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Probabilistic models are widely deployed in various systems. To ensure their correctness, verification tech-
niques have been developed to analyze probabilistic systems. We propose the first sound and complete
learning-based compositional verification technique for probabilistic safety properties on concurrent sys-
tems where each component is an Markov decision process. Different from previous works, weighted as-
sumptions are introduced to attain completeness of our framework. Since weighted assumptions can be
implicitly represented by multiterminal binary decision diagrams (MTBDDs), we give an L∗-based learning
algorithm for MTBDDs to infer weighted assumptions. Experimental results suggest promising outlooks for
our compositional technique.
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1. INTRODUCTION

Probabilistic models are widely used to analyze and verify systems that exhibit
“quantified uncertainty,” such as security protocols, biological systems, and resilient
systems [Baier and Katoen 2008; Rutten et al. 2004]. Typical examples that can be
naturally modeled in a stochastic fashion include the message loss in an unreliable
communication channel, reactions occurring between large number of molecules, and
failure occurring in a long run of the system. Probabilistic models are also used to
model and analyze randomized algorithms, which are expected to solve many hard
problems more efficiently than any classical algorithms [Motwani and Raghavan
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1995]. Indeed, the IEEE 802.11 standard has employed randomized methods to avoid
the transmission collision in wireless networks [IEEE 2012].

Similar to classical systems, probabilistic systems are not always free of errors. To
ensure their correctness, verification techniques have been developed to analyze prob-
abilistic systems. Just like classical systems, a probabilistic system may consist of
several concurrent components. The number of system states also increases exponen-
tially in the number of concurrent components. Addressing the state explosion problem
is crucial to probabilistic verification techniques.

For classical systems, compositional verification aims to mitigate the state explosion
problem by divide and conquer. Consider a classical system M0‖M1 composed of two
concurrent components M0, M1, and P, which is an intended property about the system.
Consider the assume-guarantee reasoning proof rule for classical systems [Cobleigh
et al. 2003]:

M0 � A A‖M1 |= P
M0‖M1 |= P

. (1)

The notation M0 � A means that A simulates all behaviors of M0. Informally, the
rule says that to show the composed system satisfying P, it suffices to find a classical
assumption A such that A simulates M0, and A composed with M1 satisfies P as well.

A useful assumption needs to be small (at least smaller than M0) and able to establish
the intended property. Finding useful assumptions in assume-guarantee reasoning
appears to require ingenuity. Although heuristics have been proposed to construct
such assumptions automatically, they are not always applicable. Oftentimes, verifiers
have to provide assumptions manually. Such laborious tasks are time consuming and
can be extremely difficult to carry out on large systems.

Interestingly, the problem of finding useful classical assumptions can be solved by
active machine learning [Cobleigh et al. 2003]. In active machine learning [Angluin
1987], a learning algorithm infers a representation of an unknown target by making
queries to a teacher. The learning-based framework thus devises a mechanical teacher
to answer such queries. Together with a learning algorithm, the framework is able to
find assumptions automatically. For classical systems, the L∗ learning algorithm for
regular languages [Angluin 1987] suffices to infer classical finite automata as classical
assumptions [Cobleigh et al. 2003]. Other techniques have also been developed to find
useful assumptions for compositional verification of classical systems [Gupta et al.
2007; Gheorghiu et al. 2007; Chen et al. 2010; He et al. 2014].

From the classical learning-based framework, one gathers that two ingredients
are essential to finding probabilistic assumptions. First, a sound and invertible
assume-guarantee reasoning proof rule for probabilistic systems is needed. A sound
proof rule allows us to analyze compositionally by finding probabilistic assumptions.
An invertible proof rule additionally guarantees the existence of such probabilistic
assumptions when probabilistic systems satisfy intended properties. Second, a
learning algorithm for probabilistic assumptions is also needed. With a carefully
designed mechanical teacher, probabilistic assumptions can then be inferred by the
learning-based framework for probabilistic systems.

Finding a sound and invertible assume-guarantee reasoning proof rule does not ap-
pear to be a problem. Indeed, the classical proof rule (1) can be extended to probabilistic
systems via probabilistic simulation [Segala and Lynch 1994]. However, learning prob-
abilistic assumptions is more difficult. To the best of our knowledge, an active learning
algorithm for probabilistic systems is yet to be found. In fact, it is undecidable to
infer labeled probabilistic transition systems under a version of Angluin’s learning
model [Komuravelli et al. 2012b]. Learning algorithms for general probabilistic sys-
tems may not exist after all.
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Given the absence of learning algorithms for probabilistic systems, some authors
propose restricted proof rules with only classical assumptions [Kwiatkowska et al.
2010; Feng et al. 2010]. Since classical assumptions can be represented by classical
finite automata, the L∗ algorithm is employed to infer such assumptions in restricted
probabilistic assume-guarantee reasoning proof rules. Yet classical assumptions are
incapable of expressing general probabilistic behaviors. Such restricted proof rules
are not invertible. Subsequently, existing probabilistic assume-guarantee reasoning
frameworks are sound but incomplete.

We propose a sound and complete assume-guarantee reasoning framework for ver-
ifying probabilistic safety properties on Markov decision processes (MDPs). Our most
ingenious idea is to consider weighted assumptions in our new assume-guarantee rea-
soning proof rule. Compared to the proof rules in Kwiatkowska et al. [2010] and Feng
et al. [2010], ours relaxes but does not restrict the expressive power of assumptions.
More precisely, we consider 0/1-weighted automata whose weights are between 0 and
1 inclusively as weighted assumptions. Since transition functions of 0/1-weighted au-
tomata can be probability distributions, the class of 0/1-weighted automata subsumes
MDPs. Our assume-guarantee reasoning proof rule is trivially invertible.

To find weighted assumptions in our learning-based framework, we also need a learn-
ing algorithm for such assumptions. Although active learning algorithms for probabilis-
tic systems are still unknown, weighted assumptions on the other hand are learnable
due to the relaxation on transition functions. Our second innovation is to adopt a well-
known representation that enables a simple L∗-based learning algorithm for weighted
assumptions. Observe that weighted automata can be implicitly represented by multi-
terminal binary decision diagrams (MTBDDs) [Fujita et al. 1997; Baier et al. 1997; De
Alfaro et al. 2000]. We hence develop an L∗-based learning algorithm for MTBDDs and
deploy it to infer implicitly represented weighted assumptions. With the two ingredi-
ents, a mechanical teacher is designed to guide our learning algorithm to find weighted
assumptions for probabilistic safety properties. We successfully develop a sound and
complete learning-based assume-guarantee reasoning framework by circumventing
the unsolved problem of learning probabilistic systems.

In addition to completeness and learnability, adopting weighted assumptions can
also be efficient. Note that assumptions oftentimes are not unique. If a probabilistic
assumption establishes a probabilistic property, a slightly different weighted (but not
necessarily probabilistic) assumption most likely will establish the property as well.
Since there are more useful weighted assumptions, our new framework can be more
effective in finding one of them. Additionally, inferring weighted assumptions implicitly
allows us to better integrate the learning-based framework with symbolic probabilistic
model checking. Indeed, experimental results from realistic test cases such as IEEE
802.11 and 1394 standards are promising. Compositional verification can alleviate the
state explosion problem even for probabilistic programs.

This is an extended and revised version of a preliminary conference paper [He et al.
2015]. Compared to He et al. [2015], this article makes following new contributions.
First, the logic for verification is extended from P≤p[ψ] to P�p[ψ], where � ∈ {≤,≥}.
The lower-bound probabilistic properties P≥p[ψ] and the boundary cases with p = 0
or 1 are newly supported with the proposed technique in this work. Second, the model
checking of 0/1-weighted automatons (WAs) is intensively studied here. We show that
the model checking of 0/1-WAs can be achieved with little changes to the probabilistic
model checking algorithm for MDPs. Guarantees of this algorithm are discussed. The
assume-guarantee reasoning rule is further proved in the presence of this algorithm.
Finally, as a further contribution, this article reports a new set of experimental results
to evaluate the impact of the learning process (which lies at the core of the learning-
based verification framework) to the proposed approach.
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Fig. 1. Nodei .

1.1. Our Contributions

Our technical contributions are summarized as follows:

—We propose the first sound and invertible assume-guarantee reasoning proof rule
with weighted assumptions for probabilistic safety properties on MDPs.

—We give an MTBDD learning algorithm under Angluin’s active learning model. It
uses a polynomial number of queries in the sizes of target MTBDDs and variable
sets.

—With our new proof rule and learning algorithm, we give the first sound and com-
plete learning-based assume-guarantee reasoning framework for probabilistic safety
properties on MDPs.

—We compare our new technique to the monolithic probabilistic model checker
PRISM [Parker 2002]. Experimental results suggest promising outlooks for our com-
positional technique.

1.2. Outline of the Article

This article is organized as follows. In Section 2, we illustrate our learning-based
compositional verification technique with a small example. In Section 3, backgrounds
of probabilistic systems and probabilistic model checking are provided. In Section 4, a
model checking algorithm for 0/1-WAs is proposed. Section 5 presents our sound and
invertible assume-guarantee reasoning proof rule. The MTBDD learning algorithm is
described in Section 6. Our learning-based assume-guarantee reasoning framework is
given in Section 7. Section 8 reports the experimental results on parameterized test
cases. Related works are discussed in Section 9. Finally, Section 10 concludes this
article.

2. A MOTIVATING EXAMPLE

Consider the probabilistic system node1‖node2 composed of two MDP nodei (i = 1, 2)
in Figure 1. The process nodei has four states: the initial state (si

0), the ready state (si
1),

the succeeded state (si
2), and the failed state (si

3). Initially, both node1 and node2 begin
at their respective initial states s1

0 and s2
0 . The system may start up all nodes (by the

start action) or choose one node to start (by either the start1 or start2 action). The two
processes node1 and node2 synchronize on shared actions. When the system starts up,
all nodes by the start action, node1 transit to its ready state s1

1 with probability 0.8
or to its succeeded state s1

2 with the probability 0.2. Simultaneously, node2 transits to
its ready and succeeded states s2

1 and s2
2 with probabilities 0.8 and 0.2, respectively.

Note that the sum of probabilities on each action is 1. Each action therefore gives a
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probabilistic distribution over states. For nonshared actions, only the acting process
moves; other processes stay. Hence, node1 transits to its succeeded state s1

2 while node2

remains in its initial state s2
0 when the system chooses to start up node1 with the

action start1. Similarly, when the process nodei is at its ready state si
1, it transits to its

succeeded state si
2 with probability 0.9 or to its failed state si

3 with probability 0.1 on
the action goi. Observe that the probability of a transition is not shown when it is 1.
Thus, nodei transits from si

0 to si
2 with probability 1 on the action starti.

In the system node1‖node2, the system state s1
3s2

3 is the failed state. The system
is designed so that the probability of reaching the failed state is no more than 0.01.
Formally, the intended property is specified by the probabilistic computation tree logic
(PCTL) formula

P≤0.01[ψfailed],

where ψfailed stands for F〈s1
3s2

3〉 and F is the “in the future” temporal operator. We would
like to check whether the system satisfies the probabilistic property by compositional
verification.

2.1. Compositional Reasoning

It is possible to derive a variant of the proof rule (1) so that a probabilistic assumption is
used to establish probabilistic properties on MDPs. To apply the variant in a learning-
based assume-guarantee reasoning framework, a learning algorithm is needed to infer
probabilistic assumptions. However, an active learning algorithm for MDPs is still
missing. The naive probabilistic variant of the proof rule (1) does not help. Consider
another variant of the proof rule (1):

node1 �e A A‖node2 |= P≤0.01[ψfailed]
node1‖node2 |= P≤0.01[ψfailed]

, (2)

where A is a weighted assumption. In contrast to probabilistic assumptions, weights
associated with transitions in weighted assumptions need not form probabilistic dis-
tributions. In out setting, node1 �e A means that every transition of node1 is also a
transition of A. Moreover, each transition of A has a weight not less than the prob-
ability of the corresponding transition in node1. The probabilistic proof rule says the
following: to show that node1‖node2 satisfies a probabilistic property, it suffices to find
a weighted assumption A that

—A performs every transition of node1 with no less probability; and
—the system A‖node2 satisfies the probabilistic property.

Clearly, one could choose Ato be node1 if the system satisfies the intended probabilis-
tic property. But then the premise A‖node2 |= P≤0.01[ψfailed] is precisely the conclusion
node1‖node2 |=P≤0.01[ψfailed]. Verifiers would not benefit from compositional verification
by choosing node1 as a weighted assumption.

2.2. Overview

We follow the learning-based framework to infer a weighted assumption satisfying the
two conditions in the Section 2.1 [Cobleigh et al. 2003; Chen et al. 2010; Kwiatkowska
et al. 2010; He et al. 2014]. In the framework, a learning algorithm is deployed to infer
weighted assumptions with the help of a mechanical teacher. The learning algorithm
presents purported assumptions to the teacher. The teacher checks if a purported
weighted assumption fulfills the premises in the assume-guarantee reasoning proof
rule (2). If not, the mechanical teacher will help the learning algorithm refine purported
assumptions by counterexamples.
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Fig. 2. Overview.

Fig. 3. Weighted assumption A.

Figure 2 gives an overview of the learning-based framework. On a purported
weighted assumption A, the teacher checks node1 �e A and invokes a model checker to
verify A‖node2 |= P≤0.01[ψfailed]. If both premises are fulfilled, we are done. Otherwise,
the teacher provides a counterexample to the learning algorithm. The learning algo-
rithm then modifies the purported weighted assumption A accordingly. We illustrate
the framework with concrete examples.

2.3. A Purported Assumption

Consider a purported weighted assumption A in Figure 3. On the actions start, start1,
go1, and done, the assumption Acan transit from a state to any state. Similar to MDPs,
the weight of a transition is not shown when it is 1. For instance, A transits from
the state s1

1 to the state s1
j on the action go1 with weight 1 for every 0 ≤ j ≤ 3. In

comparison, the process node1 moves from the state s1
1 to the states s1

0 , s1
1 , s1

2 , s1
3 on the

action go1 with probabilities 0, 0, 0.9, 0.1, respectively (Figure 1). Observe that A is not
an MDP, as the sum of weights from the state s1

1 on the action go1 is 4.
On receiving the weighted assumption A, the mechanical teacher decides whether

the assumption A fulfills both premises in our probabilistic compositional verification
proof rule. It first checks if the assumption A performs every transition of node1 with
a weight not less than the probability in node1. This is clearly the case. Consider, for
instance, the transitions from s1

1 to s1
0 , s1

1 , s1
2 , s1

3 on the action go1. The weights associated
with these transitions of A are all equal to 1. They are not less than the probabilities
0, 0, 0.9, 0.1 associated with the corresponding transitions of node1, respectively. The
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Fig. 4. Witness to A‖node2 �|= P≤0.01[ψfailed].

Fig. 5. Corresponding path in node1‖node2.

premise node1 �e A is fulfilled. The mechanical teacher then checks the other premise
by model checking.

2.4. Model Checking

Technically, a probabilistic model checker does not take weighted assumptions as in-
puts. Since A is a weighted assumption, A‖node2 need not be an MDP. A probabilistic
model checker cannot verify whether A‖node2 |= P≤0.01[ψfailed] directly. We need to lift
the probabilistic model checking algorithm to weighted assumptions.

After model checking, we find that the property P≤0.01[ψfailed] does not hold on
A‖node2. A witness to A‖node2 �|= P≤0.01[ψfailed] is shown in Figure 4. The witness
has only one path from the initial state s1

0s2
0 to the failed state s1

3s2
3 . Its weight is

0.8 × 1 × 0.1 = 0.08 > 0.01. P≤0.01[ψfailed] is not satisfied on A‖node2.

2.5. Witness Checking

Since A‖node2 �|= P≤0.01[ψfailed], the mechanical teacher concludes that the weighted as-
sumption A does not establish the intended probabilistic property. On the other hand,
the mechanical teacher cannot conclude that the system node1‖node2 does not satisfy
the property either. Since A has larger weights than node1, a weighted witness to
A‖node2 �|= P≤0.01[ψfailed] is not necessarily a witness to node1‖node2 �|= P≤0.01[ψfailed].
Before revising the weighted assumption A, the mechanical teacher checks if the wit-
ness to A‖node2 �|= P≤0.01[ψfailed] is spurious or not.

Recall that the weighted assumption Acontains all transitions in node1. The witness
to A‖node2 �|= P≤0.01[ψfailed] therefore corresponds to a path in node1‖node2 (Figure 5).
In addition, recall that the weight associated with a transition in the weighted as-
sumption A is not less than the probability of the corresponding transition in node1.
The probability of the corresponding path in node1‖node2 can be much smaller than
the weight of the witness to A‖node2 �|= P≤0.01[ψfailed]. Indeed, the corresponding path
in node1‖node2 has probability 0.64 × 0.1 × 0.1 = 0.0064 ≤ 0.01. It does satisfy the
intended probabilistic property. Hence, the witness to A‖node2 �|= P≤0.01[ψfailed] is spu-
rious. The mechanical teacher then should help the learning algorithm revising the
weighted assumption by sending a counterexample.

2.6. Selecting Counterexamples

To remove the spurious witness in Figure 4 from the weighted assumption A, the
mechanical teacher selects a transition in the weighted assumption A that contributes
most to the spurious witness. In Figure 4, the transitions s1

0
start−→ s1

1 and s1
1

go1−→ s1
3 in the

weighted assumption Acontribute to the spurious witness. The mechanical teacher can
send either of the transitions as a counterexample to the learning algorithm. Here, let
us say the mechanical teacher sends the transition s1

1
go1−→ s1

3 as the counterexample.
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Fig. 6. Weighted assumption A′.

The learning algorithm will then update the weight of the selected transition in revised
weighted assumptions.

2.7. Learning Assumption

After receiving a counterexample, the learning algorithm will purport another weighted
assumption. Suppose that the learning algorithm purports the weighted assumption
A′ (Figure 6). For any transition, its weight in A′ is no less than the probability of the
corresponding transition in node1. For example, the weighted assumption A′ transits
from the state s1

1 to the states s1
0 , s1

1 , s1
2 , s1

3 with weights 0, 0, 1, 0.1, respectively, on
the action go1. The corresponding transitions in node1 have probabilities 0, 0, 0.9, 0.1,
respectively. We have node1 �e A′. A′‖node2 |= P≤0.01[ψfailed] moreover holds by model
checking. According to our compositional verification proof rule, the mechanical teacher
concludes that the system node1‖node2 satisfies the intended probabilistic property.

Note again that A′ is a not a probabilistic assumption. Although A′ and node1 have
the same number of states in the explicit representation, their implicit MTBDD repre-
sentations are different. A′ has 26 nodes and 4 terminals; node1 has 27 nodes with 6
terminals in the implicit representation. Compositional verification replaces the com-
ponent node1 with a slightly smaller weighted assumption A′. In fact, node1 is the
only probabilistic assumption that can establish the probabilistic property. If only
probabilistic assumptions were considered, assume-guarantee reasoning would not be
effective in this example. Adopting weighted assumptions gives our framework more
useful assumptions in compositional verification.

3. PRELIMINARIES

3.1. Weighted Automata and MDPs

Given a finite set S, a weighted function on S is a mapping δ : S → Q. A weighted
function on S is denoted as a vector of length |S|. Denote dom(δ) the domain of δ. A
probability distribution on S is a function δD : S → [0, 1] ∩ Q that

∑
s∈S δD(s) = 1. A

point distribution εs on s ∈ S is a probability distribution where εs(t) = 1 if t = s and
εs(t) = 0 otherwise. Denote the set of weighted functions and probability distributions
on S by �(S) and �D(S), respectively. Clearly, �D(S) ⊆ �(S).

Definition 3.1. A weighted automaton is a 4-tuple M = (S, s̄, Act, T), where S is
a finite set of states, s̄ ∈ S is an initial state, Act is a finite alphabet of actions, and
T : S × Act → �(S) is a weighted transition function.

An infinite path πω in M is an infinite sequence s0
α0−→ s1

α1−→ . . . such that s0 = s̄,
αi ∈ Act, and si

αi−→ si+1 is a transition in M with T(si, αi)(si+1) �= 0 for all i ≥ 0. A finite
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path π is a finite prefix of an infinite path. Denote the set of all infinite and finite paths
in M by Pathω

M and PathM, respectively. For a path τ that is either finite or infinite, we
denote |τ | the length of τ and τ [i] = si the (i + 1)-th state in τ .

Let π = s0
α0−→ s1

α1−→ . . .
αn−1−→ sn be a finite path in M. The cylinder set C(π ) for π is the

set of infinite paths with the common finite prefix π—that is,

Cyl(π ) = {πω | π is prefix of πω}.
The σ algebra associated with WA M is the smallest σ algebra that contains the cylinder
sets for all finite paths of M. The measure on this σ algebra is defined as

W(Cyl(π )) = T(s0, α0)(s1) × T(s1, α1)(s2) × · · · × T(sn−1, αn−1)(sn).

The weight of the finite path π is defined as

Wt(π ) = T(s0, α0)(s1) × T(s1, α1)(s2) × · · · × T(sn−1, αn−1)(sn).

Note that although W(Cyl(π )) = Wt(π ), they have different meanings: W is a measure
on infinite paths, whereas Wt refers to finite ones. Let � ⊆ PathM be a set of finite
paths. � is prefix containment free if for every π, π ′ ∈ �, π is not a proper prefix of π ′.
When � is prefix containment free, the weight Wt(�) of � is

∑
π∈� Wt(π ).

Definition 3.2. A 0/1-weighted automaton M = (S, s̄, Act, T) is a WA where 0 ≤
T(s, α)(t) ≤ 1 for every s, t ∈ S and α ∈ Act.

In other words, a 0/1-WA is a WA on which all weights associated are within the
domain [0,1].

A WA is nondeterministic. There may be multiple transitions between two states
on different actions. Adversaries are used to resolve nondeterministic choices in
WAs [Baier and Katoen 2008]. Let S+ denote a nonempty sequence of states in S,
and let Act(s) denote the set {α ∈ Act : T (s, α)(t) > 0 for some t}. An (deterministic)
adversary is a function σ : S+ → Act such that σ (s0s1 . . . sn) ∈ Act(sn). More general
notion of adversaries involving randomizations exist, but deterministic ones are suffi-
cient for our problem. A WA M under an adversary σ is therefore deterministic. Let
AdvM denote the set of adversaries of M. We write Mσ for the WA whose transitions
are determinized by the adversary σ ∈ AdvM.

Definition 3.3. A Markov decision process M = (S, s̄, Act, T) is a 0/1-WA where
T(s, α) ∈ �D(S) or T(s, α) is the constant zero weighted function for every s ∈ S and
α ∈ Act.

Since the weighted functions returned by weighted transition functions of MDPs
are probability distributions, the weight associated with each transition in MDPs is
referred to as probability.

Example 3.4. The process node1 in Figure 1 is an MDP with Snode1 = {s1
0 , s1

1 , s1
2 , s1

3},
s̄node1 = s1

0 , Actnode1 = {start, start1, go1, done}, and

Tnode1 (s, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈0, 0.8, 0.2, 0〉 if s = s1
0 , α = start

〈0, 0, 1, 0〉 if s = s1
0 , α = start1

〈0, 0, 0.9, 0.1〉 if s = s1
1 , α = go1

〈0, 0, 1, 0〉 if s = s1
2 , α = done

〈0, 0, 0, 1〉 if s = s1
3 , α = done

〈0, 0, 0, 0〉 otherwise.
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Fig. 7. Composition of two weighted functions.

In contrast, A in Figure 3 is a 0/1-WA where SA = Snode1 , s̄A = s̄node1 , ActA = Actnode1 ,
and ∀s ∈ SA,∀α ∈ ActA : TA(s, α) = 〈1, 1, 1, 1〉.
3.2. Parallel Composition

Let Si be a finite set and δi ∈ �(Si) for i = 0, 1. Define (δ0 ⊗ δ1)(s0, s1) = δ0(s0)× δ1(s1) for
any s0 ∈ S0, s1 ∈ S1. Figure 7 gives an example for composing two weighted functions.
Observe that δ0 ⊗ δ1 ∈ �(S0 × S1), and the following facts hold:

—If dom(δi) ⊆ [0, 1] for i = 0, 1, then dom(δ0 ⊗ δ1) ⊆ [0, 1].
—If δi ∈ �D(Si) for i = 0, 1, then δ0 ⊗ δ1 ∈ �D(S0 × S1).
—If δ0 = 0 or δ1 = 0, then δ0 ⊗ δ1 = 0.

Definition 3.5. Let Mi = (Si, s̄i, Acti, Ti) be a WA for i = 0, 1. The parallel composition
of M0 and M1 (written M0‖M1) is a WA M0‖M1 = (S0 × S1, (s̄0, s̄1), Act0 ∪Act1, T) where

T((s0, s1), α) =
{ T0(s0, α) ⊗ εs1 if α �∈ Act1

εs0 ⊗ T1(s1, α) if α �∈ Act0
T0(s0, α) ⊗ T1(s1, α) if α ∈ Act0 ∩ Act1.

Observe that parallel composition of two 0/1-WAs yields a 0/1-WA, and parallel
composition of two MDPs yields an MDP.

3.3. Logic

Fix a finite set AP of atomic propositions. We focus on probabilistic safety properties
specified by PCTL [Hansson and Jonsson 1994; Bianco and de Alfaro 1995]. PCTL in
general allows nested probabilistic operators [Katoen et al. 2014]. In this article, we
consider a fragment, known as conditional reachability probability, which is in the form
of P�p[ψ] with p ∈ [0, 1] being a probability, � ∈ {≤,≥}, and

φ ::= true | a | φ ∧ φ | ¬φ,

ψ ::= φ Uφ,

where a is an atomic proposition, φ a state formula, ψ a path formula, and U the “until”
temporal operator. For example, “the probability of an error occurrence is at most 0.01”
is specified as P≤0.01[true Uφerr], where φerr is a state formula indicating the occurrence
of an error.

Qualitative properties. For the properties with p = 0 or 1, consider following facts:

P≥0[ψ] ≡ true, P≤1[ψ] ≡ true,
P≤0[ψ] ≡ ¬P>0[ψ], P≥1[ψ] ≡ P=1[ψ].

Let ψ = φ1 Uφ2. The probabilistic model checking of qualitative properties of the form
P>0[ψ] or P=1[ψ] can be reduced to the classical model checking of corresponding CTL
properties [Baier and Katoen 2008].
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In the remainder of the article, we assume that p �= 0, 1. We call properties in the
form of P≤p[ψ] the upper-bound probabilistic properties and properties in the form of
P≥p[ψ] the lower-bound probabilistic properties, respectively. We abuse notations and
consider all of them as probabilistic safety properties.1

3.4. Probabilistic Model Checking of MDPs

Given an MDP M = (S, s̄, Act, T) and a probabilistic safety property P�p[ψ] with
ψ = φ1 Uφ2, define pσ

M,s(ψ) = Wt(�), where

� = {π ∈ PathMσ | ∀i = 0..|π | − 2. (π [i] |= φ1 ∧ ¬φ2) ∧ (π [|π − 1|] |= φ2)}.

Observe that � is prefix containment free and Wt(�) is the probability of reaching φ2
states along φ1 states under the adversary σ . Let

pmax
M,s (ψ) = max

σ∈AdvM

pσ
M,s(ψ),

pmin
M,s(ψ) = min

σ∈AdvM

pσ
M,s(ψ)

denote the maximal and minimal probability that ψ is satisfied at s over all adversaries,
respectively. In the remainder of the article, we use pext

M,s(ψ) with ext ∈ {max, min} to
represent either pmax

M,s (ψ) or pmin
M,s(ψ). We omit the subscript M and the formula ψ in

pσ
M,s(ψ), pext

M,s(ψ) when they are clear from the context.

Definition 3.6. Given a state s of an MDP M and a probabilistic safety property
P�p[ψ] with � ∈ {≤,≥}, we say that s satisfies P�p[ψ] (written M, s |= P�p[ψ]) if
pext

M,s(ψ) � p, where ext is max if � is ≤ and min otherwise. We say that M satisfies
P�p[ψ] (written M |= P�p[ψ]) if M, s̄ |= P�p[ψ].

The probabilistic model checking of MDPs has been proposed in Bianco and de Alfaro
[1995] and Parker [2002]. Let ψ = φ1Uφ2. The probability pext

s (ψ) can be approximated
by an iterative algorithm [Baier and Katoen 2008]. The computation starts from the
states satisfying φ2 and iterates backward to compute the extreme (maximum or mini-
mum) probability of reaching these states from the states satisfying φ1. More precisely,
define

pext
s,i (ψ) =

⎧⎪⎨
⎪⎩

1, if s |= φ2
0, if s �|= φ2 ∧ s �|= φ1
0, if s �|= φ2 ∧ s |= φ1 ∧ i = 0
extα

{∑
t∈S T(s, α)(t) × pext

t,i−1(ψ)
}
, otherwise,

(3)

where ext is max if � is ≤ and min otherwise. The computation iterates until pext
s,i (ψ)

converges. Then pext
s (ψ) = limi→∞ pext

s,i (ψ).

1Strictly speaking, a low-bound probabilistic property is not a safety property.
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Table I. Values of pmax
s,i Computed

in Example 3.7

pmax
s1
0 ,i

pmax
s1
1 ,i

pmax
s1
2 ,i

pmax
s1
3 ,i

i = 0 0 0 0 1
i = 1 0 0.1 0 1
i = 2 0.08 0.1 0 1
i = 3 0.08 0.1 0 1

Example 3.7. Assume that we want to verify P≤0.1[true U 〈s1
3 〉] on the process node1.2

The values of pmax
s,i for s = s1

0 , s1
1 , s1

2 , s1
3 and i = 0, 1, 2, 3 are computed according to

Equation (3). The results are listed in Table I. For example, pmax
s1
3 ,0

= 1 since s1
3 |= 〈s1

3 〉,

pmax
s1
1 ,1 = T

(
s1

1 , go1
)(

s1
2

) × pmax
s1
2 ,0 + T

(
s1

1 , go1
)(

s1
3

) × pmax
s1
3 ,0

= 0.9 × 0 + 0.1 × 1
= 0.1,

pmax
s1
0 ,2 = max

{
T

(
s1

0 , start
)(

s1
1

) × pmax
s1
1 ,1 + T

(
s1

0 , start
)(

s1
2

) × pmax
s1
2 ,1 , T

(
s1

0 , start1
)(

s1
2

) × pmax
s1
2 ,1

}
= max {0.8 × 0.1 + 0.2 × 0, 1 × 0}
= max {0.08, 0}
= 0.08.

In the 3-th iteration, the computation converges, and pmax
s1
0

= 0.08 ≤ 0.1. Thus, we

conclude that node1 |= P≤0.1[true U 〈s1
3 〉].

3.5. Counterexamples

A weighted witness [Han et al. 2009; Wimmer et al. 2012, 2013] to M �|= P≤p[ψ] is a
pair (σ, c), where σ ∈ AdvM is an adversary with pσ

s̄ (ψ) > p and c is a set of finite paths
in Mσ such that

(1) for all π ∈ c, π |= ψ ;
(2) for all proper prefix π ′ of π , π ′ �|= ψ ; and
(3) Wt(c) > p.

Observe that the set c is prefix containment free (by the first two conditions). Hence,
Wt(c) is well defined.

As to the weighted witness to M �|= P≥p[ψ], note that [Baier and Katoen 2008]

P≥p[φ1 Uφ2] ≡ P≤1−p[(φ1 ∧ ¬φ2) W (¬φ1 ∧ ¬φ2)],

where W is the “weak until” operation. Using the technique in Han et al. [2009], the
witness generation for this kind of property can be reduced to the case with upper-
bound probability properties.

Without loss of generality, we assume that the weighted witness to a probabilistic
safety property P�p[ψ] is a pair (σ, c). We obtain the (σ, c)-fragment of M (written Mσ,c)
by removing all transitions not appearing in any path of c from Mσ .

Example 3.8. Consider the weighted witness (σ, c) shown in Figure 4, where
σ (〈s1

0s2
0〉) = start, σ (〈s1

0s2
0〉〈s1

1s2
1〉) = go1, σ (〈s1

0s2
0〉〈s1

1s2
1〉〈s1

3s2
1 〉) = go2, and c =

{〈s1
0s2

0〉 start−→〈s1
1s2

1〉 go1−→〈s1
3s2

1〉 go2−→〈s1
3s2

3〉}. The weight of c is 0.8 × 1 × 0.1 = 0.08.

2In the motivating example in Section 2, we verify a property on the composition of node1‖node2.
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Fig. 8. A 0/1-WA example.

Table II. Values of wmin
s,i and wmax

s,i Computed in
Example 4.2: One Value Shown if wmin

s,i = wmax
s,i

wext
s0,i wext

s1,i wext
s2,i wext

s3,i

i = 0 0 0 0 1
i = 1 0 1 1 1
i = 2 0.5 2 2 1
i = 3 1.1 / 1 3 3 1
i = 4 1.72 / 1.5 4 4 1

4. MODEL CHECKING OF A 0/1-WA

Consider our assume-guarantee proof rule (2), where A is a 0/1-WA, and the parallel
composition A‖M1 usually yields a 0/1-WA, but not an MDP. The probabilistic model
checking algorithm in the preceding section needs be adapted to 0/1-WAs.

Let M be a 0/1-WA and P�p[ψ] a probabilistic safety property. For any state s, denote
wext

M,s(ψ) (with ext ∈ {max, min}) the extreme (i.e., maximal or minimal) weight that ψ

is satisfied at s. The wext
M,s(ψ) is defined similarly as for MDPs, except that wext

M,s(ψ) are
now referred to as weights rather than probabilities. Note here that we again omit the
subscript M and the formula ψ in wext

M,s(ψ) when they are clear from the context.

Definition 4.1. Given a state s of a 0/1-WA M and a probabilistic safety property
P�p[ψ] with � ∈ {≤,≥}, we say that s satisfies P�p[ψ] (written M, s |= P�p[ψ]) if
wext

s (ψ) � p, where ext is max if � is ≤ and min otherwise. We say that M satisfies
P�p[ψ] (written M |= P�p[ψ]) if M, s̄ |= P�p[ψ].

4.1. Iterative Computation for 0/1-WAs

The iterative computation procedure for MDPs cannot be applied to 0/1-WAs. A notable
difference is that the iterative computation may not converge here.

Example 4.2. Consider verifying P≤0.5[true U 〈s3〉] on the 0/1-WA in Figure 8. Note
that the weight is not shown in the figure when it is 1. Using the iterative computation
described in Section 3.4, the computed results of wext

s,i for s = s0, s1, s2, s3 and i =
0, 1, 2, 3, 4 are listed in Table II. Note that only one value is shown if wmin

s,i = wmax
s,i .

Observe that s3 |= 〈s3〉, and thus the values of wmin
s3,i and wmax

s3,i for any i are 1’s (the last
column in Table II). Other values are iteratively updated according to (3). For example,

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 3, Article 21, Publication date: June 2016.



21:14 F. He et al.

Table III. Values of wmin
s,i and wmin

s,i Computed in
Example 4.3: One Value Shown if wmin

s,i = wmax
s,i

wext
s0,i wext

s1,i wext
s2,i wext

s3,i

i = 0 0 0 0 1
i = 1 0 1 1 1
i = 2 0.5 1 1 1
i = 3 0.6 / 0.5 1 1 1
i = 4 0.62 / 0.5 1 1 1

wmax
s0,4 = max

{
0.2 × wmax

s0,3 + 0.5 × wmax
s1,3 , 0.5 × wmax

s2,3

} = 1.72,

wmin
s0,4 = min

{
0.2 × wmin

s0,3 + 0.5 × wmin
s1,3, 0.5 × wmin

s2,3

} = 1.5.

Apparently, the values of wext
s0,i, wext

s1,i, and wext
s2,i are all unbounded when i increases. Thus,

the computations of wext
s0

, wext
s1

, and wext
s2

do not converge.

We therefore need to adapt the iterative computation for MDPs to 0/1-WAs. The
purpose is to avoid divergent computation. Let s be a state of a 0/1-WA M and P�p[ψ]
a probabilistic safety property with � ∈ {≤,≥}. Note the following:

(1) if wmax
s,i (ψ) ≥ 1, then wmax

s,i (ψ) > p, and hence M, s �|= P≤p[ψ]; and
(2) if wmin

s,i (ψ) ≥ 1, then wmin
s,i (ψ) > p, and hence M, s |= P≥p[ψ].

In conclusion, the satisfiability of P�p[ψ] on the state s of M is known if only wext
s,i ≥ 1.

Here ext is max if � is ≤ and min otherwise.
We thus need not to consider the exact values of wext

s,i whenever it exceeds 1. Instead
of computing wmax

s (ψ), which is oftentimes unbounded, we propose to compute the
truncated value of wmax

s (ψ). More specifically, we define

wext
s,i (ψ) =

⎧⎪⎨
⎪⎩

1, if s |= φ2
0, if s �|= φ2 ∧ s �|= φ1
0, if s �|= φ2 ∧ s |= φ1 ∧ i = 0
min{1, extα{∑t∈S T(s, α)(t) × wext

t,i−1(ψ)}}, otherwise .

(4)

Observe that the only difference between (3) and (4) lies in the last row, where wext
s,i (ψ)

truncates the value of wext
s,i (ψ) when the latter exceeds 1.

Apparently, the computation of wext
s,i always converges. In the worst case, it converges

to 1. Let wext
s (ψ) = lim

i→∞
wext

s,i (ψ); we have wext
s (ψ) ≤ 1 and wext

s (ψ) ≤ wext
s (ψ).

Example 4.3. Consider the model and property in Example 4.2 again. Now we
are using Equation (4) to compute wext

s,i . The computed results are listed in Table III.
Observe that the truncation operation does take effect in computing wext

s1,i and wext
s2,i when

i > 1, and leads their values to 1’s. And with these truncated weights, wext
s0,i is computed.

For example,

wmax
s0,4 = min

{
1, max

{
0.2 × wmax

s0,3 + 0.5 × wmax
s1,3 , 0.5 × wmax

s2,3

}} = 0.62,

wmin
s0,4 = min

{
1, min

{
0.2 × wmin

s0,3 + 0.5 × wmin
s1,3, 0.5 × wmin

s2,3

}} = 0.5.

If the computation continues, we can find that wmax
s0

= limi→∞ wmax
s,i = 0.625, wmin

s0
=

limi→∞ wmin
s,i = 0.5. Thus, M �|=a P≤0.5[true U 〈s3〉].

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 3, Article 21, Publication date: June 2016.



Learning Weighted Assumptions for Compositional Verification 21:15

Algorithm 1 gives the iterative algorithm for computing wext
s (ψ) in a 0/1-WA. The

algorithm takes as inputs a 0/1-WA and a probabilistic safety property, and outputs a
vector W , which records the computed weights wext

s for each state s, where ext is max
if the property is of the form P≤p[ψ] and min otherwise. For simplicity, we use W[s]
to denote the stored weight in W with respect to the state s. Given a state formula
φ, let SAT (φ) denote the set of states satisfying φ. The weights in W are initialized
to 1 for all states in SAT (φ2) and 0 for all other states. Then it iteratively updates
weights in W using Equation (4) for states s �|= φ2 ∧ s |= φ1, until the terminating
condition is achieved. The terminating condition (where ε is a predefined small value)
represents that the vector distance between W and W ′ is sufficiently small, and thus the
computation is close enough to converge.3 We remark that this algorithm is simplified
to demonstrate the iterative computation procedure. In the real implementation, the
algorithm is realized on top of MTBDD.

ALGORITHM 1: Iterative Computation Procedure for 0/1-WA
Input: M = (S, s̄, Act, T): a 0/1-WA; and P�p[φ1 Uφ2]: a probabilistic safety property.
Output: W : a vector that records wext

s for each state s ∈ S.
S1 ← SAT (φ1);
S2 ← SAT (φ2);
for s ∈ S2 do W [s] ← 1 for s /∈ S2 do W [s] ← 0 repeat

W ′ ← W ;
for s ∈ S1\S2 do

update W [s] using Equation (4);
end

until |(W − W ′)/W | ≤ ε;
return W ;

4.2. Guarantees from the Algorithm

Definition 4.4. Given a state s of a 0/1-WA M and a probabilistic safety property
P�p[ψ] with � ∈ {≤,≥}, we say that M, s |=a P�p[ψ] if wext

s (ψ) � p, where ext is max if
� is ≤ and min otherwise. We say that M |=a P�p[ψ] if M, s̄ |=a P�p[ψ].

Note that M |=a P�p[ψ] and M |= P�p[ψ] are not equivalent. The correspondences
between |= and |=a are summarized in the following lemma.

LEMMA 4.5. Given a state s of a 0/1-WA M and a probabilistic safety property P�p[ψ]
with � ∈ {≤,≥} and p ∈ (0, 1),

(1) M, s |= P≤p[ψ] implies that M, s |=a P≤p[ψ], but the reverse may not hold.
(2) M, s |=a P≥p[ψ] implies that M, s |= P≥p[ψ], but the reverse may not hold.

PROOF. (1) By M, s |= P≤p[ψ], we know that wmax
s ≤ p (Definition 4.1). Note

that wmax
s ≤ wmax

s , and thus wmax
s ≤ p. Therefore, M, s |=a P≤p[ψ] (Definition 4.4).

To show that the reverse does not hold, consider Examples 4.2 and 4.3, where
M, s0 |=a P≤0.7[true U 〈s3〉] (since wmax

s0
= 0.625 < 0.7), but M, s0 �|= P≤0.7[true U 〈s3〉]

(since wmax
s0,3 = 1.1 > 0.7).

(2) By M, s |=a P≥p[ψ], we know that wmin
s ≥ p (Definition 4.4). Note that wmin

s ≤ wmin
s ,

and thus wmin
s ≥ p. Therefore, M, s |= P≥p[ψ] (Definition 4.1). To show the reverse does

3This procedure may never stop if we set W = W ′ as the terminating condition.
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not hold, consider again Examples 4.2 and 4.3, where M, s0 |= P≥0.7[true U 〈s3〉] (since
wmin

s0
is infinitely large), but M, s0 �|=a P≥0.7[true U 〈s3〉] (since wmin

s0
= 0.5 < 0.7).

Considering the special case that M is an MDP, the following lemma holds.

LEMMA 4.6. Given a state s of an MDP M and a probabilistic safety property P�p[ψ]
with � ∈ {≤,≥}, M, s |= P�p[ψ] if and only if M, s |=a P�p[ψ].

PROOF. Since M is an MDP, pext
s,i (ψ) ∈ [0, 1] for any state s and iteration i [Parker

2002]. No truncation is needed in the computation of wext
s . Thus, wext

s = wext
s , and the

conclusion follows.

5. ASSUME-GUARANTEE REASONING WITH WA

Assume-guarantee reasoning proof rules for probabilistic systems are proposed in
Kwiatkowsa et al. [2010] and Feng et al. [2010]. Those proof rules replace a probabilistic
component in a composition with a classical assumption. Since classical assumptions
cannot characterize all probabilistic behaviors of the replaced component, such rules
are not invertible. We propose an assume-guarantee reasoning proof rule that replaces
a probabilistic component with a WA. We begin with the weighted extension of the
classical simulation relation.

Definition 5.1. Let M = (S, s̄, Act, T) and M′ = (S′, s̄′, Act′, T′) be WAs; we say that
M is embedded in M′ (written M �e M′, or equivalently M′ �e M) if S = S′, s̄ = s̄′,
Act = Act′, and T(s, α)(t) ≤ T′(s, α)(t) for every s, t ∈ S and α ∈ Act.

For example, consider node1 (in Figure 1) and A (in Figure 3). Apparently, node1 �e
A since Snode1 = SA, s̄node1 = s̄A, Actnode1 = ActA, and for any s, t ∈ SA, α ∈ ActA,
Tnode1 (s, α)(t) ≤ TA(s, α)(t) = 1.

For simplicity, we use �e to denote either �e or �e. The following lemma says that
the operator �e is compositional and preserves the satisfiability of probabilistic safety
properties.

LEMMA 5.2. Let M, M′, N be 0/1-WAs, �e an operator in {�e,�e}, and P�p[ψ] a
probabilistic safety property with � ∈ {≤,≥}. Thus,

(1) M �e M′ implies that M‖N �e M′‖N, and
(2) M �e M′ and M′ |= P�p[ψ] imply that M |= P�p[ψ], where �e is �e if � is ≤ and �e

otherwise.

PROOF. (1) Let M = (S, s̄, Act, T), M′ = (S′, s̄′, Act′, T′), and N = (SN, s̄N, ActN, TN)
be 0/1-WAs. We consider the case of �e =�e; the other case can be proved similarly. By
M �e M′, we have S = S′, s̄ = s̄′, and Act = Act′. Hence, M‖N and M′‖N have the same
state space, initial state, and alphabet. Since T(s, α)(t) ≤ T′(s, α)(t) (by M �e M′) and
TN(p, α)(q) ≥ 0 (by Definition 3.2), T(s, α)(t) × TN(p, α)(q) ≤ T′(s, α)(t) × TN(p, α)(q)
for every s, t ∈ S, p, q ∈ SN, and α ∈ Act ∩ ActN. Hence, TM‖N((s, p), β)(t, q) ≤
TM′‖N((s, p), β)(t, q) for every β ∈ Act ∪ ActN (by Definition 3.5).

(2) We consider the case of �e =�e and � =≤; the other case can be proved similarly.
By M �e M′, we know that T(s, α)(t) ≤ T′(s, α)(t). Hence, wmax

M,s̄ (ψ) ≤ wmax
M′,s̄(ψ). By M′ |=

P≤p[ψ], we have wmax
M′,s̄(ψ) ≤ p. Hence, wmax

M,s̄ (ψ) ≤ wmax
M′,s̄(ψ) ≤ p. Thus, M |= P≤p[ψ].

We are now capable to define the assume-guarantee reasoning rule for MDPs. A rule
is sound if its conclusion holds when its premises are fulfilled. A rule is invertible if its
premises can be fulfilled when its conclusion holds. Note that a weighted assumption
is introduced into the rule.
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THEOREM 5.3. Let Mi = (Si, s̄i, Acti, Ti) be MDPs for i = 0, 1 and P�p[ψ] a probabilistic
safety property with � ∈ {≤,≥} and p ∈ (0, 1). The following proof rules are sound and
invertible:

M0 �e A A‖M1 |= P�p[ψ]
M0‖M1 |= P�p[ψ]

, (5)

where A = (SA, s̄A, ActA, TA) is a 0/1-WA, �e ∈ {�e,�e}, and �e is �e if � is ≤ and �e
otherwise.

PROOF. Soundness of the proof rule follows from Lemma 5.2. By M0 �e A, M0‖M1 �e
A‖M1 (Lemma 5.2 (1)). Since A‖M1 |= P�p[ψ], we have M0‖M1 |= P�p[ψ] (Lemma 5.2
(2)). Invertibility is trivial since M0 is also a 0/1-WA. When the conclusion holds, M0
itself is a weighted assumption. The two premises are trivially fulfilled.

5.1. The Reasoning Rule with |=a Relation

In this section, we show that the assume-guarantee reasoning rule (Theorem 5.3) also
holds in case of the |=a relation.

Lemma 5.2 (2) says that the �e operator preserves the probabilistic safety property
along the |= relation. A similar lemma can be established in case of the |=a relation, by
additionally requiring one of the components to be an MDP.

LEMMA 5.4. Let M be an MDP, M′ a 0/1-WA, and P�p[ψ] a probabilistic safety property
with � ∈ {≤,≥} and p ∈ (0, 1). Thus,

(1) M �e M′ and M′ |=a P≤p[ψ] imply that M |= P≤p[ψ], and
(2) M �e M′ and M′ |=a P≥p[ψ] imply that M |= P≥p[ψ].

PROOF. (1) We prove by induction that pmax
M,s,i[ψ] ≤ wmax

M′,s,i[ψ] for any i. When
i = 0, pmax

M,s,0[ψ] = wmax
M′,s,0[ψ] apparently holds. Assume that pmax

M,s,k[ψ] ≤ wmax
M′,s,k[ψ];

we now prove that pmax
M,s,k+1[ψ] ≤ wmax

M′,s,k+1[ψ] also holds. By M �e M′, we know
that T(s, α)(t) ≤ T′(s, α)(t) for any state t and any action α. Thus, pmax

M,s,k+1[ψ] =
maxα{∑t∈S T(s, α)(t) × pmax

M,t,k(ψ)} ≤ maxα{∑t∈S T′(s, α)(t) × wmax
M′,t,k(ψ)}. For M being an

MDP, pmax
M,s,k+1[ψ] ≤ 1. Thus, pmax

M,s,k+1[ψ] ≤ min{1, maxα{∑t∈S T′(s, α)(t) × wmax
M′,t,k(ψ)}} =

wmax
M′,s,k+1[ψ]. Therefore, by induction on the value of i, pmax

M,s,i[ψ] ≤ wmax
M′,s,i[ψ] holds for

any i. Thus, pmax
M,s̄ [ψ] ≤ wmax

M′,s̄[ψ]. By M′ |=a P≤p[ψ], wmax
M′,s̄[ψ] ≤ p < 1. Hence, pmax

M,s̄ ≤ p,
and thus M |= P≤p[ψ].

(2) Since M′ |=a P≥p[ψ], M′ |= P≥p[ψ] (Lemma 4.5). M |= P≥p[ψ] follows from M′ |=
P≥p[ψ] and M �e M′ (Lemma 5.2 (2)).

THEOREM 5.5. Let Mi = (Si, s̄i, Acti, Ti) be MDPs for i = 0, 1 and P�p[ψ] a probabilistic
safety property with � ∈ {≤,≥} and p ∈ (0, 1). The following proof rule is sound and
invertible:

M0 �e A A‖M1 |=a P�p[ψ]
M0‖M1 |= P�p[ψ]

,

where A = (SA, s̄A, ActA, TA) is a 0/1-WA, �e ∈ {�e,�e}, and �e is �e if � is ≤ and �e
otherwise.

PROOF. Soundness follows from Lemma 5.2 (1) and Lemma 5.4. Invertibility is trivial
since M0 is also a 0/1-WA.

6. LEARNING 0/1-WA

We adopt the learning-based framework [Cobleigh et al. 2003; Feng et al. 2010] to gen-
erate an assumption A in the assume-guarantee reasoning proof rule (Theorem 5.3). To
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apply our new proof rule, a weighted assumption is needed. One could employ learning
algorithms that infer explicit quantitative models like multiplicity automata [Beimel
et al. 2000]. Those learning algorithms require complex and accurate matrix oper-
ations. Hence, they induce substantial computation and implementation overheads.
To avoid such overheads, we adopt a different representation to enable a simple and
efficient learning technique. More precisely, we use MTBDDs to represent weighted
assumptions implicitly. To infer implicitly represented weighted assumptions, we then
develop an MTBDD learning algorithm under Angluin’s learning model.

6.1. Multiterminal Binary Decision Diagrams

Let B denote the Boolean domain {0, 1}. Fix a finite ordered set of Boolean variables
x = 〈x1, x2, . . . , xn〉. A valuation ν = 〈v1, v2, . . . , vn〉 of x assigns the Boolean value
vi to the Boolean variable xi. Let μ and ν be valuations of x and y, respectively, with
x ∩ y = ∅. The concatenation of μ and ν is the valuation μν of x∪y such that μν(z) = μ(z)
if z ∈ x and μν(z) = ν(z) if z ∈ y. For y ⊆ x, the restriction ν↑y of ν on y is a valuation of
y that ν↑y(y) = ν(y) for y ∈ y. Let f (x) : Bn → Q be a function over x. We write f (ν) for
the function value of f under the valuation ν. Let f1(x) and f2(x) be functions over x;
f1(x) ≤ f2(x) denotes f1(ν) ≤ f2(ν) for every valuation ν of x.

An MTBDD [Fujita et al. 1997] over x is a rooted, directed, acyclic graph representing
a function f (x) : Bn → Q. An MTBDD has two types of nodes. A nonterminal node is
labeled with a variable xi; it has two outgoing edges with labels 0 and 1. A terminal
node is labeled with a rational number. The representation supports binary operations.
For instance, the MTBDD of the sum of two functions is computed by traversing the
MTBDDs of the two functions.

Given a valuation ν of x, f (ν) can be obtained by traversing the MTBDD of f (x).
Starting from the root, one follows edges by values of the Boolean variables labeling
the nodes. When a terminal node is reached, its label is the value f (ν). Since a function
f (x) and its MTBDD are equivalent, f (x) also denotes the MTBDD of the function f (x)
by abusing the notation.

It is straightforward to represent a WA by MTBDDs [Kwiatkowska et al. 2011]. Let
M = (S, s̄, Act, T) be a WA. Without loss of generality, we assume that |S| = 2n and
|Act| = m. We use x = 〈x1, x1, . . . , xn〉, x′ = 〈x′

1, x′
2, . . . , x′

n〉 to encode states and next
states in S, and z = 〈z1, z2, . . . , zm〉 to encode actions in Act.4 Let ν, ν ′ be valuations of
x, x′ and α a valuation of z. The action valuation α of z is valid if it maps at most one
variable to 1 (at most one action can be taken). A valuation ν of x or x′ encodes a state
�ν� ∈ S. A valid action valuation α encodes an action �α� ∈ Act. Define

lM(ν) =
{

1 if �ν� = s̄
0 otherwise,

fM(ανν ′) =
{

T(�ν�, �α�)(�ν ′�) if α is valid
0 otherwise.

Then the MTBDD encoding of M is (x, lM(x), z, fM(z, x, x′)). We will represent a WA by
its MTBDD encoding from now on.

Given a WA M = (x, lM(x), z, fM(z, x, x′)), let ν, ν ′ be two state valuations and α a
valid action valuation. If M is a 0/1-WA, 0 ≤ fM(α, ν, ν ′) ≤ 1 (Definition 3.2); if M is an
MDP,

∑
ν ′ fM(α, ν, ν ′) ∈ {0, 1} (Definition 3.3).

4This encoding scheme for actions is beneficial to the variable ordering. Refer to Parker [2002] for details.
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Fig. 9. MTBDD of fnode1 .

Example 6.1. Consider the process node1 in Figure 1 where the states are s1
j for

j = 0, . . . , 3, and the alphabet of actions is Act = {start, start1, go1, done}. We use
x = 〈s1.0, s1.1〉 to encode the set of states and z = 〈start, start1, go1, done〉 to encode
the alphabet of actions. In particular, the valuations 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, and 〈1, 1〉 of x
represent the states s1

0 , s1
1 , s1

2 , and s1
3 , respectively. Note that valuations of z need to be

valid. The valuations 〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, and 〈0, 0, 0, 1〉 of z represent the
action start, start1, go1, and done, respectively. The MTBDD of fnode1 (z, x, x′) is shown
in Figure 9. In the figure, the terminal node labeled by the number 0 and its incoming
edges are not shown. Solid edges are labeled by 1, and dotted edges are labeled by 0.
For example, the shaded path in Figure 1 corresponds to the valuations of x = 〈0, 1〉,
x′ = 〈1, 0〉, and z = 〈0, 0, 1, 0〉. It thus represents the transition from s1

1 to s1
2 on

the action go1. The rational number labeling the terminal node of this path (i.e., 0.9)
indicates the probability of this transition.

Using MTBDDs, Theorem 5.3 is rephrased as follows.

COROLLARY 6.2. Let Mi = (xi, lMi (xi), z, fMi (z, xi, x′
i)) be MDPs for i = 0, 1 and P�p[ψ]

a probabilistic safety property with �{≤,≥} and p ∈ (0, 1). Then

M0 �e A A‖M1 |= P�p[ψ]
M0‖M1 |= P�p[ψ]

,

where A = (x0, lM0 (x0), z, fA(z, x0, x′
0)) is a 0/1-WA, and �e is �e if � is ≤ and �e

otherwise.
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6.2. The L ∗ Learning Algorithm for Regular Languages

We adapt the L∗ algorithm to infer an MTBDD representing a weighted assump-
tion [Angluin 1987]. L∗ is a learning algorithm for regular languages. Assume a target
regular language only known to a teacher. The L∗ algorithm infers a minimal determin-
istic finite automaton recognizing the target regular language by posing the following
two queries to the teacher:

—A membership query asks if a string belongs to the target language.
—An equivalence query asks if a conjectured finite automaton recognizes the target

language. If not, the teacher has to provide the learning algorithm a string as a
counterexample.

The L∗ algorithm uses membership queries to construct the transition function of
a deterministic finite automaton. When it constructs a deterministic finite automa-
ton consistent with previous membership queries, L∗ poses an equivalence query to
check if the automaton does recognize the target regular language. If so, the algorithm
has learned the target language correctly. Otherwise, the counterexample is used to
improve the conjectured finite automaton.

It can be shown [Angluin 1987] that the L∗ algorithm always infers the minimal
deterministic finite automaton recognizing any target regular language within a poly-
nomial number of queries.

6.3. An MTBDD Learning Algorithm

Since any 0/1-WA can be represented by MTBDDs, we develop an MTBDD learning
algorithm to infer weighted assumptions. Let f (x) be an unknown target MTBDD. We
assume a teacher to answer the following two types of queries:

—On a membership query MQ(ν) with a valuation ν of x, the teacher answers f (ν).
—On an equivalence query EQ(g) with a conjecture MTBDD g(x), the teacher answers

yes if f = g. Otherwise, she returns a valuation ν of x with f (ν) �= g(ν) as a coun-
terexample.

Observe that a valuation of x can be represented by a binary string of length |x|. To
illustrate how our MTBDD learning algorithm works, consider an unknown MTBDD
f (x) with exactly two values: 0 and r. Since there are finitely many binary strings of
length |x|, the language R of binary strings representing valuations of x that evaluate
f to r is regular. The L∗ learning algorithm for regular languages therefore can be used
to infer a finite automaton recognizing the language R [Angluin 1987]. The learning
algorithm applies the Myhill-Nerode theorem for regular languages. It constructs the
transition function of the minimal deterministic finite automaton for any unknown
regular language by posing membership and equivalence queries about the unknown
target. Since the minimal deterministic finite automaton for R is structurally similar
to the MTBDD f with two terminal nodes [Kimura and Clarke 1990], the L∗ algorithm
can be modified to infer MTBDDs with two terminal nodes [Gavaldà and Guijarro
1995].

Generally, an unknown MTBDD f (x) has k values r1, r2, . . . ,rk. It evaluates to a
value ri on a valuation of x. Moreover, the language Ri of binary strings representing
valuations of x that evaluate f to ri is regular for every 1 ≤ i ≤ k. Consider gener-
alized deterministic finite automata with k acceptance types. On any binary string,
the computation of a generalized deterministic finite automaton ends in a state of an
acceptance type. Formally, define a k-language L over an alphabet � to be a partition
{L1, L2, . . . , Lk} of �∗. In other words, ∪i Li = �∗ and Li ∩ Lj = ∅ when i �= j. A k-
deterministic finite automaton (k-DFA) D = (Q, �, δ, q0,F) consists of a finite state set
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Q, an alphabet �, a transition function δ : Q×� → Q, an initial state q0 ∈ Q, and accep-
tance types F = {F1, F2, . . . , Fk} where Fi ’s form a partition of Q. Define δ∗(q, ε) = q and
δ∗(q, aw) = δ∗(δ(q, a), w), where a ∈ � and w ∈ �∗. For a string w ∈ �∗, we say that D
accepts w with type i if δ∗(q0, w) ∈ Fi. Let Li(D) = {w : D accepts w with type i}. A k-DFA
therefore accepts a k-language L(D) = {Li(D) : 1 ≤ i ≤ k}. It is almost straightforward
to show a generalized Myhill-Nerode theorem for k-DFA.

THEOREM 6.3. The following statements are equivalent:

(1) A k-language L = {L1, L2, . . . , Lk} is accepted by a k-DFA.
(2) Define the relation R over �∗ such that xRy if and only if for every z ∈ �∗, xz, yz ∈ Li

for some i. R is of finite index.

To learn general MTBDDs, we modify the L∗ algorithm to generate k-DFA. Consider
binary strings of length |x| representing valuations of x. Since an MTBDD evaluates a
valuation to a value, the values of an MTBDD partition �|x|. With �∗\�|x|, an MTBDD
in fact gives a partition of �∗. In other words, an MTBDD defines a k-language. By
Theorem 6.3, the modified L∗ algorithm infers a minimal k-DFA that accepts the k-
language defined by an unknown MTBDD. It remains to derive an MTBDD learning
algorithm from the modified L∗ algorithm for k-DFA.

6.3.1. Algorithm. Our L* learning-based algorithm for MTBDD’s is shown in Algorithm
2. Let S be a finite prefix-closed set of strings over B, and let E be a finite suffix-closed
set of strings over B. Denote λ as the empty string. We maintain an observation table T
from (S∪ SB)× E to F . Similar to the L∗ algorithm, the observation table T can be seen
as a matrix with |S ∪ SB| rows and |E| columns. For s ∈ S and e ∈ E, the entry T (s, e)
denotes the acceptance type F ∈ F of an unknown finite automaton. When F = B, we
obtain the observation table in the L∗ algorithm for regular languages.

The rows with indices from S correspond to states in the unknown finite automaton;
the rows with indices from SB give the transition function of the unknown finite
automaton. Let s ∈ S ∪ SB. We write T (s, •) for the row with index s. Closeness and
consistency of an observation table in the L∗ algorithm generalize straightforwardly. An
observation table T is closed if there is an s ∈ S with T (s, •) = T (t, •) for each t ∈ SB.
An observation table T is consistent if T (sb, •) = T (s′b, •) for each b ∈ B whenever
T (s, •) = T (s′, •). A closed and consistent observation table induces a finite automaton
with outcomes U . Our modified L∗ algorithm in fact infers a minimal finite automaton
with outcomes U by the generalized Myhill-Nerode theorem [Chen et al. 2009].

Two minor problems need to be addressed in the design of our MTBDD learning algo-
rithm. First, the modified L∗ algorithm makes membership queries on binary strings of
arbitrary lengths. The teacher for learning MTBDDs only answers membership queries
on valuations over fixed variables. Second, the modified L∗ algorithm presents a k-DFA
as a conjecture in an equivalence query. However, the MTBDD teacher accepts MTB-
DDs as conjectures. To solve these problems, we apply the techniques in Gavaldà and
Guijarro [1995].

When the modified L∗ algorithm asks a membership query on a binary string, our
MTBDD learning algorithm checks if the string has length |x|. If not, the MTBDD
learning algorithm returns 0 to denote the weight 0. Otherwise, the MTBDD learning
algorithm forwards the corresponding valuation of x to the teacher and returns the
teacher’s answer to the modified L∗ algorithm. When the modified L∗ algorithm gives
a k-DFA in an equivalence query, the MTBDD learning algorithm transforms the au-
tomaton into an MTBDD. It basically turns the initial state into a root, with each state
at distance less than |x| into a nonterminal node labeled with variable xi and each state
at distance |x| into a terminal node.
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ALGORITHM 2: L∗-Based Learning Algorithm for MTBDD’s
S, E ← {λ};
ask membership queries for λ and each b ∈ B;
initialize observation table (S, E, T );
repeat

while (S, E, T ) is not closed do
find s ∈ S and b ∈ B such that T (sb, •) �= T (s′, •) for all s′ ∈ S;
S ← S ∪ {sb};
extend T using membership queries;

end
construct candidate DFA C from (S, E, T );
transform C into an MTBDD g;
ask equivalence query EQ(g);
if the teacher answers with a counterexample ν then

let t be the corresponding binary string of ν;
find a suffix e of t that witnesses the counterexample;
E ← E ∪ {e};
extend T using membership queries;

end
until the teacher answers YES;

6.3.2. Time Analysis.

THEOREM 6.4. Let f (x) be a target MTBDD. The MTBDD learning algorithm outputs
f in polynomial time, using O(| fA|2 + | fA| log |x|) membership queries and at most | fA|
equivalence queries, where | fA| is the size of the automaton before reduced to the target
MTBDD.

PROOF. The modified L∗ algorithm outputs the minimal k-DFA F, using O(|F|2 +
|F| log m) membership queries and at most |F| equivalence queries where m is the
length of the longest counterexample. Every membership or equivalence query of
the modified L∗ algorithm induces at most one query in the MTBDD learning algo-
rithm. When the modified L∗ algorithm makes an equivalence query with a k-DFA, the
MTBDD learning algorithm transforms it into an MTBDD in polynomial time. When-
ever a counterexample is obtained from the MTBDD teacher, the MTBDD learning
algorithm forwards the corresponding binary string of length |x| to the modified L∗ al-
gorithm. Hence, the learning algorithm infers the MTBDD f with O(| fA|2 +| fA| log |x|)
membership and | fA| equivalence queries.

7. THE LEARNING-BASED VERIFICATION FRAMEWORK

With our new assume-guarantee reasoning proof rule (Section 5) and learning algo-
rithm for MTBDDs (Section 6), we can now describe our sound and complete learning
framework.

Let Mi = (xi, lMi (xi), z, fMi (z, xi, x′
i)) be MDPs (i = 0, 1), and let P�p[ψ] be a probabilis-

tic safety property. To verify if M0||M1 |= P�p[ψ] holds, we aim to generate a 0/1-WA
A = (x0, lM0 (x0), z, fA(z, x0, x′

0)) to fulfill the premises M0 �e A and A||M1 |= P�p[ψ].
To find such a weighted assumption A, we use the MTBDD learning algorithm to infer
an MTBDD fA(z, x0, x′

0) as the weighted transition function. Recall that the MTBDD
learning algorithm relies on a teacher to answer queries about the target MTBDD. We
therefore design a mechanical teacher to answer queries from the learning algorithm
(Figure 10).
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Fig. 10. Learning framework for compositional verification.

Let α be a valuation encoding an action, ν and ν ′ valuations encoding states.
The mechanical teacher consists of the membership query resolution algorithm
ResolveMQ(ανν ′) and the equivalence query resolution algorithm ResolveEQ( fA). The
membership query resolution algorithm answers a membership query MQ(ανν ′) by
the weight associated with the transition from �ν� to �ν ′� on action �α� in a weighted
assumption fulfilling the premises of the assume-guarantee reasoning proof rule. Simi-
larly, the equivalence query resolution algorithm answers an equivalence query EQ( fA)
by checking whether the MTBDD fA represents the weighted transition function of a
weighted assumption. The equivalence query resolution algorithm should return a
counterexample when fA does not represent a suitable weighted transition function.
Recall that M0 itself is trivially a weighted assumption. Our teacher simply uses the
weighted transition function fM0 of M0 as the target. In the worst case, our framework
will find the weighted assumption M0 and therefore attain completeness. In practice,
it often finds useful weighted assumptions before M0 is inferred.

7.1. Resolving Membership Queries

Our membership query resolution algorithm (Algorithm 3) targets the weighted tran-
sition function of M0. Clearly, M0 embeds itself and therefore can be used as a weighted
assumption. On the membership query MQ(ανν ′), the mechanical teacher simply re-
turns fM0 (ανν ′).

ALGORITHM 3: ResolveMQ(ανν ′)
Input: MQ(ανν ′)
Output: a rational number
answer MQ(ανν ′) with fM0 (ανν ′);

7.2. Resolving Equivalence Queries

On an equivalence query EQ( fA), the mechanical teacher is given an MTBDD
fA(z, x0, x′

0). Consider the WA A = (x0, lM0 (x0), z, fA(z, x0, x′
0)). We need to verify if

both premises of the assume-guarantee reasoning proof rule in Corollary 6.2 hold.
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The equivalence query resolution algorithm first checks if M0 �e A. If not, there are
valuations α, ν, and ν ′ with fM0 (ανν ′) � fA(ανν ′).5 The equivalence query resolution
algorithm returns ανν ′ as a counterexample to EQ( fA).

If M0 �e A, the equivalence query resolution algorithm continues to check whether
A‖M1 |= P�p[ψ] holds by model checking. If A‖M1 |= P�p[ψ] holds, the MTBDD learn-
ing algorithm has inferred a weighted assumption that establishes M0‖M1 |= P�p[ψ]
by the assume-guarantee reasoning proof rule in Corollary 6.2. Otherwise, the equiv-
alence query resolution algorithm obtains a weighted witness (σ, c) to A‖M1 �|= P�p[ψ]
from model checking. It then checks if the weighted witness is spurious. Recall that
M0‖M1 and A‖M1 have the same state set and action alphabet due to M0‖M1 �e A‖M1.
The (σ, c)-fragment (M0‖M1)σ,c is well defined. If (M0‖M1)σ,c |= P�p[ψ], the weighted
witness (σ, c) is spurious. The algorithm then analyzes the spurious weighted wit-
ness (σ, c) and returns a valuation as the counterexample. Otherwise, the algorithm
concludes (M0‖M1) �|= P�p[ψ] with the weighted witness (σ, c) (Algorithm 4).

Example 7.1. Consider the weighted witness in Figure 4. The (σ, c)-fragment
(node1‖node2)σ,c is shown in Figure 5. There is but one path in (node1‖node2)σ,c. This
path ends in 〈s1

3s2
3 〉 and thus satisfies ψfailed. However, its weight is 0.64 × 0.1 × 0.1 =

0.0064 ≤ 0.01. Therefore, (node1‖node2)σ,c |= P≤0.01[ψfailed]. The weighted witness in
Figure 4 is spurious.

ALGORITHM 4: ResolveEQ( fA)
Input: EQ( fA)
Output: YES, a counterexample to EQ( fA)
A ← (x0, lM0 (x0), z, fA(z, x0, x′

0));
if ∃ανν ′. fA(ανν ′) � fM0 (ανν ′) then

answer EQ( fA) with the counterexample ανν ′;
receive a new equivalence query EQ( fA′ );
call ResolveEQ( fA′ );

if A||M1 |= P�p[ψ] then
answer EQ( fA) with YES;
return “M0||M1 |= P�p[ψ]”;

else
let (σ, c) be a weighted witnessto A||M1 �|= P�p[ψ];
if (M0‖M1)σ,c |= P�p[ψ] then

select a transition �μ� �α�−→�μ′� with the maximal contribution from (A‖M1)σ,c;
answer EQ( fA) with α↑x0μ

′↑x′
0
;

receive a new equivalence query EQ( fA′ );
call ResolveEQ( fA′ );

else
return “M0||M1 �|= P�p[ψ]” with (σ, c);

end
end

Selecting counterexamples. Given a spurious weighted witness (σ, c), the mechanical
teacher selects a transition from c as a counterexample to the MTBDD learning algo-
rithm. The counterexample is intended to remove the spurious weighted witness (σ, c)
from weighted assumptions.

Let (σ, c) be a spurious weighted witness with (A‖M1)σ,c �|= P�p[ψ] and (M0‖M1)σ,c |=
P�p[ψ]. Recall that (M0‖M1)σ,c and (A‖M1)σ,c have the same state set, initial state,

5� is > if �e is �e and < otherwise.
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and alphabet. The only differences between (M0‖M1)σ,c and (A‖M1)σ,c are the weights
associated with transitions. To remove the spurious weighted witness (σ, c), we would
like to select transitions that differentiate (M0‖M1)σ,c from (A‖M1)σ,c most significantly.

More precisely, for any transition t in c, let �A(t) and �0(t) respectively be the sets of
paths in (A‖M1)σ,c and (M0‖M1)σ,c that contain transition t. Define ω(t) = Wt(�A(t)) −
Wt(�0(t)) to be the contribution of transition t in the spurious weighted witness (σ, c).
The mechanical teacher simply selects a transition t with the maximal contribution.
The weight of the selected transition in A will be revised to the probability of the
corresponding transition in M0. Its contribution will be 0 in following revisions. Note
that contributions of transitions are computed using MTBDDs for efficiency.

Additionally, observe that selecting one transition may not eliminate the spurious
weighted witness. Since a spurious weighted witness contains several transitions, the
weight of the witness may not be reduced sufficiently after revising a few transitions.
Subsequently, the same spurious weighted witness may be recomputed by model check-
ing the premises with a revised weighted assumption. To reduce the number of model
checking invocations, we reuse the same spurious weighted witness to compute coun-
terexamples [He et al. 2014]. More precisely, our implementation checks if the current
spurious weighted witness is eliminated from revised weighted assumptions. If not, the
mechanical teacher selects another transition from the spurious weighted witness to
further refine the revised weighted assumptions. Since a spurious weighted witness is
used to revise several weighted assumptions, the number of model checking invocations
is reduced.

7.3. Correctness

The correctness of our assume-guarantee reasoning framework for probabilistic sys-
tems follows from Theorem 5.3. We establish the soundness, completeness, and termi-
nation of the new learning-based framework in the remainder of this section.

THEOREM 7.2 (SOUNDNESS). Let Mi = (xi, lMi (xi), z, fMi (z, xi, x′
i)) be MDPs for i = 0, 1,

P�p[ψ] a probabilistic safety property, and fA(z, x0, x′
0) an MTBDD.

—If ResolveEQ( fA) returns M0||M1 |= P�p[ψ], then M0‖M1 |= P�p[ψ] holds.
—If ResolveEQ( fA) returns M0||M1 �|= P�p[ψ] with (σ, c), then (σ, c) is a weighted witness

to M0||M1 �|= P�p[ψ].

PROOF. When our learning-based framework reports M0‖M1 |= P�p[ψ] in Algo-
rithm 4, a weighted assumption A = (x0, lM0 (x0), z, fA(z, x0, x′

0)) such that M0 �e A
and A‖M1 |= P�p[ψ] has been inferred. By the soundness of the assume-guarantee
reasoning proof rule (Theorem 5.3), M0‖M1 |= P�p[ψ]. On the other hand, suppose that
our learning-based framework reports M0‖M1 �|= P�p[ψ]. The weighted witness (σ, c)
to A‖M1 �|= P�p[ψ] has been verified to be a witness to M0‖M1 �|= P�p[ψ].

THEOREM 7.3 (COMPLETENESS). Let Mi = (xi, lMi (xi), z, fMi (z, xi, x′
i)) be MDPs for

i = 0, 1, and let P�p[ψ] be a probabilistic safety property:

—If M0||M1 |= P�p[ψ], then ResolveEQ( fA) returns M0||M1 |= P�p[ψ] for some MTBDD
fA(z, x0, x′

0).
—If M0||M1 �|= P�p[ψ], then ResolveEQ( fA) returns M0||M1 �|= P�p[ψ] with a weighted

witness (σ, c).

PROOF. In our framework, the MTBDD learning algorithm targets the weighted
transition function of M0. It will infer fM0 (z, x0, x′

0) eventually (Theorem 6.4). If
M0‖M1 |= P�p[ψ], the learning algorithm always infers a weighted assumption A (in
the worst case, A is M0) such that M0 �e A and A‖M1 |= P�p[ψ]. Hence, ResolveEQ( fA)
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Fig. 11. Implementation.

returns M0‖M1 |= P�p[ψ]. Otherwise, the learning algorithm always infers a weighted
assumption A (in the worst case, A is M0) such that M0‖M1 �|= P�p[ψ] is witnessed
by (σ, c). ResolveEQ( fA) returns M0‖M1 �|= P�p[ψ]. The completeness of our assume-
guarantee reasoning framework follows from the preceding observations.

THEOREM 7.4 (TERMINATION). Let Mi = (xi, lMi (xi), z, fMi (z, xi, x′
i)) be MDPs for i = 0, 1,

and let P�p[ψ] be a probabilistic safety property. Our learning-based framework reports
M0‖M1 |= P�p[ψ] or M0‖M1 �|= P�p[ψ] within a polynomial number of queries in
| fM0 (z, x0, x′

0)| and |z ∪ x0 ∪ x′
0|.

PROOF. In our learning-based framework, the MTBDD learning algorithm targets
the weighted transition function of M0. It will infer the target MTBDD fM0 (z, x0, x′

0)
using O(n2 + n log m) membership queries and at most n equivalence queries where
n = | fM0 (z, x0, x′

0)| and m = |z ∪ x0 ∪ x′
0| (Theorem 6.4). At this point, the weighted

assumption A is M0. The mechanical teacher reports either M0‖M1 |= P�p[ψ] or
M0‖M1 �|= P�p[ψ].

8. EVALUATIONS

We have implemented a prototype of our compositional verification technique on top of
PRISM 4.0.1 [Parker 2002]. It accepts an MDP specified in the PRISM modeling lan-
guage and a probabilistic safety property. The architecture of our prototype is shown in
Figure 11. Approximate model checking of 0/1-WAs (Algorithm 1) is implemented by
revising the probabilistic model checking algorithm for MDPs in PRISM. The MTBDD
learning algorithm is implemented by modifying the L∗ algorithm in the libalf 0.3
library [Bollig et al. 2010] with the CUDD 2.5.0 package.6 The membership query reso-
lution algorithm (Algorithm 3) and the embedded checking algorithm are implemented
using CUDD. The equivalence query resolution algorithm (Algorithm 4) is implemented
by making calls to the embedded checker and the approximate model checker. We gen-
erate counterexamples by the techniques in Han et al. [2009]. All experiments were
run on a virtual machine with a 2.6GHz CPU and 4GB RAM.

We conducted four experiments to evaluate our compositional approach. The first
and second experiments compare the performance of our compositional approach (com-
positional) with the monolithic model checking algorithms in PRISM. PRISM with the
MTBDD engine (PRISM-M) and PRISM with the hybrid engine (PRISM-H) are tested

6http://vlsi.colorado.edu/∼fabio/CUDD/

ACM Transactions on Software Engineering and Methodology, Vol. 25, No. 3, Article 21, Publication date: June 2016.

http://vlsi.colorado.edu/protect $
elax sim $fabio/CUDD/


Learning Weighted Assumptions for Compositional Verification 21:27

in sequence. The third experiment tests the impact of the probability bounds to the
effectiveness of our approach. The fourth experiment tests the impact of the learning
strategy to our compositional approach. A new version of our compositional approach
(compositional−) that disables the learning process is used for comparison.

All experiments are conducted on several parameterized examples: the randomized
consensus coin protocol, wireless LAN, FireWire root contention protocol, and ran-
domized dining philosophers. All examples are derived from the PRISM Web site.7
Each example model contains several interacting processes. Our tool selects one pro-
cess of the model as M0 and the composition of other processes as M1. Selecting the
composition of multiple processes as M0 can be done by solving the two-way decom-
position problem [Zhu et al. 2009; Cobleigh et al. 2008]. Here we employ a simple
heuristic: choose the process with the minimal interface alphabet. The interface al-
phabet of a process is the set of shared actions. For example, the wireless LAN model
consists of four processes: medium, station1, station2, and timer, with interface al-
phabets {send1, send2, f inish1, f inish2}, {time, f inish1, send1}, {time, f inish2, send2},
and {time}, respectively. We choose timer as M0 by our heuristic.

8.1. Compositional Versus Monolithic (MTBDD Based)

The first experiment compares the performance of our compositional approach (com-
positional) with the MTBDD-based monolithic model checking in PRISM (PRISM-M).
Note that our approach is also MTBDD based.

Experimental results are listed in Tables IV through VII. For each model and a corre-
sponding probabilistic safety property P�p[ψ], we compute the property of Pext=?[ψ] by
PRISM and report it in the Pext column, where ext is max if � is ≤ and min otherwise.
Note that the property P�p[ψ] holds on the model if and only if p � Pext. The satisfia-
bility of the property P�p[ψ] on the model is reported in the Result column. For each
test case, we show the model size (Size) and runtime (Time). The model size counts the
number of MTBDD nodes for the weighted transition function of the composed model.8
The runtime includes the time spent on all stages, including model construction, model
checking, witness analysis, and assumption learning. For the compositional approach,
the number of model checker calls (#MC) is also reported. The last column (Reduction)
shows the reduction of model size and time of our compositional approach to PRISM-M.
All times are in seconds, sizes are in 103 nodes, and the symbol “–” indicates either
time-out (4 hours) or memory-out (4GB).

Randomized consensus coin protocol. In the randomized consensus coin protocol (for
short, Consensus), a set of N distributed processes access a global shared counter
[Aspnes and Herlihy 1990]. Each process periodically increases or decreases the value
of the shared counter depending on the outcome of a random coin flip. The boundary
value that the counter can take is parameterized by K. To ensure that all processes
agree on the outcome of some decision, we verify the property “the probability that
eventually all processes make a decision but some two processes do not agree on the
same value is at most 0.01.”

Experimental results are given in Table IV, where the first column lists the values
of the parameters (N, K). The results show that the compositional verification outper-
forms the monolithic probabilistic model checking significantly with more than two
processes. Our compositional approach improves the verification time by 39.3% on av-
erage and reduces the model size by 3.2% on average. If there are only two processes,
the size of the original model is so small that compositional verification is redundant.

7http://www.prismmodelchecker.org
8By composed model, we mean M0‖M1 for monolithic checker and A‖M1 for our checker.
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Table IV. Results on Consensus: Time in Seconds, Size in 103 Nodes

PRISM-M Compositional Reduction (%)
Param Pmax Result Time Size #MC Time Size Time Size

(2, 6) 0.04 False 3.9 0.4 6 6.1 0.4 –57.5 –7.6
(2, 8) 0.03 False 9.0 0.4 6 13.7 0.5 –51.8 –10.6
(2, 10) 0.02 False 17.4 0.4 6 24.9 0.5 –43.3 –10.3
(4, 2) 0.29 False 40.2 2.3 6 35.8 2.2 11.0 3.4
(4, 4) 0.16 False 315.1 2.3 6 241.1 2.3 23.5 2.8
(4, 6) 0.10 False 1,109.7 2.3 6 703.5 2.3 36.6 3.0
(4, 8) 0.08 False 2,522.1 2.4 6 1,627.4 2.3 35.5 2.3
(4, 10) 0.06 False 4,747.2 2.4 6 3,051.7 2.3 35.7 2.4
(6, 2) 0.36 False 1,611.2 7.1 6 1,068.1 6.8 33.7 4.6
(6, 4) 0.19 False 10,270.3 7.1 6 5,751.4 6.7 44.0 4.6

All 20,645.9 27.1 12,523.6 26.2 39.3 3.2

Wireless LAN protocol. The wireless local area networks protocol (for short, WLAN) is
specified in IEEE 802.11 standard [IEEE 2012], which enable the use of heterogeneous
communication devices within the same network. Stations of a wireless network cannot
listen to their own transmission. Each station has a backoff counter (with the maximal
value of B) to minimize the likelihood of transmission collision. The time bounded
version of this model (with four components) is considered. We verify the property “the
probability that any station’s backoff counter hits the number K within the time limit
T is at most 0.1.”

Experimental results with T = 2,000 and T = 1,000 are given in Table V(a) and (b),
respectively. The parameters (B, K) are listed in the first column. Experimental results
show that the compositional verification outperforms the monolithic probabilistic model
checking consistently on failed properties. When the property is verified to be false,
the improvement of model size and verification time are consistent: the improvement
of verification time varies from 98.5% to 99.8% in the first set of experiments and
varies from 97.2% to 99.5% in the second set of experiments, and the improvement of
model size varies from 89.1% to 96.1% in the first set of experiments and varies from
88.7% to 95.9% in the second set of experiments. If a property holds, the compositional
verification does not reduce the model size but still improves the verification time in
four out of six cases.

FireWire root contention protocol. The IEEE 1394 FireWire root contention protocol
(for short, FireWire) is a root election protocol for connected networks [Kwiatkowska
et al. 2003]. Among nodes connected in a network, a root node needs to be elected to act
as the manager of the bus in the network. The time bound for message transmission
is parameterized by deadline. The implementation version of this model (with five
components) is considered. We verify the property “the probability that a root node is
elected eventually before some time deadline passes is at most 0.1.”

Experimental results in Table VI show that the compositional verification outper-
forms the monolithic probabilistic model checking in all experiments. The improve-
ment of model size and verification time are stable. The verification time is improved
by 95.9%, and the model size is reduced by 89.1% on average.

Randomized dining philosophers. This model (for short, Philos) gives a randomized
solution to the dining philosophers problem [Lehmann and Rabin 1981]. N philoso-
phers sit around a circular table. Neighboring philosophers share a resource. A philoso-
pher can eat if he obtains the resources from both sides. We verify the property “the
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Table V. Results on WLAN: Time in Seconds, Size in 103 Nodes

(a) Time Limit T = 2, 000
PRISM-M Compositional Reduction (%)

Param Pmax Result Time Size #MC Time Size Time Size

(2,1) 1.00 False 360.6 304 4 3.8 33 99.0 89.1
(2,2) 0.18 False 381.4 304 4 5.9 33 98.5 89.1
(3,1) 1.00 False 652.2 627 4 3.8 41 99.4 93.5
(3,2) 0.18 False 675.1 627 4 5.9 41 99.1 93.5
(3,3) 0.02 True 687.0 627 11 977.9 665 –42.3 –6.1
(4,1) 1.00 False 2,481.3 1,321 4 5.1 52 99.8 96.1
(4,2) 0.18 False 2,620.3 1,321 4 7.6 52 99.7 96.1
(4,3) 0.02 True 2,530.0 1,321 11 1,776.1 1,421 29.8 –7.6
(4,4) 0.00 True 2,684.0 1,321 11 2,061.7 1,421 23.2 –7.6

Cases False 7,170.9 4,505 24 32.2 253 99.6 94.4
All 13,072.0 7,774 57 4,847.9 3,760 62.9 51.6

(b) Time Limit T = 1, 000
PRISM-M Compositional Reduction (%)

Param Pmax Result Time Size #MC Time Size Time Size

(2,1) 1.00 False 177.1 295 4 3.1 33 98.3 88.7
(2,2) 0.18 False 178.4 295 4 4.9 33 97.2 88.7
(3,1) 1.00 False 307.8 604 4 3.4 41 98.9 93.2
(3,2) 0.18 False 313.4 604 4 5.4 41 98.3 93.2
(3,3) 0.02 True 324.5 604 9 358.5 604 –10.5 –0.1
(4,1) 1.00 False 876.6 1,271 4 4.8 52 99.5 95.9
(4,2) 0.18 False 886.5 1,271 4 7.0 52 99.2 95.9
(4,3) 0.02 True 901.4 1,271 9 635.8 1,272 29.5 0.0
(4,4) 0.00 True 961.7 1,271 9 757.2 1,272 21.3 0.0

Cases False 2,739.7 4,341 24 28.5 252 99.0 94.2
All 4,927.3 7,487 51 1,780.0 3,400 63.9 54.6

Table VI. Results on FireWire: Time in Seconds, Size in 103 Nodes

PRISM-M Compositional Reduction (%)
Param Pmax Result Time Size #MC Time Size Time Size

200 1.00 False 86.0 837 4 37.1 130 56.9 84.5
300 1.00 False 293.2 1,196 4 38.5 130 86.9 89.2
400 1.00 False 507.6 1,221 4 38.9 130 92.3 89.4
500 1.00 False 718.5 1,222 4 39.3 130 94.5 89.4
600 1.00 False 954.3 1,244 4 39.2 130 95.9 89.6
700 1.00 False 1,160.9 1,244 4 39.2 130 96.6 89.6
800 1.00 False 1,380.2 1,244 4 39.2 130 97.2 89.6
900 1.00 False 1,590.2 1,244 4 39.2 130 97.5 89.6

1,000 1.00 False 1,803.4 1,244 4 39.5 130 97.8 89.6
All 8,494.4 10,693 36 350.1 1,168 95.9 89.1

probability that neighboring philosophers do not obtain their shared resource simulta-
neously is at most 0.01.”

Experimental results in Table VII show that the compositional verification outper-
forms the monolithic probabilistic model checking consistently. The verification time
is improved by 89.7% on average and the model size is reduced by 67.4% on average.
The monolithic probabilistic model checking fails to verify the property if the number
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Table VII. Results on Philos: Time in Seconds, Size in 103 Nodes

PRISM-M Compositional Reduction (%)
Param Pmax Result Time Size #MC Time Size Time Size

10 0.00 True 2.4 15 1 1.2 5 52.1 65.7
15 0.00 True 11.5 33 1 5.0 11 56.3 66.6
20 0.00 True 29.7 59 1 13.4 19 54.9 67.0
25 0.00 True 56.4 91 1 31.5 30 44.1 67.3
30 0.00 True 108.8 131 1 54.7 43 49.7 67.4
35 0.00 True 1,022.6 178 1 96.5 58 90.6 67.5
40 0.00 True 2,348.2 233 1 168.1 75 92.8 67.6
45 0.00 True — — 1 926.2 95 — —

All (N ≤ 40) 3,579.7 740 7 370.4 241 89.7 67.4

of philosophers reaches 45 due to the out-of-memory error, whereas the compositional
approach verifies the instance successfully.

Summary. The results are quite encouraging. In 40 of 45 cases, the compositional
verifier outperforms PRISM-M significantly. Moreover, a reduction of 90% in time is
achieved in 21 cases, and a reduction of 80% in model sizes is attained in 21 cases.
Our compositional approach benefits the verification by avoiding the construction of
the whole model. As shown in the size reduction column of the preceding tables, our
compositional approach succeeds in learning an assumption A such that the size of
A‖M1 is much smaller than that of M0‖M1 in most cases.

Note that for the satisfied cases in the WLAN example, the compositional approach
does not reduce the model size and the ratio of saved time is not as significant as for
the unsatisfiable cases. One possible reason is that it usually takes more equivalence
queries for the learning algorithm to prove both premises of the reasoning rule than to
disprove those. Observe, however, that for all satisfied cases in the Philos example, the
compositional approach outperforms PRISM-M significantly. We consider its reason
as the large gap between the actual probability Pmax and the probability bound p. In
later experiments, we would test the impact of this gap on the effectiveness of our
learning-based framework.

8.2. Compositional Versus Monolithic (Hybrid Based)

The second experiment compares our compositional approach against PRISM-H. The
same set of examples are used to test both approaches. Note that PRISM-H consumes
an equal size of MTBDDs as PRISM-M, whereas the latter has already been reported
in the first experiment. We compare only runtimes in this experiment.

The results are plotted in Figure 12, where each point represents one benchmark
case, the x-axis represents the time in seconds taken by our compositional approach,
and the y-axis stands for the time in seconds taken by PRISM-H. For simplicity, we
do not distinguish the benchmark cases of WLAN models with different time limits,
and we represent them using the same type of points. A time value of 3,600 indicates
a time-out after 3,600 seconds. Note that the x-axis is logarithmic and the y-axis is
linear. Points above the parabola (representing y = x) indicate an advantage for our
compositional approach.

The comparison results heavily depend on the examples. Similar phenomenons were
also reported in Kwiatkowska et al. [2004b]. We observe in Figure 12 that PRISM-
H wins in the Consensus example, whereas our compositional approach wins in all
other examples. Especially, in the WLAN and FireWire examples, PRISM-H runs out
of memory quickly when the model size becomes large. We also observe 16 time-outs
(≥3600 seconds) for PRISM-H and only 1 for our compositional approach.
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Fig. 12. Runtimes of the compositional approach and PRISM-H on all examples.

8.3. Impact of the Probability Bound

The third experiment evaluates the impact of the probability bound p on the effec-
tiveness of compositional verification. This experiment is performed on examples with
different probability bounds.

The results on the WLAN example with (B, K) = (4, 2) are plotted in Figure 13(a).
When p is above or nearly above Pmax (≈ 0.1836), the performance of our approach
goes down quickly. The reason is that the property becomes satisfied when p ≥ Pmax.
More equivalence queries are then required to infer a proper assumption to prove
both premises of the reasoning rule. On the other hand, if the probability bound p is
less than Pmax, a coarse weighted assumption suffices to verify the property. Similar
phenomenons can be observed on the Consensus example with (N, K) = (4, 2) (Fig-
ure 13(b)). The result from the FireWire example with deadline = 400 (Figure 13(c))
is quite different. Observe that the actual probability Pmax of the FireWire examples
is 1. Its properties are trivially unsatisfied for any p. Thus, there is no rising edge in
Figure 13(c) as in other figures. In the Philos example, the probability Pmax is 0, and
therefore the properties are always satisfied for any p. Similar to FireWire, we do not
observe any rising edge in Figure 13(d). However, compositional verification always
outperforms the monolithic algorithm regardless of satisfiability of properties in both
examples.

8.4. Impact of the Learning Process

The fourth experiment tests the impact of the learning process to that of our composi-
tional approach. In the learning-based verification framework, each time the mechan-
ical teacher finds a counterexample, a learning algorithm is employed to refine the
previous assumption. In this experiment, we disable the learning process and use a
more direct method to refine the assumptions.

Let Ai be the current weighted assumption, and let t be the counterexample returned
by the mechanical teacher. Recall that t is a single transition in Ai selected by the
mechanical teacher (Section 7.2). Instead of passing t to the learning algorithm, we
may directly revise the weight of t to that of the corresponding transition in M0. We call
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Fig. 13. Impacts of p on the performance of MTBDD-based approaches (red for compositional, blue for
PRISM).
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the revision Ai+1. Then Ai+1 is presented to the mechanical teacher, and the teacher
will check if Ai+1 is a proper assumption (Algorithm 4). If not, the teacher returns
one transition of Ai+1 as the counterexample and the preceding refinement applies
again. Apparently, Ai+1 has one more identical transition to M0 than Ai. Recall that M0
contains a finite number of transitions; this procedure always terminates. In the worst
case, this approach will find M0 as the weighted assumption. We call this approach the
compositional approach without learning, denoted as compositional−.

Two types of initializations are realized for compositional−:

(1) true-initialization9: The initial assumption has a transition on any action between
any two states, with the weight of 1. For example, the weighted assumption in
Figure 3 is the true-initialization of node1.

(2) M0-initialization: The initial assumption has a transition if M0 does, with the
weight of 1. For example, revising all weights of automaton in Figure 1 to 1’s gives
the M0-initialization of node1.

Experimental results are listed in Table VIII. For each test case, we show the model
size (Size), runtime (Time), and required number of model checker calls (#MC) by
compositional− along with each of the preceding initializations. For comparison, the
results of compositional are also listed here.

We first compare the performance of compositional− using different types of ini-
tializations. The experimental results show that M0-initialization is superior to true-
initialization. Compositional− with M0-initialization succeeds in giving results for
all cases, whereas compositional− with true-initialization runs out of time for three
cases of the Consensus example and all cases of following three examples: WLAN with
T = 2,000, WLAN with T = 1,000, and FireWire. Looking at the #MC columns, we
further find that the required number of model checking calls by compositional− with
M0-initialization is much less than that with true-initialization in most cases. This fact
well explains the reason of M0-initialization outperforming true-initialization. In fact,
M0-initialization is much more aggressive than true-initialization. In most cases, M0-
initialization itself is already a proper assumption for the compositional verification
framework.

We then compare the performance of compositional− to compositional. In the last row
of Table VIII, we sum up the results of all test cases. Note that compositional uses true-
initialization as well, but it requires fewer iterations of refinement than compositional−
with true-initialization. This witnesses the acceleration of the learning procedure in
finding proper assumptions in the compositional verification framework. The learning
process leads our approach to revise several transitions in each refinement iteration.
In contrast, compositional− revises exactly one transition in each refinement iteration.
Comparing compositional to compositional− with M0-initialization, we observe that
the former performs much better than the latter. In total, compositional− with M0-
initialization requires about double runtimes and triple MTBDDs than compositional.
This observation witnesses the power of the learning algorithm. Let AM0 be the M0-
initialization. The learning algorithm often infers a much smaller assumption than AM0 .

9. RELATED WORKS

Probabilistic model checking. There is much literature that deals with verification and
analysis of probabilistic systems [Baier and Katoen 2008]. Two categories of correct-
ness properties are identified for probabilistic systems: the qualitative properties that
require the satisfaction of the specification with probability 1 and the quantitative

9Our approach compositional uses the true-initialization.
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Table VIII. Experimental Results on the Learning Algorithm
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(2, 6) 6 6.1 0.4 2 3.2 0.4 30 30.7 0.4
(2, 8) 6 13.7 0.5 2 7.0 0.4 38 97.1 0.5
(2, 10) 6 24.9 0.5 2 12.9 0.4 46 186.9 0.5
(4, 2) 6 35.8 2.2 2 24.6 2.2 6 50.2 2.2
(4, 4) 6 241.1 2.3 2 174.5 2.3 6 319.7 2.2
(4, 6) 6 703.5 2.3 2 513.1 2.3 8 1,339.9 2.2
(4, 8) 6 1,627.4 2.3 2 1,223.0 2.3 — — —
(4, 10) 6 3,051.7 2.3 4 7,173.6 2.4 — — —
(6, 2) 6 1,068.1 6.8 2 802.7 7.0 6 1220.3 6.7
(6, 4) 6 5,751.4 6.7 2 7,858.1 6.9 — — —
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(2,1) 4 3.8 33.2 2 359.0 304.3 — — —
(2,2) 4 5.9 33.2 2 337.0 304.3 — — —
(3,1) 4 3.8 40.9 2 646.4 626.7 — — —
(3,2) 4 5.9 40.9 2 632.0 626.7 — — —
(3,3) 11 977.9 664.8 1 636.0 626.7 — — —
(4,1) 4 5.1 52.1 2 1,067.6 1,321.2 — — —
(4,2) 4 7.6 52.1 2 1,066.0 1,321.2 — — —
(4,3) 11 1,776.1 1,421.5 1 1,088.7 1,321.2 — — —
(4,4) 11 2,061.7 1,421.5 1 1,129.8 1,321.2 — — —
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(2,1) 4 3.1 33.2 2 180.7 295.2 — — —
(2,2) 4 4.9 33.2 2 185.4 295.2 — — —
(3,1) 4 3.4 40.9 2 304.0 603.9 — — —
(3,2) 4 5.4 40.9 2 308.6 603.9 — — —
(3,3) 9 358.5 604.3 1 316.1 603.9 — — —
(4,1) 4 4.8 52.1 2 573.6 1,271.2 — — —
(4,2) 4 7.0 52.1 2 577.3 1,271.2 — — —
(4,3) 9 635.8 1,271.7 1 590.5 1,271.2 — — —
(4,4) 9 757.2 1,271.7 1 621.5 1,271.2 — — —
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200 4 37.1 129.8 2 84.8 836.9 — — —
300 4 38.5 129.8 2 276.4 1,196.4 — — —
400 4 38.9 129.8 2 481.1 1,220.9 — — —
500 4 39.3 129.8 2 649.1 1,221.5 — — —
600 4 39.2 129.8 2 878.6 1,243.5 — — —
700 4 39.2 129.8 2 1,015.6 1,243.6 — — —
800 4 39.2 129.8 2 1,300.8 1,243.6 — — —
900 4 39.2 129.8 2 1,405.6 1,243.6 — — —

1,000 4 39.5 129.8 2 1,664.1 1,243.6 — — —

P
h

il
os

10 1 1.2 5.0 1 2.2 14.5 1 0.9 5.0
15 1 5.0 11.0 1 11.2 32.9 1 4.7 11.0
20 1 13.4 19.3 1 29.3 58.5 1 13.2 19.3
25 1 31.5 29.9 1 59.3 91.3 1 30.7 29.9
30 1 54.7 42.8 1 117.4 131.2 1 53.2 42.8
35 1 96.5 57.9 1 1,082.7 178.3 1 93.2 57.9
40 1 168.1 75.3 1 2,252.5 232.6 1 140.4 75.3

Total 211 19,872 8,596 77 39,723 26,720 — — —
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properties that require the satisfaction of the specification measurable with a numer-
ical value. Verification techniques for finite Markov chains and finite MDPs against
qualitative properties were first addressed by Vardi [1985, 1999] and Vardi and Wolper
[1986, 1994], Pnueli and Zuck [1986], and Baier and Kwiatkowska [1998]. Techniques
for the quantitative analysis of probabilistic models were proposed by Courcoubetis
and Yannakakis [1995], Couvreur et al. [2003], and Bustan et al. [2004].

Techniques for extending the temporal logic to probabilistic settings exist in many
works. A branching-time temporal logic for reasoning about probabilistic systems was
originally proposed in Hart and Sharir [1986]. Hansson and Jonsson [1994] introduced
PCTL, which is capable of specifying properties with both time and probability (e.g.,
“after a request there is at least a 95% probability that this request will be responded
within 2 seconds”). They also developed algorithms for checking PCTL properties on
Markov chains. Variants of PCTL have been proposed for MDPs and other probabilistic
models [Hansson 1994; Segala and Lynch 1994; Bianco and de Alfaro 1995]. A good sur-
vey on PCTL model checking can be found in Kwiatkowska et al. [2004a]. Two popular
probabilistic model checkers are PRISM [Kwiatkowska et al. 2011] and MRMC [Katoen
et al. 2005].

The notion of counterexamples is also important to the approach of model check-
ing. Criteria for defining counterexamples for nonprobabilistic systems are identified
in Clarke et al. [2002]. Extending the notion of counterexamples to probabilistic set-
tings has been investigated by many researchers. Various formalisms of counterexam-
ples for probabilistic systems have been proposed, including sets of paths [Aljazzar
et al. 2005; Han et al. 2009], Markov chains [Chatterjee et al. 2005; Hermanns et al.
2008], MDPs [Chadha and Viswanathan 2010], and graphs with strongly connected
components [Wimmer et al. 2012, 2013].

The preceding techniques form the basis of probabilistic model checking. Our tech-
nique differs from these techniques by focusing on compositional verification of prob-
abilistic systems. Given a system consisting of several concurrent components, the
preceding techniques attempt to construct a system model by composing the behaviors
of all components and then perform model checking on this system model. Note that the
composition of concurrent components may lead to severe state space explosion. Our
compositional approaches use the divide-and-conquer strategy to avoid the construc-
tion of the system model. In the following, we discuss related works in compositional
verification of probabilistic systems.

Compositional verification of probabilistic systems. The most relevant works to ours
are Kwiatkowska et al. [2010] and Feng et al. [2010, 2011]. In their proof rules, assump-
tions are classical deterministic finite automata. The L∗ algorithm has been applied
to infer classical assumptions in Feng et al. [2010]. As discussed earlier, classical as-
sumptions cannot express general probabilistic behaviors. Such techniques are sound
but incomplete. We adopt weighted automata as assumptions to have a sound and in-
vertible proof rule. Our technique is both sound and complete. A sound and invertible
assume-guarantee reasoning proof rule for probabilistic I/O systems is given in Feng
et al. [2011]. However, the framework only works for fully probabilistic discrete time
Markov chains and may not terminate. In contrast, our technique applies to MDPs and
always terminates.

The undecidability of inferring labeled probabilistic transition systems under An-
gluin’s active learning model is shown in Komuravelli et al. [2012b]. A (necessarily)
restricted learning algorithm for such probabilistic systems is also proposed in the
same work. In addition to learning different concepts, the restricted algorithm does not
utilize membership queries, whereas ours does.

An alternative direction for generating probabilistic assumptions is to use
abstraction refinement techniques. This technique, called assume-guarantee
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abstraction-refinement (AGAR), was first proposed for compositional verification of clas-
sical systems [Gheorghiu Bobaru et al. 2008] and then extended in Komuravelli et al.
[2012a, 2012b] for probabilistic systems. In Komuravelli et al. [2012a], probabilistic
assumptions are conservative abstractions of system components. They are iteratively
refined by counterexamples [Clarke et al. 2000]. However, AGAR relies on partition-
ing the explicit state space to construct assumptions [Gheorghiu Bobaru et al. 2008;
Komuravelli et al. 2012a]. We are not aware of any symbolic implementation of AGAR
techniques for classical or probabilistic systems.

Learning algorithms for probabilistic systems. Various learning algorithms have been
proposed for probabilistic systems [Sen et al. 2004; Mao et al. 2011, 2012; Chen et al.
2012]. These learning algorithms adopt a passive learning model. They are not appli-
cable to the learning-based assume-guarantee reasoning framework in Cobleigh et al.
[2003]. To the best of our knowledge, an exact learning algorithm for probabilistic
systems under Angluin’s active learning model is yet to be found.

Multiplicity automata is another formalism for representing stochastic languages.
Efficient algorithms exist for learning multiplicity automata under Angluin’s learning
model [Bergadano and Varricchio 1996; Beimel et al. 1996, 2000]. However, a multi-
plicity automaton may generate a stochastic language that cannot be generated by
any probabilistic automaton [Denis and Esposito 2004]. This formalism is thus not
applicable to our verification framework.

Learning algorithms for binary decision diagrams were proposed in Gavaldà and
Guijarro [1995] and Nakamura [2005]. In Gavaldà and Guijarro [1995], an L∗-based
algorithm was developed. The work in Nakamura [2005] used a classification tree-based
learning algorithm for regular languages. Both algorithms inferred deterministic finite
automata and transformed them into decision diagrams.

10. CONCLUSION

We proposed a sound and complete learning-based assume-guarantee reasoning tech-
nique for probabilistic safety properties on MDPs. Instead of probabilistic assump-
tions, we infer weighted assumptions for compositional verification. Using an MTBDD
learning algorithm, our technique generates implicit representations of weighted as-
sumptions. Experimental results show that the assume-guarantee reasoning technique
outperforms monolithic probabilistic model checking in most of the test cases.

Our technique can be applied to sequential probabilistic systems. Let M be an MDP,
and let P≤p[ψ] be a probabilistic safety property. One generates a 0/1-WA A such
that M �e A and A |= P≤p[ψ] by our learning-based technique. However, it is not
recommended when M is composed of concurrent MDPs. Since the construction of the
composition can be expensive, the computation should be deferred after concurrent
components are simplified. Assume-guarantee reasoning presented in this article is
certainly preferred.

Currently, our PRISM-based implementation receives a finite set of paths as
weighted witnesses to M �|= P≤p[ψ]. Generally, weighted witnesses to M �|= P�p[ψ]
where �∈ {<,≤,>,≥} are represented as graphs with strongly connected compo-
nents [Wimmer et al. 2012, 2013]. We plan to generalize transition contributions to
select counterexamples from spurious weighted witnesses with strongly connected
components. Additionally, we would like to extend our learning framework to verifying
richer properties, such as general probabilistic safety or liveness properties.
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