¢; since ¢;.user € ry.User and two former asso-
ciated data accesses in r;.Asso are included in ¢.asso.
Hence, gi.des|,, = {(d,avg)}. Since (§y,avg) satisfies the
restriction in r4.Res, r4 is satisfied by ¢; (Definition 3.5).

Definition 3.6 (Policy Satisfaction). A query q satisfies a
PSpec policy iff q satisfies all rules in the policy.

4 DATA LABELING

After introducing the specification language PSpec, we shall
then discuss how to enforce the PSpec policy automatically.
Since the PSpec rules are defined upon abstract data catego-
ries, the data owner should first label her data with proper
data categories to enable policy enforcement. Currently, we
support data labeling on column level so that queries can be
statically checked with little performance overhead. Thus,

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

816 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

the data owner should label data columns with proper data
categories based on column semantics. Labeling one column
with multiple data categories is also supported if the column
corresponds to multiple data categories. However, recall
from Section 3.2, columns can only be labeled with leaf data
categories.

Besides labeling columns, the data owner should also pro-
vide implementations of the desensitize operations specified
in the vocabulary as user-defined functions (UDFs) and regis-
ter them into our system. The data owner may optionally pro-
vide multiple implementations for the same desensitize
operation for different columns. For example, consider the
truncate operation for the IP category. Suppose IP is stored as
dot separated strings in column IP1, while integer in column
IP2. Thus, the data owner can provide UDFs truncatel and
truncate2 for the truncate operation for columns IP1 and IP2
respectively to keep UDFs simple.

As we can see now, data labeling is a straightforward
process except two issues, which are discussed below.

4.1 Conditional Labeling

One problem with data labeling is that the proper data cate-
gories for some columns cannot be determined statically, but
rather depend on what table the current table is joined with.
Consider the tables in Fig. 1. The data stored in the Address
table could be either the customer address or store address
since the Customer table and the Store table both have a foreign
key referring to Address. Thus, the actual data category for the
Address table depend on what table it is joined with, which
can only be determined when the query is present.

This phenomenon is common for the fact and dimension
tables in data warehouse systems. To handle this, we
support conditional labeling, i.e., a column is labeled with
certain data category based on a join condition. A join condi-
tion specifies the table is joined with what table on what
column(s). For the previous example, the data owner can
use conditional labeling to label the zip column as follows:

LABEL Address.zip WITH Zip WHEN JOIN
Address.a_id=Customer.c_addr_id

This states that the zip column of the Address table is
labeled with the Zip category only if this table is joined with
the Customer table on a_id = c_addr_id in a query. In other
cases, for example, the Address table is accessed without join-
ing with the Customer table, this zip column will not be labeled
with the Zip category. The actual data categories for these
conditionally labeled columns are determined during the
query checking phase, which will be discussed in Section 5.2.

4.2 Complex Data Types
In the previous discussion, we implicitly assume the col-
umn is the basic unit for data labeling. However, to handle
semi-structured data, distributed data analytics systems
such as Spark-SQL also support complex data types includ-
ing array, struct, and map, which can be nested arbitrarily.
When labeling columns with complex data types, we
treat each sub type separately. The basic idea is as follows:

e array: array items can be labeled separately based on
array indices.

e struct: for struct, each field is labeled separately since
fields usually have different semantics.
e map: for map, currently we support labeling values
for predefined keys.
Note that labeling on these columns should also be
recursive since the types can be arbitrarily nested.
As a concrete example, consider the following column
c_customer with struct type which stores customer
information:

c_customer: struct{
c_name: string,
c_gender: string,
c_address: struct{
c_state: string,
c_city: string,
c_zip: string
1,
c_contact: map[string, string]

}

c_customer is a struct column which contains primitive col-
umns (c_name, c_gender), a nested struct column c_address for
storing the customer address information, and a map column
c_contact for storing the contact information with pre-defined
keys such as “phone” and ‘fax’. To label column c_customer,
the user can label each sub column separately. For example,
c_customer.c_name can be labeled with category Name, while
c_customer.c_address.c_state, c_customer.c_address.c_city, and
c_customer.c_address.c_zip, can be labeled with categories
State, City, and Zip respectively. Similarly, c_customer.c_
contact[’phone’] can be labeled with category Phone.

Interestingly, even some columns with primitive types
may have composite semantics. For example, a birth column
with the Date type may contain all information of categories
birth_year, birth_month, and birth_day, which further can be
extracted with UDFs getYear, getMonth, and getDay respec-
tively. To enable fine-grained control on composite columns,
we treat them similarly as complex types. Specifically, the
data owner can label each extract operation (UDFs for extract-
ing information) on these columns separately. For example,
the extract operation getYear on the birth column can be
labeled as the birth_year category, while getMonth on the birth
column as the birth_month category.

At last, we discuss a bit more on the difference between
desensitize operations and extract operations. The incentives
of both operations are quite similar, i.e., to obtain partial
information from the input. However, the key difference is
that desensitization is irreversible, while it is not the case for
extraction. For example, one can easily restore full birth infor-
mation by calling getYear, getMonth, and getDay on the birth
column in a same query. Thus, these operations should
be treated as extract operations rather than desensitize
operations.

5 PoLicY ENFORCEMENT

With the PSpec policy and the labeled data set, we now dis-
cuss the policy enforcement process against data analytics
queries written in SQL-like languages. Most existing distrib-
uted data analytics systems share a similar workflow of query
execution. The submitted query is first parsed and analyzed

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

LUO ET AL.: PSPEC-SQL: ENABLING FINE-GRAINED CONTROL FOR DISTRIBUTED DATA ANALYTICS 817

Aggregate

group by: a_state, a_city

Filter
c_gender=F
Join
c_addr_id = a_id
X . Join Address
ss_customer_id=c_id
Store_Sales Customer

(a) Example Logical Plan

Fig. 6. Example query.

in the master node, e.g., the Driver in Spark-SQL, which
is then compiled into a distributed job. Finally, a set of
worker nodes concurrently executes the compiled distributed
job on partitioned data to transform data and produce final
results.

Since we check queries statically, the queries are checked
by our policy checker before being compiled into distributed
jobs in the master node. The basic idea is to analyze how each
data category flows (through what desensitize operation) in a
query. To achieve this, we first construct attribute lineage
trees to represent the attribute flow, which is then used to
extract the data category flow. Finally, the data category flow
is checked against the PSpec policy according to the seman-
tics in Section 3.2. Here we assume readers are familiar with
query processing in relational database systems, and the ref-
erence material can be found in [19]. For ease of discussion,
we assume queries have been parsed and optimized as opti-
mized query plans by the query processor.

5.1 Lineage Tree Construction
In the following, we use the term stored attributes to refer to the
attributes that originate from tables, i.e., columns. Since data
categories and desensitize operations are essentially stored
attributes and UDFs respectively, we first construct attribute
lineage trees to track how each stored attribute flows in a
query. The leaf nodes of a lineage tree must be stored attrib-
utes, while the non-leaf nodes are transformations applied to
the children.

Consider the following query that tries to find out the aver-
age sales price for female customers in each state and city:

SELECT concat (a_state, a_city), AVG(ss_price)
FROM Store_Sales JOIN Customer ON ss_custo-
mer_id=c_id

JOIN Address ONc_addr_id=a_id
WHERE c_gender = 'F’
GROUP BY a_state, a_city

Fig. 6a shows the logical plan for this query generated by
Spark-SQL. From the logical plan, we construct the corre-
sponding lineage trees for attributes used in projection and
condition as shown in Fig. 6b and 6¢ respectively. Since stored
attributes are directly used in conditions, the lineage trees in
Fig. 6¢c only contain leaf nodes. With lineage trees, we can

concat(a_state, a_city), AVG(ss_price)

AVG concat

ss_price a_city

a_state

(b) Lineage Trees for Projections

Ss_customer
c_gender -
_id
c_addr_id a_id

(c) Lineage Trees for Conditions

clearly see how stored attributes are used in the query. For
example, ss_price is projected after the AVG function.

Now we discuss how to construct attribute lineage trees
from a query plan. Recall that in our system the source data
is managed by data owners while analysts are only allowed
to access the data for analysis, thus we only consider select
queries here. The basic algorithm framework is shown in
Fig. 7. Function PROPAGATE takes as input a query plan, and
returns a pair of sets which contain the lineage trees for
attributes used in projection and condition respectively.

Before the algorithm starts, we attach each plan operator
with a map projections that maps each attribute outputted
by the plan operator to a lineage tree, and use a global set
conditions to track the lineage trees for all attributes used in
conditions. Function PROPAGATE performs post-order tra-
versal over the query plan. For each plan operator, it calls
function TransFOrRM and function CoLLEcT to update
plan.projections and conditions respectively. Briefly, TRANs-
FORM calculates map projections based on the attribute
transformations in current operator, and COLLECT returns
the lineage trees for the attributes used in the predicates in
current operator.

The remaining problem is to define functions TRANSFORM
and CoLLEcT for each plan operator. By default, TRANSFORM
simply returns map projections of the child operator if the
current operator does not perform any attribute transforma-
tion, while CoLLecT simply returns) for operators that do not
contain any predicate. Example operators include Limit and
Distinct etc. While TransForM and CoLLEcT for the following
operators need special care and will be explained briefly.

e Table: TRANSFORM returns a map that maps each
stored attribute to a single node lineage tree whose
root is the stored attribute. CoLLECT works as default.

e Project: TRANSFORM returns a map that maps each attri-
bute defined by the projection list to a lineage tree
with the corresponding transformations added on top
of the lineage trees for the attributes used to define the
new attribute. CoLLECT returns the lineage trees for the
attributes used in the predicates in the If and CaseWhen
statements (if any). Both statements are supported by
SQL. Especially, an If statement is of the form: if ¢
then v; else vy, where cis a predicate, v; and v, are
two values; a CaseWhen statement is more general and

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

818 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

1: conditions < ()

2: function PROPAGATE(plan)

3: for child in plan.children do
PROPAGATE(child)

4

5: plan.projections < TRANSFORM(plan)

6 conditions < conditions U COLLECT(plan)
7 return (plan.projections.values, conditions)

Fig. 7. Algorithm for computing lineage trees.

needs to evaluate a set of predicates. When resolving
predicates, CoLLECT should also add the corresponding
transformations on top of the existing lineage trees.

e Filter: TransFORM works as default. COLLECT returns
the lineage trees by resolving the predicates in the
filter condition.

e Join: TRANSFORM returns the union of map projections
of the left and right operators. CoLLECT returns the
lineage trees by resolving the predicates in the join
condition.

o Aggregate: Aggregate is processed similarly as Project,
and aggregate functions like COUNT, SUM, AVG,
MIN and MAX are simply treated as transformations.

e Sort: TransFORM works as default. COLLECT returns
the lineage trees for the attributes used in the sort
expression.

e Binary operators: For binary operators Union/
Intersect/Except, the output attributes actually com-
bine the corresponding attributes in the left and right
operators. Thus, TRANSFORM returns a map that maps
each attribute to a lineage tree that combines the line-
age trees for the corresponding attributes in the left
and right operators with a dummy transformation.
CorLect works as default.

For example, consider the logical plan in Fig. 6a. For table
operators Store_Sales, Customer, and Address, conditions is
always (), while projections of each operator is initialized as
discussed above. For Join on Store_Sales and Customer,
projections is the union of projections of Store_Sales and
Customer, while the lineage trees for attributes ss_customer_id
and c_id are added into conditions. Another Join is processed
similarly. Then for Filter, projections is inherited from its
child, while the lineage tree for attribute c_gender is added
into conditions. Finally for Aggregate, the aggregate expres-
sion defines two attributes, which are concat on a_state and
a_city, and AVG on ss_price. Thus, projections maps the
defined attributes to the lineage trees in Fig. 6b, and
conditions contains the lineage trees in Fig. 6¢.

Note that for the CaseWhen and If statements in the Project
and Aggregate operators, the lineage trees for the attributes
used in the predicates should be added into conditions only
if the defined attributes are projected or used in the subse-
quent operators. However, for simplicity, we assume the
logical plan has been optimized and unused attributes have
been removed. Otherwise, one needs to track conditions for
each attribute separately as for projections.

5.2 Flow Extraction

Since lineage trees are only intermediate structures repre-
senting attribute flows, we should then extract data cate-
gory flows for policy checking. To achieve this, we need to

a_id#1 c_addr_id
a_id#2 s_addr_id
c_gender '™

Fig. 8. Example equality graph.

determine the data category for each stored attribute and
map UDFs to corresponding desensitize operations. It is
straightforward to determine the data categories for stati-
cally labeled attributes, while the difficulty here is to deter-
mine the data categories for attributes with conditional
labels and complex data types as discussed in Section 4.

Resolve Conditional Labels. To resolve the data categories
for conditionally labeled attributes, we need to determine
which join condition is satisfied by the query. However, we
cannot simply check the predicates in the Join operator,
since the query may filter join results in the Filter operator
or even the CaseWhen and If statements. To handle this, we
track all equality predicates in the query and build an undi-
rected equality graph with nodes being stored attributes or
constants and edges indicating two nodes are equal. Then a
join condition is satisfied by a query if the join columns are
reachable from one to another in the equality graph.

When tracking the equality predicates in a query, two
issues need special care here. First, since a table may be refer-
enced multiple times in a query, we should differentiate the
stored attributes from multiple references of a same table. Sec-
ond, when resolving the equality predicates, approximation is
necessary to ensure safety. The principle is that for any equal-
ity predicate, we consider the stored attributes or constants
appearing in the left and right part equal pair-wisely. Con-
sider predicate a + b = ¢, we need to safely assume botha = ¢
and b = ¢ hold since otherwise the analyst may let b evaluate
to 0 at runtime to bypass the mechanism. However, the appr-
oximation rarely causes false positives for normal queries.

We further elaborate the process with an example. Con-
sider the following query that finds addresses for both male
customers and stores:

(SELECT a_state, a_city, a_street

FROM Address JOIN Customer ONa_id = c_addr_id
WHERE c_gender = 'M’)

INTERSECT

(SELECT a_state, a_city, a_street

FROM Address JOIN Store

WHERE a_id =s_addr_id)

Suppose the columns in the Address table are labeled with the
State, City, and Street categories only when the Address table is
joined with the Customer table ona_id = c¢_addr_id. We assume
stored attributes are equipped with unique ids based on
table references. Thus, the stored attributes from the Address
table are differentiated by {a_id#1, a_state#l, a_city#l,
a_street#1} and {a_id#2, a_state#2, a_city#2,a_street#2} #N indi-
cates attribute id). Fig. 8 then shows the equality graph after
analyzing the equality predicates in the query. Finally, after

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

LUO ET AL.: PSPEC-SQL: ENABLING FINE-GRAINED CONTROL FOR DISTRIBUTED DATA ANALYTICS 819

performing reachability analysis on the equality graph, we
realize that the join condition for a_state#1, a_city#1, and
a_street#] is satisfied since a_id#1 = c_addr_id, but is not satis-
fied for a_state#2, a_city#2, and a_street#2.

Resolve Complex Data Types. The basic principle for resolv-
ing the data categories for attributes with complex data
types is that if a type is directly accessed with no subtype
selector, then the data categories for all its subtypes are con-
sidered accessed. Consider the example struct column c_cus-
tomer in Section 4.2. If a query accesses c_customer.c_name,
only category Name is considered accessed. However, if a
query accesses c_customer.c_address, then all categories corre-
sponding to this column, i.e., State, City and Address are con-
sidered accessed. Similarly, if column c_customer is directly
accessed, then all categories corresponding to the subtypes
of this column are considered accessed. Attributes with com-
posite semantics are treated similarly, i.e., we identify
extract operations performed on these attributes and effec-
tive data categories are determined based on identified
extract operations. To ensure safety, we consider an extract
operation is effective only if it is the direct parent of a stored
attribute in the lineage tree.

Resolve Desensitize Operations. After the data categories are
determined for stored attributes, we should further identify
the desensitize operation performed on each data category.
To do so, we first extract the transformation path for each
data category by traversing the lineage trees from leaf to root,
and then identify which desensitize operation exists in the
path. Only the first desensitize operation is effective since we
assume a data category can only be desensitized once. For
example, consider the lineage trees in Fig. 6. Since AVG is a
desensitize operation for Sale_Price, we know that Sale_Price
is projected after the AV G operation. However, State and City
are directly projected since concat is not a desensitize opera-
tion for them.

5.3 Query Checking

Recall from Section 3.2 that a query ¢ is modeled as a triple
q = (q.user, g.asso, q.des), where g.user is the user category
that submits ¢, g.asso is the associated data access, and q.des
is the desensitize operations. In our system, g.user is obtained
by assigning each data analyst with a proper user category by
the system administrator. After flow extraction, we have
already known how each data category d flows to action
channel a through what desensitize operation op, which
exactly constitutes g.asso and g.des.

With (q.user,q.asso, q.des), we can check whether the
query satisfies the policy according to the semantics dis-
cussed in Section 3.2. If any violation is detected, the query
is stopped and the violated rule is returned for the data ana-
lyst to revise the query. Otherwise, the query is proceeded
to subsequent executions. Thus, our system guarantees only
queries satisfying the PSpec policy are executed.

One advantage of our query checking algorithm is that it is
totally based on information flow analysis on the query plan
without touching the underlying data being queried. We dis-
cuss the complexity of our policy checking algorithms in the
following. The complexities of lineage tree construction and
flow extraction are omitted here, since they are both straight-
forward one-pass algorithms. While for query checking, in
the worst case, it may take O(d * n?) time to check the rule

satisfaction for a query (Definition 3.5), where n is the number
of data categories in the vocabulary, and d the length of asso-
ciated data accesses in the rule. In practice, the query check-
ing algorithm is quite efficient, since the rules rarely refer to
long associated data accesses, which makes d a small con-
stant. From our evaluation, checking complex queries can
always be finished within milliseconds, which shows it is
suitable for big data systems since it only incurs negligible
overhead over query execution. Our algorithm do not handle
multiple correlated queries, since in practice most queries are
independent and linking results from multiple queries
together will further exponentially increase the complexity of
our algorithm.

6 IMPLEMENTATION AND EVALUATION

We have implemented PSpec-SQL on top of Spark-SQL 1.5.0
with support for Hive tables.” The PSpec parser and label
manager are both implemented as standalone modules, while
the policy checker is implemented inside the query process-
ing component of Spark-SQL, i.e., the spark-catalyst module.
For PSpec, we also developed a graphical authoring tool to
facilitate data owners write the PSpec policy. The source code
of our prototype implementation is available on GitHub.?
Note that the policy checker can also be implemented as a
separate proxy over existing database systems. The main
change is to construct the lineage trees from SQL parse trees
instead of query plans.

To evaluate our prototype implementation, we carried out
a case study on several industry standard benchmarks
obtained from the Transaction Processing Performance
Council (TPC),* with the focus on usability, performance, and
practicability. Each benchmark consists of several database
tables and a number of SQL-based queries. All benchmarks
contain some customers’ privacy information. In the case
study, we focus on protecting these customers’ information
from being improperly used via our PSpec-SQL system.

In practice, a data owner may possess several databases,
and he may want to formulate a common privacy policy
over all his possessed databases. To reflect this requirement,
we conducted the case study in the following steps. First,
we sketched a vocabulary among all benchmarks, and
drafted a common PSpec policy. Second, we labeled the rel-
evant columns of tables in these benchmarks with the
proper data categories. Finally, we checked the compliance
of all queries included in these benchmarks with our PSpec
policy. The violated queries were detected and reported by
our PSpec-SQL system. The detailed process is discussed
below following a description of TPC benchmarks used in
our evaluation.

6.1 TPC Benchmarks

The Transaction Processing Performance Council is a world-
wide consortium whose goal is to define and disseminate
industry standard benchmarks for databases and transac-
tional systems [20]. Many top hardware and software ven-
dors, including Microsoft, Intel, IBM, Dell, Hewlett Packard

2. http:/ /hive.apache.org/
3. https:/ /github.com/thufv/privacy
4. http:/ /www.tpc.org/

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

http://hive.apache.org/
https://github.com/thufv/privacy
http://www.tpc.org/

820 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

All

ID Email Phone Address Gender Education Name

Country State City Street Zip F_Name L_Name B_Year /B_Month Inco@ Price

S Num S Name S_Type Suite

Fig. 9. Data hierarchy used in case study.

(HP), Cisco etc, are members of TPC. The industry members
participate in the development of TPC benchmarks.

There are currently 11 industry benchmarks actively
maintained by TPC. Many of these benchmarks are desi-
gned to measure performance (like speed, reliability etc) of
transaction processing. Since our focus is the privacy protec-
tion of data analytics, we require the benchmark contain
SQL analytics queries on some customers’ information. As a
result, three TPC benchmarks are selected, namely TPC-
DS [15], TPC-H [20], and TPCx-BB [21].

TPC-DS benchmark [15] is a general benchmark for deci-
sion support systems. TPC-DS models a national-wide retail
company, which sells goods through stores, catalogs, and
the Internet. It includes a database schema (7 fact tables and
17 dimension tables), which is organized as a snowflake
schema, and 99 queries. For customer-related information,
TPC-DS stores the customer data into the following tables:
Customer, Customer_Address, Customer_Demographics. It also
stores the items bought by customers through Sales tables.

TPC-H benchmark [20] is another benchmark for decision
support systems that allow concurrent data modifications. It
models a wholesale supplier that sells or distributes products
worldwide. TPC-H contains 8 base tables and 21 complex
SQL queries. It stores the customers’ data into the Customer
table, and the customers’ orders into the Orders table.

Finally, TPCx-BB benchmark [21] is designed for bench-
marking big data analytics systems such as Spark-SQL [3]
and Hive [4]. It models a similar national-wide retail com-
pany to that of TPC-DS benchmark. However, it emphasizes
the usage of User-Defined Functions (UDFs) to perform more
complex data analysis tasks. It further stores the customer’s
click streams into the Web_Clickstreams and Web_Page tables
to keep track of the online activities of customers. For the
query-side, TPCx-BB contains 30 queries with the emphasis
of complex data analysis and machine learning tasks.

TABLE 2
Supported Desensitize Operations

Data Category Supported Desensitize Operations
All count

Zip truncate

Phone substr

URL substr

Income range

Vehicle isZero

Price sum, avg, min, max

Marital

Birth Financial Sales User_Click

URL View_ltem

Vehicle

B_Day Sale_ltem

6.2 PSpec Policy

Note that some tables of these benchmarks store and use
customers’ personal information. To ensure these privacy-
related data are properly used, we made a sample PSpec
policy and the process is illustrated as follows.

6.2.1 Vocabulary

For simplicity, we assume there is only one user category,
named Analyst. Based on the customer data stored in the
three benchmarks, we sketched a hierarchy of data categories,
shown in Fig. 9. Most data categories in Fig. 9 are self-explan-
atory, and abbreviations are used when their meanings are
clear. Similar to previous work [2], [22], the customer-related
information is classified as KA (Key Attribute), QI (Quasi
Identifier), and SA (Sensitive Attribute), which are further
divided into finer-grained categories.

The supported desensitize operations for some data cate-
gories are shown in Table 2. Note that we have not identified
too many desensitize operations since the schemes of these
benchmarks are well designed and most of their columns
already have fine-grained meanings. Thus, the PSpec rules
can directly refer these fine-grained categories without desen-
sitize operations. In fact, desensitize operations will be more
required when columns have coarse-grained semantics.

6.2.2 PSpec Rules

After identifying user and data categories, we wrote some
PSpecrules to ensure that the privacy-related data is properly
used. These rules are listed in Table 3, where each rule speci-
fies a data usage restriction to the customers’ information.

The first three rules forbid the direct access of KAs, since
KAs can directly locate individuals. Among the three KAs,
the ID and Email attributes are completely forbidden to be
accessed, and the Phone attribute requires a desensitize opera-
tion. Among the many QlIs, the Street and Name attributes can
also be used to identify an individual, and are thus forbidden
to be accessed (in rules 4 to 5). Rules 6 to 8 forbid the associ-
ated access of several combinations of QIs since each of these
combinations has also a great chance to locate individuals.
Rule 9 requires a desensitize operation before the access of
Zip.In [2], a sophisticated scene was discussed, where linking
QIs with some public datasets can also locate individuals.
Rules 10 to 13 were used to avoid such kind of privacy breach.
Finally, rules 14 to 18 regulate that some sensitive attributes
must be well desensitized, when they are accessed in combi-
nation with any quasi identifier.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

LUO ET AL.: PSPEC-SQL: ENABLING FINE-GRAINED CONTROL FOR DISTRIBUTED DATA ANALYTICS 821

TABLE 3

PSpec Rules for TPC benchmarks
D Rule
1 Analyst, [access ID]=>forbid
2 Analyst, [access Email]=>forbid
3 Analyst, [access Phone]=>[substr]
4 Analyst, [projection Street]=>forbid
5 Analyst, [projection Name]=>forbid
6 Analyst, [access S_Num, access S_Name,

access Suite]=>forbid

7 Analyst, [access F_Name, access L_Name]=>forbid

8 Analyst, [access B_Day,access B_Month,
access B_Year]=>forbid

9 Analyst, [access Zip]l=>[{truncate}]

10 Analyst, [projectionBirth,projection Address,
projection Gender]=>forbid

11 Analyst, [projection Birth,projection Address,
projectionMaritall=>forbid

12 Analyst, [projection Birth,projection Address,
projection Education]=>forbid

13 Analyst, [projection Birth,projection Address,
projection Financial]=>forbid

14 Analyst, [access QI,access Vehiclel=>[{}, {isZero}]

15 Analyst, [access QI,access Incomel=>[{}, {range}]

16 Analyst, [access QI,access Price]
=>[{}, {sum, count, avg,min, max}]

17 Analyst, [access QI, projectionView_Item]
=>[{}, {count}]

18 Analyst, [access QI, projection URL]
=>[{}, {count, substr}]

The above PSpec rules were mainly specified by a junior
undergraduate student (who have received one-hour training
in PSpec, and is familiar with the TPC benchmarks). This stu-
dent succeeded in writing most of these PSpec rules in three-
hours. This illustrates the usability of the PSpec language.

It should also be noted that Table 3 may not be a complete
set of rules for protecting privacy of the benchmarks. Actu-
ally, this case study is not for privacy specification, but rather
for evaluating the PSpec language. User privacy may subject
to different regulations in different organizations and scenar-
ios. In practice, the data owner should adjust the PSpec rules
to protect user privacy based on the actual policy require-
ments and regulations.

6.2.3 Data Labeling

With the data categories, we then labeled the table columns in
these three benchmarks with proper data categories. We also
implemented desensitize operations, including truncate, range,
and isZero, as UDFs and registered them into our system.

In general, the data labeling will not incur too much effort.
Many tables of these benchmarks can be skipped in this pro-
cess, since they are irrelevant to the customers” information.
Even for tables that contain customers’ information, many of
their columns are with primitive types (for example, the Cus-
tomer table of TPC-DS), and thus can be directly labeled based
on their semantics.

However, due to our case study spanning several data-
bases, there are several complex scenes that need more care-
ful handling. First, the same information may be stored at
different granularity in different databases. For example,
TPC-H stores the customer address using a single column
named Address, while TPC-DS divides the customer address
into several parts and stores them in State, City and Street col-
umns, respectively. To address this, we simply labeled the

Address column of TPC-H with a tuple (State, City, Stree) of
data categories, reflecting the composite semantics of this col-
umn. Second, the information stored in a column maybe
multi-fold. For example, the Name column of the Nation table
in TPC-H stores the nationality information for both suppliers
and customers, but we may only concern the customers’
nationalities. To resolve this, we used conditional labeling to
label this column only when the Nation table is joined with
the Customer table. Another example is the i_current_price col-
umn of the Item table in TPC-DS. Its columns should be
labeled with the Price and Item categories only when it is
joined with the sale/return tables, since we only care about
items that customers have bought or returned.

6.3 Query Checking

There are in total 150 queries among all three benchmarks.
These queries range from reporting queries, ad hoc queries,
iterative queries to data mining queries. For example, TPC-
DS contains 99 queries, each of which corresponds to a par-
ticular business question. As we have counted, the simplest
query contains 18 lines of code (formatted) and refers only 1
table, while the most complex query contains 456 lines of
code and refers 14 tables.

Some queries contain some syntax that is not supported by
Spark-SQL, such as window functions, the WITH statement
and sub queries in the WHERE statement, we transform these
queries into their equivalences that can be processed by
Spark-SQL (the window function is an exception, which was
simply removed). The transformed results can be found in
our GitHub repository. Moreover, some queries in the TPCx-
BB benchmarks integrate Python codes to perform machine
learning-related analysis. These Python codes were simply
treated as uninterpreted UDFs.

All queries were submitted to our PSpec-SQL system to
check their compliance with the sample PSpec policy. We
measured the time cost of policy checking on each query.
All queries were efficiently checked. The shortest takes only
1 ms and the longest takes 96 ms with the average time
being 8 ms. Our query checking algorithm is totally based
on the information flow analysis without touching the
underlying data, it only incurs negligible overhead and is
thus suitable for online data analysis.

Finally, our PSpec-SQL system reported 25 policy violations,
among which 21 were caused by queries of TPC-DS. Note
that TPC-DS is a comprehensive benchmark with various
kinds of data analytics queries. Its queries 23, 24, 30, 34, 38,
46, 68,73,74,81,and 84 attempt to directly project the custom-
er’s first name and last name, thus violate rules 5 and 7 in
Table 3. Moreover, its queries 30 and 81 even attempt to proj-
ect the customer’s birth day, email, or living street in combi-
nation with the customer name, which can cause severe
privacy violations. Other violations, including queries 13, 15,
45, 48, 64, and 85 of TPC-DS, directly access Price, Income, or
Zip without desensitization as required.

For queries of TPC-H and TPCx-BB, we found only 4 viola-
tions. The reason is that queries in these two benchmarks
mainly focus on analyzing the general trend of sales and
products, without accessing the customer information in
detail. But still, queries 10 and 18 of TPC-H, queries 6 and 13
of TPCx-BB directly output customer names, and thus violate
rules 5 and 7 in Table 3. Moreover, the query 10 of TPC-H

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

822 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

also attempts to output the customer’s address and phone
information, thus violates rules 3 and 4, too. The query 6 of
TPCx-BB also attempts to output the customer’s country and
email information, thus violates rules 2 and 4, too.

Among the 25 reported violations, 4 are false positives.
These false positives all belong to TPC-DS and are all caused
by unsupported desensitize operations. For example, queries
8 and 19 of TPC-DS desensitize Zip with substr rather than the
specified truncate operation. Since substr is not a supported
desensitize operation of Zip (see Table 2), these queries were
recognized as violations by our system. Similarly, queries 34
and 74 of TPC-DS directly check whether Vehicle is greater
than zero in their conditions, but not using the specified isZero
operation. All these false positives can be easily eliminated by
simply revising the queries to use the appropriate UDFs.

7 DISCUSSION

In this section, we briefly discuss some possible extensions
of our system.

PSpec Elements. Purpose, condition, and obligation are
important concepts in privacy policies [23]. In PSpec, data
desensitization can be viewed as a special condition that
must be satisfied by queries in order to access data. For ease
of discussion and policy enforcement, we have intended to
leave out the purpose and obligation elements. However, it is
straightforward to extend the syntax and semantics of
PSpec with purposes and obligations to express data can
only be accessed for certain purposes or what should be per-
formed after a query is executed.

Record-Level Control. As records of a same table may have
different requirements, an interesting extension of our system
is to support record-level control. Here we briefly discuss the
basic idea, while postpone its implementation as a future
work. Following the idea of predicated grants [24], we can
extend the PSpec rules with an extra predicate element, which
defines a predicate over data categories to specify accessible
records. An example predicate could be “only customers
with ages greater than 18 can be accessed”. During the pri-
vacy checking phase, we first need to transform the defined
predicates into concrete predicates over database columns,
which can then be easily enforced by rewriting the filter con-
dition of a query to filter out inaccessible records.

Automatic Data Labeling. To simplify users’ effort, another
possible extension of our system is to automatically label
the relational data based on their semantics. By treating the
data hierarchy as a special schema, many previous works
on schema mapping [25], [26] can be referred for imple-
menting this automatic labeling approach. To improve pre-
cision, it is also worth considering making this approach
semi-automatic, i.e., let the user guide the labeling process
but with minimal extra effort.

8 RELATED WORKS

In this section, we discuss several related works, which fall
into the following categories.

Information Flow Analysis. Information flow analysis on
programs is originated from the security community to
check whether programs leak sensitive information [17],
[18]. This technique has been widely used in the security

community, ranging from certificating secure programs [17],
preventing security attacks [27], and detecting privacy lea-
kages in mobile applications [28]. Compared with these
works, we use information flow analysis for a different pur-
pose, i.e., checking privacy compliance of SQL queries.

Access Control Language. In the past decades, many policy
specification languages have been proposed to formalize text-
based privacy and security policies. P3P [29] is a privacy lan-
guage for formalizing website privacy policies with the focus
on how personal information is collected, shared and retained.
EPAL [7] targets at formalizing and enforcing privacy policies
within enterprises. XACML [8] is an OASIS standard access
control language, which supports user-defined attributes and
various policy/rule combining algorithms for different sce-
narios. Some of the previous works have motivated the design
of PSpec, but PSpec differs from them in several aspects. First,
PSpec is designed as a specific privacy language suitable for
data analytics systems. Second, most of the previous works
consider data elements independent of each other, which
does not hold in data analytics. PSpec provides explicitly sup-
port for associated data access to handle this.

Database Access Control. Another category of the related
works is database access control, as our work naturally
applies to traditional database systems. The sequence of
works [9], [10], [30] proposed the idea of Hippocratic data-
base. Query auditing techniques [31], [32] audit submitted
queries to detect whether sensitive information is leaked. The
works [11], [12] enforce purpose-based policies within data-
base systems. Colombo and Ferrari [13] further consider
action-aware policies, i.e., actions performed by queries on
certain categories of data. DataLawyaer [33] enforces general
data use policies encoded into SQL-like queries. Recent
works [34], [35] further enforce purpose-based policy within
NoSQL data stores, e.g., MongoDB. However, we differ from
these works in that we provide a high-level specification lan-
guage to hide the details of data models, while these works
directly operate on the concrete data models, e.g., relational
data or NoSQL data. Lacking the high-level specification lan-
guage may cause barriers for legal experts, who often have no
background in database systems.

Privacy-Preserving Systems. The last line of the related
works falls into privacy-preserving systems. PINQ [36] is a
privacy-preserving data analysis platform built on top of
LINQ and differential privacy. Airavat [37] extends MapRe-
duce [38] and integrates mandatory access control and differ-
ential privacy to provide security and privacy guarantees.
GUPT [39] enforces differential privacy for arbitrary compu-
tations with the sample and aggregate framework [40]. The
major difference is that our system aims at enforcing privacy
policies by specifying data usage restrictions, while these sys-
tems mainly rely on differential privacy. As we have already
discussed in Section 1, data usage specification is (at least cur-
rently) more practical than differential privacy for business
data sharing.

Recently, Sen et al. [14] presented a system for auditing
privacy compliance for big data systems within organiza-
tions. The proposed system is composed of two modules:
LeGaLEAsE for specifying privacy policies and Grok serving
as a data inventory. Our work differs from [14] in that we
mainly target at checking SQL queries in an online manner
and provide comprehensive support for relational data. The

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

LUO ET AL.: PSPEC-SQL: ENABLING FINE-GRAINED CONTROL FOR DISTRIBUTED DATA ANALYTICS 823

system in [14] is designed for handling general privacy-
related data use policies, i.e., store, use, and share, and can
only operate offline.

9 CONCLUSION

In this paper, we present PSpec-SQL, a distributed data ana-
lytics system that automatically enforces privacy compliance
for SQL queries. Our system offers a high-level specification
language PSpec for data owners to specify their data usage
policies, and provides comprehensive support for labeling
relational data. Finally, our system checks submitted queries
at runtime for compliance to ensure only policy-compliant
queries are executed.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant No. 61672310 and
Grant No. 61527812, the National Science and Technology
Major Project under Grant No. 2016Z2X01038101.

REFERENCES

[1] H.Kazeli, “Cloud business intelligence,” in Business Information Sys-
tems Workshops. New York, NY, USA: Springer, 2014, pp. 307-317.

[2] L.Sweeney, “k-anonymity: A model for protecting privacy,” Int. |.
Uncertainty Fuzziness Knowl.-Based Syst., vol. 10, no. 5, pp. 557-570,
2002.

[3] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark sql: Relational data processing in spark,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2015, pp. 1383-1394.

[4] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: a warehousing solution
over a map-reduce framework,” Proc. VLDB Endowment, vol. 2,
no. 2, pp. 1626-1629, 2009.

[5] C. Dwork, “Differential privacy,” in Automata, Languages and Pro-
gramming. New York, NY, USA: Springer, 2006, pp. 1-12.

[6] C. Dwork, “Differential privacy: A survey of results,” in Theory
and Applications of Models of Computation. New York, NY, USA:
Springer, 2008, pp. 1-19.

[7] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter,
“Enterprise privacy authorization language (EPAL),” IBM Res.,
vol. 30, p. 31, 2003.

[8] T. Moses, et al., “Extensible access control markup language
(xacml) version 2.0,” Oasis Standard, vol. 200502, 2005.

[9] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic data-
bases,” in Proc. 28th Int. Conf. Very Large Data Bases, 2002, pp. 143-154.

[10] R. Agrawal, P. Bird, T. Grandison, J. Kiernan, S. Logan, and
W. Rjaibi, “Extending relational database systems to automati-
cally enforce privacy policies,” in Proc. 21st Int. Conf. Data Eng.,
2005, vol. 5, pp. 1013-1022.

[11] J.-W. Byun and N. Li, “Purpose based access control for privacy
protection in relational database systems,” VLDB]., vol. 17, no. 4,
pp. 603-619, 2008.

[12] P. Colombo and E. Ferrari, “Enforcement of purpose based access
control within relational database management systems,” IEEE
Trans. Knowl. Data Eng., vol. 26, no. 11, pp. 2703-2716, Nov. 2014.

[13] P. Colombo and E. Ferrari, “Efficient enforcement of action-aware
purpose-based access control within relational database manage-
ment systems,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 8,
pp- 2134-2147, Aug. 2015.

[14] S. Sen, S. Guha, A. Datta, S. K. Rajamani, J. Tsai, and]J. M. Wing,
“Bootstrapping privacy compliance in big data systems,” in Proc.
35th IEEE Symp. Secur. Privacy, 2014, pp. 327-342.

[15] R.O.Nambiar and M. Poess, “The making of tpc-ds,” in Proc. 32nd
Int. Conf. Very Large Data Bases, 2006, pp. 1049-1058.

[16] C.Luo, F. He, D. Yan, D. Zhang, X. Zhou, and B.-Y. Wang, “Pspec:
A formal specification language for fine-grained control on dis-
tributed data analytics,” in Proc. 39th Int. Conf. Softw. Eng. Compan-
ion, 2017, pp. 300-302.

[17] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE]. Select. Areas Commun., vol. 21, no. 1, pp. 5-19,
Sep. 2003.

[18] A. Sabelfeld and D. Sands, “Dimensions and principles of declas-
sification,” in Proc. 18th IEEE Workshop Comput. Secur. Found.,
2005, pp. 255-269.

[19] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database
System Concepts, vol. 4. New York, NY, USA: McGraw-Hill,
1997.

[20] R. Nambiar, N. Wakou, F. Carman, and M. Majdalany, “Transa-
ction processing performance council (TPC): State of the council
2010,” in Proc. 2nd TPC Technol. Conf. Perform. Eval. Meas. Charac-
terization Complex Syst., 2011, pp. 1-9.

[21] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and
H.-A. Jacobsen, “Bigbench: towards an industry standard bench-
mark for big data analytics,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2013, pp. 1197-1208.

[22] A.Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam, “l-diversity: Privacy beyond k-anonymity,” ACM Trans.
Knowl. Discovery Data, vol. 1, no. 1, 2007, Art. no. 3.

[23] S. Fischer-Hiibner, IT-Security and Privacy: Design and Use of Pri-
vacy-Enhancing Security Mechanisms. Berlin, Germany: Springer-
Verlag, 2001.

[24] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine grained authori-
zation through predicated grants,” in Proc. IEEE 23rd Int. Conf.
Data Eng., 2007, pp. 1174-1183.

[25]]J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic schema
matching with cupid,” in Proc. 27th Int. Conf. Very Large Data
Bases, 2001, vol. 1, pp. 49-58.

[26] E. Rahm and P. A. Bernstein, “A survey of approaches to
automatic schema matching,” VLDB]., vol. 10, no. 4, pp. 334-350,
2001.

[27] M. G. Kang, S. McCamant, P. Poosankam, and D. Song, “Dta++:
Dynamic taint analysis with targeted control-flow propagation,”
in Proc. Netw. Distrib. Syst. Secur. Symp., 2011.

[28] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information flow tracking sys-
tem for real-time privacy monitoring on smartphones,” Commun.
ACM, vol. 57, no. 3, pp. 99-106, 2014.

[29] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall,
and J. Reagle, “The platform for privacy preferences 1.0 (p3p1. 0)
specification,” W3C Recommendation, vol. 16, 2002.

[30] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu,
and D. DeWitt, “Limiting disclosure in hippocratic databases,”
in Proc. 30th Int. Conf. Very Large Data Bases-Vol. 30, 2004,
pp- 108-119.

[31] R. Motwani, S. U. Nabar, and D. Thomas, “Auditing sql
queries,” in Proc. IEEE 24th Int. Conf. Data Eng., 2008, pp. 287-
296.

[32] R. Kaushik and R. Ramamurthy, “Efficient auditing for complex
sql queries,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2011,
pp- 697-708.

[33] P. Upadhyaya, M. Balazinska, and D. Suciu, “Automatic enforce-
ment of data use policies with datalawyer,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2015, pp. 213-225.

[34] P. Colombo and E. Ferrari, “Enhancing mongodb with purpose
based access control,” IEEE Trans. Dependable Secure Comput.,
vol. 14, no. 6, pp. 591-604, Nov./Dec. 2017.

[35] P. Colombo and E. Ferrari, “Fine-grained access control within
nosql document-oriented datastores,” Data Sci. Eng., vol. 1, no. 3,
pp- 127-138, 2016.

[36] F. D. McSherry, “Privacy integrated queries: An extensible
platform for privacy-preserving data analysis,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2009, pp. 19-30.

[37] I Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and privacy for MapReduce.” in Proc. Symp.
Networked Syst. Des. Implementation, 2010, vol. 10, pp. 297-312.

[38] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
2008.

[39]1 P.Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler, “Gupt: pri-
vacy preserving data analysis made easy,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2012, pp. 349-360.

[40] K. Nissim, S. Raskhodnikova, and A. Smith, “Smooth sensitivity
and sampling in private data analysis,” in Proc. 39th Annu. ACM
Symp. Theory Comput., 2007, pp. 75-84.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

824

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Chen Luo received the BS degree from Tongji
University, in 2013, and the MS from Tsinghua
University, in 2016. He is currently working
toward the PhD degree in the University of Cali-
fornia Irvine. His research interests include formal
methods and database systems.

Fei He received the BS degree in computer sci-
ence and technology from National University of
Defense Technology, in 2002, and the PhD
degree in computer science and technology from
Tsinghua University, in 2008. He is currently an
associate professor with the School of Software,
Tsinghua University, Beijing, China. His research
interests include formal verification and program
analysis.

Fei Peng received the BS degree from Tsinghua
University, in 2016. He is currently working
toward the master’'s degree in Columbia Univer-
sity. His research interests include formal meth-
ods and program verification.

Dong Yan received the PhD degree in computer
science and technology from Tsinghua Univer-
sity, in 2015. He worked with Intel Labs China as
a data analysis platform researcher from 2015 to
2016. He is currently a postdoc with Tsinghua
University. His research interests include distrib-
uted system, big data and large-scale machine
learning.

Dan Zhang received the PhD degree in computer
science and technology from Xian Jiaotong Uni-
versity, in 2006. He worked with Intel Labs China
as research scientist from 2006 to 2016. He is
currently an architect with UISEE Corporation.
His research interests include autonomous driv-
ing, big data, data privacy preservation, robotics,
compiler, etc.

Xin Zhou received the master's degree in
computer science from Fudan Universiy, in 2002.
He worked with Intel Lab China as a senior
researcher until 2016. He is currently the product
general manager of UISEE Corporation. His
research interests include machine learning, big
data and privacy.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 02,2021 at 04:45:42 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

