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the performance of these technologies. However, current SMT solvers are designed for the general purpose of
constraint solving. Lots of useful knowledge of programs cannot be utilized during SMT solving. As a result,
the SMT solver may spend much effort to explore redundant search space. In this article, we propose a novel
approach to utilizing control-flow knowledge in SMT solving. With this technique, the search space can be
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experiments on credible benchmarks. The results show significant improvements of our approach.
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1 INTRODUCTION

Satisfiability modulo theories (SMT) are applied in diverse software engineering technologies, such
as software verification [4, 22], static program analysis [11, 38], symbolic execution [26], test-case
generation [39], and so on. A powerful SMT solver is a crucial factor in improving the efficiency
of these technologies. However, SMT solvers are designed for the general purpose of constraint
solving [15]. Domain-specific knowledge cannot be efficiently utilized in current SMT solvers. On
the other hand, domain-specific knowledge may be quite useful for pruning the search space, and
thus improving the efficiency of SMT solvers.
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A control-flow graph (CFG) is the graph representation of programs. It is simple but informa-
tive. Lots of domain-specific knowledge about programs is implied in this representation. For ex-
ample, let π be a program execution, if π passes a basic block, it passes all statements in this block;
reversely, if it does not pass a block, all statements in that block are not executed by π . This is
straightforward from the CFG. However, after the program is encoded into the SMT formula, the
SMT solver is unaware of this knowledge. Furthermore, consider an if-statement, an execution can
never pass both of its branches. Again, the SMT solver is unaware of this. As a result, the SMT
solver may spend a lot of effort to explore the redundant search space, which could be pruned if
the control-flow knowledge was known.

One may consider encoding the control-flow knowledge into the SMT constraints (Section 5).
However, encoding this knowledge needs to explicitly specify program executions, which may
yield an extremely large number of constraints, and increase the complexity of the SMT solving
(Section 6.6). This article proposes a simpler but smarter solution for utilizing control-flow knowl-
edge in program verification (Section 4). The basic idea is to use a decision order and a decision value
mapping to guide the SMT solving. The decision order decides at each search step which variable
should be taken for assignment, and the decision value mapping provides a prioritized value for
each decision variable. They together control the search direction in the SMT solving. We propose
to infer the decision order and the decision value mapping from the control-flow graph of the
program.

We propose two heuristics for arranging the decision order (in Section 4.1). First, we recognize
the importance of branching conditions that dominate the control flows of the program, and assign
the corresponding variables (called branching variables) higher priorities in the decision order. Sec-
ond, we follow the domination relation of the control flow graph to arrange the order of branching
variables. We also devise heuristics for prioritizing the decision values of branching variables (in
Section 4.2). Regarding the program verification as a searching process on the control-flow graph,
the decision value of a branching variable determines which of its child nodes should be explored
next. We propose two heuristics for evaluating each of its child nodes by computing the length of
its shortest path and the sum length of all its paths, respectively. Finally, the inferred decision order
and the prioritized decision values are all enforced in the search process of the SMT solving (in
Section 4.3). In this way, we get a lightweight technique to utilize control-flow knowledge in SMT
solving. It does not need a lot of implementation in the SMT solver, and can take full advantage of
the built-in features of the solver.

Moreover, we propose an enhanced conjunction normal form (CNF) conversion procedure (in
Section 4.4) to collaborate with the above approaches. After the program is encoded into the
SMT formula, the if-then-else (ite) terms keep some control-flow information of the original
program. The conventional approach breaks the nested structures of ite terms, and thus lose
the control-flow information. We propose a new ite rewriting algorithm, with which the nested
structure of ite terms is kept in some form of CNF formulas. Moreover, with our enhanced ap-
proach, the generated CNF contains fewer clauses and fewer variables. The efficiency is further
improved.

To the best of our knowledge, this is the first attempt at improving SMT solving by using
domain-specific knowledge of programs. There are some works on domain knowledge-guided
SAT solving [5, 42, 45, 46]. In [46], the structure information of transition systems is utilized to
guide the SAT solvers. In [42], the variable dependency information of the model is utilized to
guide the SAT solvers. Wang et al. [45] considers the iterative SAT solving for bounded model
checking. The information from the previous unsatisfiability core is utilized to refine the deci-
sion ordering for the current SAT instance. All these techniques are designed for SAT solvers, and
the domain knowledge comes from the model checking. In this article, we consider SMT solving
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for program verification. The domain knowledge is different, and the application target is also
different.

We implement a prototype of our approaches on top of CBMC and Z3. We conducted exten-
sive experiments on programs in SV-COMP’17.1 Totally, 948 SMT instances were generated from
these programs and were used as the benchmark set. Experimental results show that the control-
flow knowledge can significantly improve the efficiency of SMT solving. The average speed-up is
3.39 times for all instances, and 8.85 times for satisfiable instances.

In summary, our main contributions include:

• We propose a novel approach for leveraging control-flow knowledge in SMT solving. This
approach is lightweight and can take full advantage of the built-in features of SMT solvers.

• We devise efficient heuristics for inferring the decision order and prioritizing the decision
values from the control flows of the program.

• We propose an enhanced CNF conversion procedure, with which the control-flow informa-
tion can be kept in the CNF formulas.

• We implement the prototype of our approach on top of CBMC and Z3, and conduct ex-
tensive experiments to evaluate its effectiveness and efficiency. Results show significant
improvements of our approach.

This article is an extended and revised version of a preliminary conference paper [9]. Com-
pared to [9], this article makes the following new contributions. First, in [9], only the decision
order is proposed to guide the SMT solving. In this article, we further propose to guide the SMT
solving using the decision values. Two efficient heuristics were devised for prioritizing the de-
cision values of branching variables. The newly proposed techniques further enhance the pre-
vious control flow-guided SMT solving approach. Second, this article reports three new sets of
experimental results, one for evaluating the heuristics for decision values; one for evaluating the
different combinations of the proposed tactics; and the last for evaluating the explicit encoding
approach.

The rest of this article is organized as follows: Section 2 introduces some background knowledge.
Section 3 employs a simple example to motivate our approach. Section 4 presents our control-
flow guided SMT solving approach. Section 5 presents a practical approach for encoding control-
flow knowledge. Evaluation and experimental results are reported in Section 6. Related works are
discussed in Section 7. Finally, Section 8 concludes this article.

2 PRELIMINARIES

2.1 Notations

In first-order logic (FOL), a term can be a variable, a constant, or an n-ary function applied to
n terms. An atom is �, ⊥, or an n-ary predicate applied to n terms. A literal is an atom or its
negation. A FOL formula is built from literals using the Boolean connectives and quantifiers. An
interpretation (or model) M consists of a non-empty set of objects called the domain of M , written
dom(M ); a map from each variable and each constant, respectively, to an object in dom(M ); and an
interpretation for each function symbol and each predicate symbol, respectively. Given a formula
Φ, we say M satisfies Φ, written M |= Φ, if Φ is true in the model M . A formula Φ is said satisfiable,
if there exists a model M such that M |= Φ; and valid if M |= Φ for any model M .

A first-order theory T is defined by a signature and a set of axioms. The signature defines a set
of constants, functions, and predicate symbols allowed in T , and the axioms define the intended

1https://sv-comp.sosy-lab.org/2017/.
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meanings. AT -model is a model that satisfies all axioms ofT . A formula Φ isT -satisfiable if there
exists a T -model M such that M |= Φ. A formula Φ is T -valid if M |= F for all T -models M .

2.2 Control Flow Graph

A control flow graph (CFG) is a graphical representation of computation and control flow in the
program. Let a basic block be a straight-line sequence of instructions without any jumps or jump
targets. Especially, a jump target starts a block, and a jump ends a block. A control flow graph
(CFG) is a directed graph, where nodes are basic blocks and edges represent jumps in the control
flow. Two specially designated blocks, ENTRY and EXIT, may be used in a CFG to represent the
entry and exit points of the program.

Let c be the condition of a branch-statement. The c is called a branching condition. Two branches
of the branch-statement are called c branch and ¬c branch, respectively. Given a basic block, its
block condition is a predicate such that the block is executable iff the block condition is satisfiable.

2.3 Program Verification

Recent advances in model checking [5], static analysis [38], abstract interpretation [11], predicate
abstraction [4, 22], and the like, promote program verification to a practical technique for cor-
rectness assurance of programs. Loops are the main hurdle for the program verification. There
are mainly two approaches for handling loops in a program: loop invariant [41] and loop unwind-
ing [36]. The former approach uses a loop invariant, which holds at the beginning of each iteration
of the loop, to represent the behaviors of the loop. However, it relies on the user to provide the
loop invariant. The automatic generation of loop invariants has been extensively studied, but the
existing techniques are still not practical enough [1]. The more popular approach for handling
loops is loop unwinding. With this technique, each loop is unwound to a predefined depth. As a
result, the loops are replaced by nested if-statements. This technique is good at bug finding. Other
techniques, like k-induction [16], enhance this approach by enabling the correctness proving of
programs.

This article assumes all programs have been processed by the loop invariant or loop unwinding
technique. Thus, the programs are free of loops. The loop-free programs are converted to their
static single assignment (SSA) forms [12]. With the SSA form, the correctness of a program can
easily be encoded as a set of FOL formulas [17]. These formulas are called the verification condition
of the program with respect to the desired property. The validity of the verification condition
implies the correctness of the program.

2.4 Satisfiability Modulo Theories

Satisfiability modulo theories (SMT) extends SAT with the ability to reason with first-order theo-
ries. We assume all theories discussed in this paper are decidable, and for each theoryT , there is a
T -solver that can check theT -satisfiability of conjunctions of literals inT . In practice, theories are
not isolated. For example, software verification needs theories of uninterpreted functions, arith-
metic, arrays, bit-vectors, and so on. Nelson and Oppen [35] proposed a combination method to
deal with FOL formulas in multiple theories.

DPLL(T) extends the DPLL algorithm [13] to incorporate reasoning about theories. It uses an
SAT solver to cope with the Boolean structure and theory solvers for deciding satisfiability in back-
ground theories. The basic idea of DPLL(T) is illustrated in Figure 1. Given an SMT formula Φ, each
of its atoms is first replaced with a fresh Boolean variable, called the Boolean abstraction. Denote
the resulting formula as B (Φ). The Boolean abstraction gives us a lazy way to solve SMT formulas.
DPLL(T) uses an SAT solver to find assignments for B (Φ) and then uses a theory solver to check
theT -satisfiability of the found assignments. The Boolean abstraction is an over-approximation of
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Fig. 1. DPLL(T).

ALGORITHM 1: DPLL-T(Φ)

Input: An SMT formula Φ
Output: SAT or UNSAT

1: while true do

2: while not propagate_and_check() do

3: if decision_level = 0 then return UNSAT;
4: else resolve_conflict ();

5: if not decide() then return SAT;

the original formula with respect to its satisfiability. IfB (Φ) is unsatisfiable, so is Φ, but the reverse
may not hold.

The high-level view of a practical DPLL(T) algorithm is shown in Algorithm 1. At this level,
the algorithm is the same as that of a conflict-driven clause learning-based SAT solver [6]. The
differences lie in the implementations of propagate_and_check(), resolve_conflict () and decide().
The method propagate_and_check() repeatedly applies unit propagation and theory propagation
to force values to literals as many as possible. It also checks the T -consistency of the current
model. The method returns 0 if it encounters a conflict or T -inconsistency, and 1 otherwise. In
case of conflict orT -inconsistency, the method resolve_conflict () is invoked to learn conflict clauses
and adds them to the clause database. The method decide() decides the next unassigned Boolean
variable and guesses its value. If there is no unassigned variable, the current model is complete,
and is thus a satisfying model.

Many heuristics are developed for selecting the next unassigned variable and deciding its value.
A commonly used branching heuristic is the VSIDS branching heuristic, which is employed as the
default heuristic in many well-known solvers [7, 14, 32]. DPLL(T) is essentially a depth-first search
algorithm. We may guide the searching process of DPLL(T) by enforcing a variable order and its
values in the decide() method.

3 MOTIVATIONS

In this section, we use a simple example to motivate our approach. We show that some important
control-flow knowledge is neglected by SMT solvers, but utilizing this knowledge can make great
gains.

Consider a simple program shown on the left of Figure 2. Its main part is a two-tier nested
if-statements. The control-flow graph of this program is shown in Figure 3, where ellipse nodes
represent Entry and Exit, and rectangle nodes represent blocks. We ignore the detailed forms of
the branching conditions in the program, and simply represent them as c0 and c1, respectively. The
property to be verified is that x = y holds at the end of this program.
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Fig. 2. Example.

Fig. 3. Control flow graph of the example.

Verification Condition. The original program is first converted into the single static assign-
ment (SSA) form, where for each assignment-statement, a new variable is introduced for the
left-hand-side variable. After this conversion, there is at most one assignment for each variable.
The SSA form of the example program is shown in the right of Figure 2. Note that ite(bool , ·, ·) is
a ternary function that returns its second or third argument depending on whether its first argu-
ment is true or not. Also, note that the nested structure of the original if-statement is kept in the
formula as a nested ite structure.

The verification condition (VC) is

VC � Enc ∧ Cor (1)

where Enc is the encoding of the program, and Cor is the correctness condition. For the motivating
example, we have

Enc ≡ (x1 = 1) ∧ (x2 = 2) ∧ (x3 = 3) ∧ (y1 = 1) ∧ (y2 = 2) ∧ (y3 = 3)

∧(x4 = ite(c0,x1, ite(c1,x2,x3))) ∧ (y4 = ite(c0,y1, ite(c1,y2,y3)))
(2)

and
Cor ≡ (x4 � y4)

Note that the above formulas can be simplified by variable elimination. The elimination is also
performed by SMT solvers before the DPLL(T) procedure. For example, we can eliminate the vari-
able x1 in Enc by replacing it by 1 since we have the equation x1 = 1. After being simplified, the
Enc formula becomes

Enc ≡ (x4 = ite(c0, 1, ite(c1, 2, 3))) ∧ (y4 = ite(c0, 1, ite(c1, 2, 3)))

The program is correct with respect to the property if and only if VC is unsatisfiable.
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Conjunctive Normal Form. We rely on an SMT solver to check the satisfiability of VC. The for-
mula needs to be converted to conjunctive normal form (CNF). A conjunctive normal form is a
conjunction of clauses, where each clause is a disjunction of literals. We usually write a clause as
a logical implication for ease of understanding since it can be converted to a clause directly, e.g.,
A1 ∧ · · · ∧Ak → B can be converted to ¬A1 ∨ · · · ∨ ¬Ak ∨ B, where A1, . . . ,Ak and B are literals.
In the remainder of this article, we also write a CNF as a set of clauses, and a clause as a set of
literals.

Most SMT solvers adopt Tseitin’s transformation method [44] to perform the CNF conversion,
which adds a new variable for each subformula of the original formula. Considering the motivating
example, the CNF of Enc, written CNF (Enc), is the conjunction of the following clauses:

c0 → x4 = 1

¬c0 → x4 = tx

c1 → tx = 2

¬c1 → tx = 3

c0 → y4 = 1

¬c0 → y4 = ty

c1 → ty = 2

¬c1 → ty = 3

(3)

Note that the auxiliary variables tx and ty are introduced for the inner ite-terms of x4 and y4,
respectively. Moreover, CNF (VC) ≡ CNF (Enc) ∧ CNF (Cor ), where CNF (Cor ) ≡ x4 � y4.

Tseitin’s method guarantees that the converted formula is equi-satisfiable to the original for-
mula. In other words, the verification condition VC is satisfiable if and only if CNF (VC) is
satisfiable.

DPLL(T). In the following, we use vl to represent the Boolean variable for the atom l . The
Boolean abstraction of CNF (Enc), written B (CNF (Enc)), is

vc0 → vx4=1

¬vc0 → vx4=tx

vc1 → vtx=2

¬vc1 → vtx=3

vc0 → vy4=1

¬vc0 → vy4=ty

vc1 → vty=2

¬vc1 → vty=3

(4)

Moreover, B (CNF (VC)) ≡ B (CNF (Enc)) ∧ B (CNF (Cor )), where B (CNF (Cor )) ≡ ¬vx4=y4 .

3.1 Control-Flow Knowledge is Neglected

The first knowledge is about the execution of statements in the same block. Considering the
Boolean formula (4), all variables are independent of each other. The variables vx4=1 and vy4=1

can be assigned with different values by DPLL(T). However, if we look at the original program in
Figure 2, clearly the statements “x = 1” and “y = 1” are in the same basic block. For any execution,
either these two statements are both executed, or neither. Corresponding to the Boolean formula
(4), the Boolean variables vx4=1 and vy4=1 must be assigned to the same Boolean value. Similarly,
the Boolean variablesvx4=2 andvy4=2, or the Boolean variablesvx4=3 andvy4=3 must be assigned to
the same Boolean values, too. This is important knowledge about the control flow of the program,
which is, however, neglected by SMT solvers.

The second knowledge is about the execution of multiple blocks. The example program has three
blocks (lines 2, 5, and 7), with conditions of c0, ¬c0 ∧ c1, and ¬c0 ∧ ¬c1, respectively. Apparently,
their conditions are mutually exclusive. Hence, only one of these blocks can be executed in one
program execution. This important knowledge is also neglected by SMT solvers. For example, if
we assume that c0 is true, only statements “x = 1”, “y = 1”, and “assert(x==y)” are executed, and the
program’s correctness is relevant to these three statements only. For the Boolean formula (4), the
first two clauses encode the c0 branch, and the last six clauses encode the ¬c0 branch. We expect
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Fig. 4. Overview of our approach.

the last six clauses needn’t be considered in DPLL(T) as soon as vc0 is assigned to true. The actual
situation is that the third and fourth clauses can be dropped from DPLL(T) (since they are satisfied),
whereas the last four clauses cannot. The SMT solver still makes some efforts to consider different
assignments of Boolean variables in these clauses (i.e., to explore the corresponding blocks) in the
subsequent search process.

3.2 Applying Control-Flow Knowledge Makes Great Gains

Consider a basic block with n statements. Let Φ be the formula that encodes this block, and B (Φ)
the Boolean abstraction of Φ. Then there are at leastn Boolean variables inB (Φ). DPLL(T) treats all
these variables as independent individuals, and needs to explore their 2n assignments. In contrast,
with the control-flow knowledge about the execution of statements in the same block, only 2
assignments of these n variables (all true or all false) need to be explored.

Moreover, considering a program with m mutually exclusive blocks. Without the control-flow
knowledge, SMT solvers need to explore all combinations of these m blocks. The search space, in
this case, is the Cartesian product of thesem blocks. In contrast, with the control-flow knowledge
about the execution of multiple blocks, each time we explore one block only. The search space is
the sum of thesem blocks, which is thus greatly reduced.

4 CONTROL FLOW-GUIDED SMT SOLVING

To utilize the control-flow knowledge, a natural idea is to encode it into the verification condition.
However, specifying the control-flow knowledge may introduce a very large number of constraints
and thus increase the complexity of the SMT solving (Section 5). In this section, we propose a
simpler but smarter solution. The basic idea is to infer a variable order and a value mapping from
the control-flow structure of the program, and then use the order together with the value mapping
to guide the search process of DPLL(T) (more clearly, by enforcing this order and the mapped
values in decide() of Algorithm 1).

Our approach can take full advantage of the built-in features of DPLL(T). It provides a light-
weight technique for utilizing control-flow information. Figure 4 shows an overview of our ap-
proach. On the verifier side, besides the SMT formula, which encodes the verification problem, a
decision order (Section 4.1) and a value mapping (Section 4.2) are also inferred. On the solver side,
both the DPLL(T) (Section 4.3) and the CNF conversion (Section 4.4) are enhanced to make use of
the control-flow knowledge.

4.1 Decision Order

Let Φ be a formula, B (Φ) be the Boolean abstraction of Φ, and V be the set of Boolean variables
in B (Φ). We distinguish the Boolean variables of branching conditions, and call them branching

variables. LetV b ⊆ V be the set of branching variables in B (Φ). We intend to define a partial order
� over V , and call it the decision order. Let v1,v2 be two variables in V , if v1 � v2, we say v1 is
prior to v2 in �.
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ALGORITHM 2: buildBranchingGraph(G)

Input: A control-flow graph G = 〈N ,E〉,where N are nodes and E are edges.
Output: A branching graph GB = 〈N B ,EB〉.

1: GB ← duplicate(G );
2: for each d ∈ N B \ {Entry, Exit} do

3: if d is a branching node then � keep this node
4: label (d ) ← the branching condition;
5: else � delete this node
6: d ′ ← child (d );
7: for each d ′′ ∈ parent (d ) do

8: add an edge from d ′′ to d ′;

9: delete the node d ;

10: return GB ;

In the CFG of a program, a node d1 is said to dominate another node d2, if every path from Entry
to d2 must go through d1. Considering the CFG in Figure 3, the c0 node dominates all nodes in the
graph except for Entry and itself; the c1 node dominates two of its successor nodes.

Remark that the branching conditions dominate the control flow of the program. We have the
following heuristic.

Heuristic 1. Branching variables are prior to all other variables in V , i.e., ∀v1 ∈ V b ,v2 ∈ V \
V b .v1 � v2.

Recall the problem discussed in Section 3.1: the statements “x = 1” and “y = 1” are in the same
block, while the Boolean variablesvx4=1 andvy4=1 can be assigned to different values. With Heuris-
tic 1, this is not going to happen. If vc0 = true, by Boolean propagation (on the first two clauses
of the formula (4)), both vx4=1 and vy4=1 are forced to be true; if vc0 = f alse , the first two clauses
are trivially satisfied, and the Boolean variables vx4=1 and vy4=1 need not be considered in the
subsequent process of DPLL(T).

To further define the order among branching variables, we have the following heuristic:

Heuristic 2. Given two branching variables v1,v2 ∈ V b , v1 is prior to v2, if v1 dominates v2.

The underlying principle of Heuristic 2 is straightforward. Considering the CFG in Figure 3,
if c0 is true, the whole false branch of c0, no matter c1 holding or not, can be excluded from the
consideration. In contrast, deciding a value of c1 cannot drop any branch of c0.

This article considers loop-free programs only. Thus, there can never be two nodes d1 and d2 in
the CFG, such that both d1 � d2 and d2 � d1. In other words, the induced order by Heuristic 2 is a
partial order.

4.1.1 Inferring the Order. The control-flow graph has all the information that we need. Inferring
the decision order from the CFG of a given program is quite easy.

Given a CFG, we construct a so-called branching graph by eliminating all statement information
but keeping the branching conditions in the graph. The algorithm is presented in Algorithm 2. It
traverses all nodes, except for Entry and Exit, in the CFG. Let d be the current node. We denote
the statements labeled on d as label (d ), the parent nodes of d as parent (d ), and the child nodes
of d as child (d ). If the last statement of label (d ) is a branch-statement, we delete all statements
in label (d ) but keep the branching condition. If the last statement of label (d ) is not a branch-
statement, indicating that d has only one child node, we connect all its parent nodes to this single
child node, and then delete d . In this way, we generate a branching graph of the program.
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Fig. 5. Branching graph.

The resulting branching graph is a directed acyclic graph, where nodes are branching conditions,
and edges are control flows. All control flows are kept in the branching graph. The branching graph
of the motivating example is shown in Figure 5. Comparing the branching graph (in Figure 5) to
the CFG in Figure 3, four nodes are deleted, and the labels of two nodes are changed. Note that the
Boolean values associated with edges are all kept.

Apparently, the branching graph induces a partial order that agrees with Heuristic 2. We use
this graph to guide the search of DPLL(T).

4.1.2 Storing the Order. We design a mechanism to store the branching graph implicitly. The
edges of the graph are encoded in the identifiers of variables, which won’t affect the semantics of
the formula. As a result, when an SMT solver is invoked, the only input is the SMT formula file
(in SMT-Lib-v.2.0 format). No additional files need to be provided.

All branching variables are indexed by the order of their appearances in the program. Let v be
a branching variable. The identifier of v is a series of numbers, separated by “_”, with the first
number being the index of v , and others being indexes of v’s parents in the branching graph. For
example, the branching variablevc0 ’s identifier is “0”, indicating that c0 is indexed by 0, and has no
parent; the branching variable vc1 ’s identifier is “1_-0”, indicating that c1 is indexed by 1, its single
parent is indexed by 0 (i.e., c0), and the “-” symbol indicates that c1 is on the false branch of c0.

When an SMT solver is invoked, it first parses the SMT formula, and restores the branching
graph from the variables’ identifiers. Then it uses this branching graph to guide its DPLL(T)
procedure.

4.2 Decision Values

After a variable is chosen, we need further to decide its value (called decision value). A decision
value is either true or false. Many heuristics [20, 25, 30, 31, 32, 40] have been proposed for prior-
itizing the decision values of the chosen variable. However, all these heuristics are designed for
general satisfiability problems. With the control-flow knowledge, we are capable of devising more
efficient heuristics for prioritizing decision values.

Let G be the control-flow graph of the program. Given a branching node d of G, we denote
its left-child as dl that assumes the branching condition being true, and its right-child as dr that
assumes the branching condition being false. Letvd be the branching variable ford . An assignment
to vd corresponds to an outgoing edge from d . Specifically, vd = true represents the edge from d
to dl , and vd = false stands for the edge from d to dr .

Let V b ⊆ V be the set of branching variables. We intend to infer a prioritized value for each
branching variable by utilizing the control-flow knowledge. The inferring algorithm is depicted in
Algorithm 3. This algorithm maintains a data structureW that records a weight for each node ofG.
At the beginning of the algorithm (at line 2), all weights inW are initialized to -1. Then, depending
on different heuristics, one of the two procedures (LSP or LAP ) is invoked for computing the
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ALGORITHM 3: inferValues(G,heu)

Input: A control-flow graph G, and a method heu for computing weights.
Output: A mapping pValue : V b → {true, false}, whereV b ⊆ V are branching variables.

1: letW be a mapping from nodes of G to weights;
2: for each node d of G doW (d ) ← −1;

3: if heu = 0 then � by heuristic in Section 4.2.1
4: LSP (ENTRY);
5: else � by heuristic in Section 4.2.2
6: LAP (ENTRY);

7: for each v ∈ V b do

8: let d be the control-flow node that corresponds to v ;
9: let dl and dr be the left-child and right-child of d , respectively;

10: pValue(v ) ←W (dl ) <W (dr );

11: return pValue;

ALGORITHM 4: LSP (d )

Input: A control-flow node d .
Output: The weight of d .

1: if W (d ) ≥ 0 then returnW (d ); � the weight has already been computed

2: W (d ) ← MAX_VALUE;
3: for each child node d ′ of d do

4: W (d ′) ← LSP (d ′);
5: if W (d ′) <W (d ) thenW (d ) ←W (d ′); � compute the shortest length

6: W (d ) ←W (d ) + sizeof (d );
7: returnW (d );

ALGORITHM 5: LAP (d )

Input: A control-flow node d .
Output: The weight of d .

1: if W (d ) ≥ 0 then returnW (d ); � the weight has already been computed

2: W (d ) ← sizeof (d );
3: for each child node d ′ of d do

4: W (d ′) ← LAP (d ′);
5: W (d ) ←W (d ) +W (d ′); � compute the sum length

6: returnW (d );

weights (at line 4 or 6). Finally, with the computed weights, the value mapping pValue that assigns
a prioritized value to each branching variable is computed and returned (at lines 7 to 10).

4.2.1 Shortest Path First. Program verification is essentially to check if there exists an error
path that violates the desired property. The program verification process can be considered as
the procedure of searching the error path on the control-flow graph of the program. Let d be the
current node to be explored, we need to check whether or not there is a program path from d to
the error state. Among the many paths starting from d , we would like to attempt the shortest first.
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Formally, consider a branching node d , the shortest path from d can be divided into two parts,
i.e., the statements on d and the shortest path from its child nodes. Let sizeof (d ) be the number of
statements on d . The length of the shortest path (LSP) from d can be computed in a recursive way,
as

LSP (d ) = sizeof (d ) + min
d ′ ∈child (d )

LSP (d ′).

Especially, if d is the Exit node, LSP (d ) = sizeof (d ) = 0.

Heuristic 3. For a branching variable, we prefer the value assignment that leads to the shortest
path.

Algorithm 4 depicts the algorithm for computing LSP (d ), which starts from a given node, tra-
verses and computes the weights of all its offspring nodes. Note that this algorithm needs only to
count the number of statements, and has nothing to do with the program semantics. Its worst-case
complexity is O (n), where n is the number of offspring nodes of the given node. The computed
weights are all recorded in the mapping structureW , and returned to Algorithm 3. Finally, at line 10
of Algorithm 3, let vd be the branching variable for the branching node d , we set the prioritized
value vd = true if LSP (dl ) < LSP (dr ), and vd = false, otherwise.

For example, consider the c0 node in Figure 3. Its left-child is the node labeled with the statements
“x=1; y=1;”, and its right-child is the c1 node. By Algorithm 4, the weight of its left-child is 3,
and the weight of its right-child is 4. Therefore, the length of the shortest path from c0 to Exit
(passing through its left-child) is 4, and the prioritized value for vc0 is true.

4.2.2 Shorter Sum Length First. Different heuristics can be devised by taking different views on
the search process of the program verification. The previous heuristic indeed assumes that each
path has a similar probability of being an error path, and therefore suggests to take the shortest
path first. From a different view, we may assume that each node in the CFG has nearly the same
probability of leading to an error path.

Formally, let d be a control-flow node. Any path fromd must pass through one of its child nodes.
The length of all paths from d , written LAP (d ), can be computed using the following equation:

LAP (d ) = sizeof (d ) +
∑

d ′ ∈child (d )

LAP (d ′).

Especially, if d is the Exit node, LAP (d ) = sizeof (d ) = 0.

Heuristic 4. Given a branching variable, we prefer the value assignment that leads to a shorter
sum length of paths.

Algorithm 5 depicts our algorithm for computing LAP (d ). As Algorithm 4, it is also a recursive
algorithm. In the worst case, it needs to traverse all of its offspring nodes. Therefore, its worst-case
complexity is also O (n), where n is the number of offspring nodes of d . All computed weights are
stored in the mapping structureW , and returned to Algorithm 3. Finally, at line 10 of Algorithm 3,
let vd be the corresponding branching variable for d , we set the prioritized value vd = true if
LAP (dl ) < LAP (dr ), and vd = false, otherwise.

For example, consider the CFG in Figure 3. There are two paths from the c1 node, each having
a length of 3. Thus, the weight of c1 is 7. Then consider the c0 node, its left child has a weight of
3, and its right child (i.e., the c1 node) has a weight of 7. By comparing the weights of these two
child nodes, the prioritized value of vc0 is true.
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ALGORITHM 6: decide()

Output: An unassigned variable v and a Boolean value value
1: let cur be the current node in the branching graph
2: if cur = Exit then

3: (v,value ) ← decide_nonbranching_variables();

4: while var (cur ) is an assigned variable do

5: let t be the assigned value to cur ;
6: cur ← next (cur , t );

7: v ← var (cur ); value ← pValue(v );
8: return (v,value );

4.2.3 Storing the Prioritized Values. We design a mechanism to implicitly store the prioritized
values of the branching variables. As devised in Section 4.1.2, the identifier of a branching variable
consists of several numbers, representing the branching node and its parent nodes, respectively.
Here, we add a sign symbol “-” to the identifier to represent the prioritized value of the branching
variable. Specifically, a “positive” identifier (without the sign symbol) represents the prioritized
value of true, and a “negative” identifier (with the symbol “-”) stands for the prioritized value of
false. For example, the identifier “-1_-0” is “negative”, representing the prioritized value for the
branching variable vc1 is false.

Apparently, the addition of the sign symbol does not affect the semantics of the program for-
mula. As the decision order, the prioritized values can be restored in the parsing of the SMT for-
mula, and then be employed to guide the DPLL(T) procedure.

4.3 Control Flow-Guided DPLL(T)

To guide the SMT solving, we enforce the decision order and the prioritized values that were
inferred in the front-end of the verifier, in the decide() operator of DPLL(T).

Our implementation of decide() is shown in Algorithm 6. Assume there is a branching graph
and a mapping of prioritized values to the branching variables. Let cur be the current node in
the branching graph that represents the last assigned branching variable. Let d be a node, and t
a Boolean value. We provide two methods for manipulating the branching graph: var (d ) returns
the branching variable that d represents, and next (d, t ) returns the next node following the t-edge
of d . If cur is the Exit node, indicating that all of the branching variables have been assigned
to a value, the algorithm relies on the method decide_nonbranching_variables() to select the next
variable and decide its value, which implements the default branching heuristics in conventional
SMT solver [3, 14]. Otherwise, if the variable that cur represents has been assigned a value, the
algorithm follows its value and move to the next node. This moving process repeats until we get an
unassigned branching variable. Then we return this variable and the prioritized value (computed
in Section 4.2) for this variable.

Moreover, the resolve_conflict () method in Algorithm 1 needs to be slightly modified. In the case
of backtracking, if the target variable is a branching variable, we need to correspondingly modify
cur to the node that represents the backtracked variable and flip its assigned value.

4.4 Enhanced CNF Conversion

Recall the problem about the execution of mutually exclusive blocks (see Section 3.1). After the CNF
conversion, the conditions of blocks are divided into parts. Even when two blocks are mutually
exclusive, the SMT solver cannot drop the opposite one.
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ALGORITHM 7: rewrite_ite(Φ)

Input: A SMT formula Φ
Output: A rewritten formula Ψ without ite functions

1: Ψ = Φ;
2: let Ites be the set of ite-terms in Φ;
3: for each ite ∈ Ites do

4: let д, l , r be three parameters of ite;
5: replace ite in Ψ with(д → rewrite_ite(l )) ∧ (¬д → rewrite_ite(r ));

6: return Ψ;

To solve this problem, we need to enhance the CNF conversion procedure. For the motivating
example, the CNF (Enc) is expected to be the conjunction of the following clauses:

c0 → x4 = 1

¬c0 ∧ c1 → x4 = 2

¬c0 ∧ ¬c1 → x4 = 3

c0 → y4 = 1

¬c0 ∧ c1 → y4 = 2

¬c0 ∧ ¬c1 → y4 = 3

(5)

Compared to (3), which is obtained by the conventional approach, the block conditions are spec-
ified in (5) as the premises of clauses. As a result, if the condition predicate of one block is true,
by mutual exclusion of block conditions, the clauses corresponding to other blocks are trivially
satisfied. In the above CNF formula (5), the first two clauses represent the c0 branch, and the last
four clauses represent the ¬c0 branch. Assumevc0 is true. Thus ,¬vc0 ∧ c1 and ¬vc0 ∧ ¬c1 are false,
and the last four clauses are hence trivially satisfied. The atoms in these four clauses, for instance,
x4 = 2, y4 = 2, and so on, need not be considered again in DPLL(T). In this way, we avoid DPLL(T)
to explore the ¬c0 branch.

The key to getting the above CNF is the ite rewriting procedure, which rewrites ite terms into
those with only Boolean connectives. Remark that all branching conditions of the verification
condition formula are stored in the ite terms. The conventional rewriting algorithm breaks the
nested structures of ite terms, and thus splits the block conditions into parts. We want a new ite
rewriting algorithm that keeps the block condition as a whole.

Our new ite rewriting algorithm is shown in Algorithm 7. The algorithm finds all ite terms in
Φ. Each ite-term is a ternary function with three parameters. We store these three parameters
in д, l , and r , respectively. The semantics of the ite function is that if д is true, it returns l , and
otherwise returns r , which is equivalent to (д → l ) ∧ (¬д → r ). Note that l and r may also contain
ite terms. The algorithm needs to be applied to l and r recursively. Finally, Ψ contains no ite-term.
Our algorithm can collaborate with Tseitin’s algorithm directly since the rewritten ite formulas
are already in the form of a conjunction of clauses (Section 3).

Comparing our ite rewriting algorithm to the conventional one, the conventional rewriting al-
gorithms introduce an auxiliary variable for each ite-term. The most benefit of the conventional
approach is that all generated clauses contain only two literals for generating binary clauses [43] as
more as possible. Binary clauses are good for Boolean propagations. However, the main problem
here is not the Boolean propagation but the theory propagation. With our CNF formula, there are
some results that can be forced by applying Boolean propagation only. However, with the CNF
formulas obtained by the conventional approach, in many cases, only when the theory solver is
involved can the same result be deduced. Moreover, with our enhanced approach, the number of
clauses is fewer. Besides, our algorithm needs not to introduce auxiliary variables for each ite-term.
The total number of variables is also reduced.
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5 CONTROL-FLOW KNOWLEDGE AS CONSTRAINTS

To utilize the control-flow knowledge, a more direct idea is to encode it in the verification condi-
tion. In this section, we discuss the feasibility of this approach.

5.1 Explicit Encoding Approach

Recall the aforementioned control-flow knowledge: (1) if a block is taken by one execution, the
statements in this block are all executed, and (2) mutually exclusive blocks cannot be both taken
by one execution. To encode the above control-flow knowledge into the SMT formulas, we first
introduce some formal notions.

Let P be a program. An execution σ of P is a sequence of blocks from the ENTRY to the EXIT on
the CFG of P . Denote cond (σ ) the condition of σ , i.e., the conjunction of block conditions of all
blocks on σ . An execution σ is said feasible if and only if cond (σ ) is satisfiable.

The encoding formula of an execution σ , called an execution formula, is the conjunction of en-
coding formulas for all blocks on σ , i.e.,

encExe(σ ) ≡
∧

∀b ∈σ

encBlk(b), (6)

where the encoding formula for a blockb is the conjunction of encoding formulas for all statements
in b, i.e.,

encBlk(b) ≡
∧

∀st ∈b
encSt (st ), (7)

where the encoding formula for a statement st is either an equation (if st is an assignment state-
ment) or a logical expression (if st is an assume statement). Moreover, the condition formula and
the encoding formula of an execution σ compose a guarded execution formula as:

cond (σ ) → encExe(σ ).

Let Σ be the set of all executions of the program. The program formula is the conjunction of all
guarded execution formulas, i.e.,

Enc′ ≡
∧

σ ∈Σ

(cond (σ ) → encExe(σ )) . (8)

Note that Enc′ in the above formula needs to enumerate all executions of P (analogous to symbolic
execution [26]).

Consider the control-flow graph in Figure 3. There are three executions, from leftmost to
rightmost, denoted as σ0, σ1, and σ2, respectively. Their conditions are p0 ≡ c0, p1 ≡ ¬c0 ∧ c1 and
p2 ≡ ¬c0 ∧ ¬c1, respectively. The encoding formula Enc′ for this program is then the conjunction
of the following guarded execution formulas:

p0 → x4 = x1 ∧ x1 = 1 ∧ y4 = y1 ∧ y1 = 1

p1 → x4 = x2 ∧ x2 = 2 ∧ y4 = y2 ∧ y2 = 2

p2 → x4 = x3 ∧ x3 = 3 ∧ y4 = y3 ∧ y3 = 3

Apparently, this encoding formula Enc′ is different from the Enc formula in (2). However, Enc′ is
equi-satisfiable to Enc, and the verification condition VC ′ = Enc′ ∧ Cor is also equi-satisfiable to
the VC formula defined in (1).
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5.2 Discussion

We now explain that the aforementioned control-flow knowledge has been encoded into the new
formula Enc′.

Let σ be a program execution. If its condition cond (σ ) is satisfied, according to the guided exe-
cution formula

cond (σ ) →
∧

∀b ∈σ

encBlk(b),

the encoding formula encBlk(b) of each block b ∈ σ is propagated to be true, and further by the
defining formula (7) of encBlk(b), the encoding formula of each statement in b is propagated to be
true. In other words, if the execution σ is taken, all blocks on this execution, and all statements on
these blocks, are all executed.

Note that the execution condition is the conjunction of all block conditions on this execution.
Two mutually exclusive blocks can never occur on the same execution (otherwise, this execution
would be infeasible). Moreover, for any two different executions σ1 and σ2, they diverge on at
least one branch (i.e., they take opposite values for the condition of at least one branch), thus the
conjunction cond (σ1) ∧ cond (σ2) must be false. In other words, the conditions of any two feasible
executions cannot be simultaneously satisfied. If the execution σ is taken, its condition cond (σ )
must be satisfied, then the conditions of other feasible executions must all be unsatisfied. Then,
according to the Enc′ formula in (8), the guarded execution formulas for executions excluding σ
are all trivially satisfied (since their premises do not hold), and no longer need to be considered in
the search process of DPLL(T).

The explicit encoding approach faces a severe path-explosion problem (as the symbolic execu-
tion [26]). Recall that the Enc′ formula is essentially to enumerate all executions of the program.
It is exponentially large in the number of branches in the program. The overhead of processing
this huge formula can easily exceed the benefits from its utilization of control-flow knowledge. In
many cases, this approach may not speed up, but severely degenerate the whole performance of
the verification (see Section 6).

6 IMPLEMENTATION AND EXPERIMENTAL EVALUATION

In this section, we discuss the implementation and the evaluation of our approaches. We mainly
focus on the following research questions:

RQ1. How does our approach compare to the unmodified Z3?
RQ2. What do the two heuristics for decision values compare with each other?
RQ3. What do the different tactics (proposed in Sections 4.1, 4.2, and 4.4, respectively) compare

with each other?
How does the explicit encoding affect the efficiency of SMT solving?

6.1 Implementation

We implement our control flow-guided SMT solving approach (Section 4) on top of the open-
source projects CBMC [27] and Z3 [14], where CBMC is a well-known bounded model checking
tool for C/C++ programs, and Z3 is an efficient SMT solver. In our implementation, CBMC acts
as the front-end that generates the SMT formulas of the verification conditions for the programs,
and Z3 is the back-end that solves these SMT formulas. Our algorithms for inferring the decision
order (in Section 4.1) and the decision values (in Section 4.2) are implemented in CBMC , since
the control-flow information can be directly obtained after CBMC parses the programs. Our con-
trol flow-guided DPLL(T) algorithm (in Section 4.3) and the enhanced CNF conversion algorithm
(in Section 4.4) are implemented in Z3. Specifically, two new procedures were created, one for
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rebuilding the DAG of the branching graph, and another for rewriting the nested ite-terms. More-
over, the decide () procedure in Z3 was modified to integrate our new branching heuristics. The
changed codes in Z3 are less than 3000 lines, and are loosely coupled with other parts of Z3. The
SMT files transferred between CBMC and Z3 are in the SMT-LIB-v.2.0 format.

Moreover, our explicit SMT encoding approach (in Section 5) is also implemented in CBMC .
With this approach enabled, CBMC generates SMT formulas that explicitly encode control-flow
knowledge.

6.2 Benchmarks

All experiments are conducted on the ReachSafety benchmarks in SV-COMP’17. This benchmark
set contains 2, 897 C programs. All these programs have already been preprocessed for verification.

We employCBMC to generate SMT formulas from these benchmark programs. Note thatCBMC
handles loops in the program by unrolling them to a given bound. A program with an unrolling
bound is called a verification instance. For each program, we ask CBMC to generate various SMT
formulas by setting different unrolling bounds, within 300 seconds. The generating process for
a program also stops if its unrolling bound reaches 2,000. Let k be the unrolling bound. For an
erroneous program, let k∗ be the minimal value of k such that an error trace can be revealed from
the program. Then, for any SMT formula generated from this program with the bound k , it is
unsatisfiable if k < k∗, and satisfiable otherwise. In order to balance the number of satisfiable and
unsatisfiable instances, we drop some SMT instances with a rather small k . Finally, excluding the
exceptional cases (timeout, internal error, etc.), there are totally 1, 411 SMT instances. All of these
SMT formulas are stored in plain text files of the SMT-LIB-v.2.0 format. The largest SMT files
occupy hundreds of megabytes.

Note that some preamble tactics, e.g., the simplifying tactic, the eliminating tactic, and the like,
are implemented inZ3, with which some of these SMT formulas can be immediately solved without
calling the DPLL(T) procedure. Therefore, these formulas cannot be used to evaluate our enhance-
ment techniques to the DPLL(T) procedure. Furthermore, there are also some SMT formulas that
are too hard to be solved by either the baseline or our tactics within the time limit (600 seconds).
We drop the above two kinds of exceptional formulas. Finally, we get 948 SMT formulas, where
314 instances are satisfiable, and 634 ones are unsatisfiable. We consider these benchmarks are
sufficient to evaluate the performance of our tactics credibly.

6.3 Evaluation of Our Whole Approach

The first experiment evaluates the whole performance of our control flow-guided approach. We
choose Z3 as the baseline for the following reasons:

• Z3 is a state-of-the-art SMT solver;
• Z3 has been widely applied in program verification;
• Z3 is well maintained, and our heuristics were implemented on top of Z3.

The enhancement of Z3 with our control flow-guided tactics, i.e., the decision order tactic, the
decision value tactic, and the enhanced CNF conversion tactic, is namedZ3+. For the two heuristics
for prioritizing decision values, we chose LSP here (see Section 6.4 for explanation). We follow the
timeout setting in SV-COMP, i.e., setting 900 seconds as the time limit for each verification task.
Since we have already used 300 seconds for generating SMT files, the time limit for solving each
SMT instance is set to 600 seconds.

Results. Figure 6(a) shows the SMT solving time of the baseline and Z3+ on all benchmarks.
The horizontal axis represents the time spent by the baseline, and the vertical axis represents the
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Fig. 6. SMT solving time on all/sat benchmarks.

Table 1. Experiment Results on the baseline and Our Approach (Z3+)

Instances CPU Time / s Score Time / s #Timeout

#Bench Baseline Z 3+ Ratio #Solved Baseline Z 3+ Ratio Baseline Z 3+

sat 314 34713 7530 4.61 284 16713 1888 8.85 30 4

unsat 634 26201 19808 1.32 612 13003 9245 1.41 22 4

all 948 60915 27338 2.23 896 29716 8776 3.39 52 8

time spent by Z3+. Each x mark represents an instance. The closer the mark is to the lower-left
corner, the better Z3+ is, and vice-versa. Figure 6(a) shows that Z3+ is significantly superior to
the baseline on about 65% of the benchmarks. Especially, our control flow-guided tactics speed up
the SMT solver by orders of magnitude on about a quarter of the benchmarks, while there are
only very few (3%) benchmarks on which Z3+ is notably inferior to baseline. We also present the
SMT solving time of both tactics on satisfiable benchmarks in Figure 6(b). On this subgroup of
benchmarks, Z3+ is significantly superior to baseline for 80% of the benchmarks. There are only a
handful of benchmarks that cost Z3+ more time. Besides, nearly one-third of the benchmarks are
sped up by orders of magnitude.

Table 1 shows the statistic of this experiment. The CPU time is the total running time of each
solver on the whole benchmark set (including timeout instance). In the comparison of the CPU
time, Z3+ is 2.23 times faster than baseline on all benchmarks and 4.61 times faster on the satisfi-
able benchmarks. The score time is the accumulated time for solving a certain quantity of bench-
marks, where the quantity is the maximal number of benchmarks that the baseline can solve. In the
comparison of the score time, our control flow-guided tactic speeds up the solver by 3.39 times on
all benchmarks and 8.85 times on satisfiable benchmarks. Also, the number of timeout cases with
our control flow-guided tactic is much fewer than that with baseline. In conclusion, our control
flow-guided SMT solving tactic can significantly improve the performance of the SMT solver.

Result Analysis. The experimental results show remarkable improvements of our tactic over the
baseline. The control flow-guided tactic help to prune the redundant search branches by providing
the decision order and the prioritized decision values. Also, note that the improvement of Z3+ on
unsatisfiable benchmarks is not as significant as that on satisfiable benchmarks. In other words,
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Fig. 7. #Conflict clauses learned during DPLL(T).

the utility of Z3+ is limited for the unsatisfiable instances. Recall that DPLL(T) is essentially an
exhaustive search procedure. For an unsatisfiable formula, no matterZ3+ or the baseline, the whole
search space must be explored to prove the unsatisfiability. The efficiency of the control flow-
guided approach is thus greatly limited. In fact, the unsatisfiable cases are hard to be optimized for
most of the existing heuristic methods.

Furthermore, during the DPLL(T) search procedure, the algorithm stops as long as a satisfi-
able variable assignment is found. If the current variable assignments conflict, a conflict clause is
learned and the search procedure backtracks. To a certain extent, the number of conflict clauses
indicates the try times in the search procedure of DPLL(T). Figure 7 shows the number of conflict
clauses learned during the DPLL(T). As we can see, on the majority of the benchmarks, the number
of the conflict clauses learned by Z3+ is fewer than that by baseline, especially for the satisfiable
benchmarks. These results indicate that Z3+ can guide DPLL(T) to find a satisfiable solution with
much fewer times to try in the search procedure.

6.4 Evaluation of LSP and LAP Algorithms

The second experiment compares the two algorithms, i.e., LSP (in Section 4.2.1) and LAP (in Sec-
tion 4.2.2), for prioritizing the decision values of branching variables. Recall that both LSP and
LAP require to modifyCBMC so as to compute prioritized values for the branching variables. The
modified versions ofCBMC are referred to asCBMC + LSP andCBMC + LAP , respectively. We use
CBMC , CBMC + LSP , and CBMC + LAP to generate SMT formulas, respectively. Note that these
three sets of SMT formulas differ only in the identifiers of variables. We then apply Z3, Z3 + LSP ,
and Z3 + LAP on these three sets of formulas, respectively, and compare their performance. Note
that other tactics for the decision order and the enhanced CNF conversion are not applied in this
experiment.

Experimental results are presented in Table 2. We observe that both LSP and LAP outperform
the baseline, which evidences the efficiency of our control flow-guided prioritization methods.
Moreover, LSP performs the best among all algorithms. It is 20% faster than the baseline on all
benchmarks, and 30% faster on the category of satisfiable instances. Even for unsatisfiable in-
stances, we still observe a 9% speed-up of LSP over the baseline. In conclusion, the experimental
results show the effectiveness of our decision value prioritizing algorithms. In other experiments,
we will choose LSP as the algorithm for prioritizing decision values.
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Table 2. Comparison Results of Decision Value Prioritizing Algorithms

Instances # CPU Time / s Ratio
Baseline LSP LAP LSP LAP

sat 314 34713 26689 28455 1.30 1.22
unsat 634 26201 24079 25689 1.09 1.02
all 948 60915 50767 54144 1.20 1.13

Fig. 8. Accumulated SMT solving time on all/satisfiable/unsatisfiable benchmarks.

6.5 Evaluation of Different Tactics in Our Approach

The third experiment compares the efficiency of different tactics in our approach. Recall that there
are three tactics for utilizing control-flow knowledge, e.g., the decision order tactic (denoted as
order), the decision value tactic (denoted as value), and the enhanced CNF conversion tactic (de-
noted as enhance). This experiment compares different combinations of these tactics, i.e. ,baseline,
order, enhance, value, order + enhance (abbreviated as o+e), order + value (abbreviated as o+v), value
+ enhance (abbreviated as v+e), and order + value + enhance (abbreviated as o+v+e).

Figure 8(a) presents the accumulated SMT solving time of these eight single/combined tactics on
all benchmarks. The black dotted line represents the baseline, and the black solid line represents
o+v+e. The colorful solid lines represent the single tactics, respectively, i.e., order, enhance, and
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Table 3. The Experimental Results of Each Configuration

Config Baseline order enhance value

#Solved Time/s #Solved Time/s #Solved Time/s #Solved Time/s
sat 284 16713 306 7605 294 16987 291 12889
unsat 612 13003 619 13384 616 11472 614 12079
all 896 29716 925 20989 910 28458 905 24967
Config o+e o+v v+e o+v+e

#Solved Time/s #Solved Time/s #Solved Time/s #Solved Time/s
sat 309 5969 307 6673 295 14384 310 5130
unsat 628 17211 619 13063 620 13476 630 17408
all 937 23180 926 19736 915 27860 940 22538

value. The colorful dashed lines represent the combined tactics, respectively, i.e., o+e, o+v, and v+e.
All timeout instances are ruled out from the plot. As we can see, all the three single tactics, i.e.,
order, value and enhance, outperform the baseline. And among these three single tactics, order is
the best, value, and enhance are similarly effective. We also observe that the combination of any
two single tactics is better than these two tactics in isolation. Moreover, the o+v+e tactic achieves
the best performance among all single/combined tactics.

Figure 8(b) depicts the accumulated SMT solving time of all tactics on the category of satisfi-
able benchmarks. Similar results as in Figure 8(a) can be observed, except that the performance
improvements of our tactics over the baseline are more significant. Besides, Figure 8(c) shows the
accumulated SMT solving time on the category of unsatisfiable benchmarks. The best tactic is
again o+v+e. Comparing to the baseline, the improvements of our tactics on the category of un-
satisfiable benchmarks seems to be marginal; but the best tactic o+v+e is still 28% faster than the
baseline. From this plot, we also observe that the tactics combined with the enhance tactic outper-
form others, indicating that the enhance tactic contributes most to the unsatisfiable benchmarks.

The statistic of this experiment is listed in Table 3. Compared to the baseline, all of our tac-
tics solve more benchmarks but cost less time. Especially, the o+v+e tactic solves 44 more bench-
marks (26 sat and 18 unsat ) than the baseline. Note that the timeout cases are not counted in
the accumulated solving time. The accumulated solving time of different configurations cannot
be directly compared. Considering the accumulated solving time of o+v+e and baseline for unsat
cases, which are 17,408 and 13,003 seconds, respectively, it seems that baseline is faster. How-
ever, with the 18 timeout cases counted in, the accumulated solving time of baseline should be
13, 003 + 18 × 600 = 23, 803, greater than that of o+v+e.

6.6 Evaluation of Explicit Encoding Approach

The fourth experiment evaluates the efficiency of the approach that explicitly encodes the control-
flow knowledge into the SMT formulas (Section 5). In the following, we refer to this approach as
explicit, and the default SMT encoding approach in CBMC as the baseline.

Recall that the 948 SMT formulas in our benchmark set were generated by baseline (Section 6.2).
We intend to apply explicit to the same set of verification instances and generate a new set of SMT
formulas. If a formula is generated by baseline (or explicit), we simply call it a baseline (or explicit)
formula. Note that an explicit formula can be much larger than the baseline formula. We thus
increase the time limit for generating explicit formulas from 300 seconds to 600 seconds. However,
there are still 44 instances for which the explicit formulas failed to be generated in the time limit.
Finally, only 904 formulas were generated by explicit. In the following, we limit our discussion
to these 904 verification instances. We will use the solving efficiency of the explicit and baseline
formulas to evaluate the efficiency of these two encoding approaches.
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Table 4. Results on SMT Encoding Approaches: baseline vs. explicit

Instances # CPU Time / s #Timeout
Baseline Explicit Ratio Baseline Explicit

sat 306 31228 69432 0.45 22 99

unsat 598 25893 71264 0.36 26 107

all 904 57121 140696 0.41 38 206

Experimental results are presented in Table 4. Among the 904 instances, 866 baseline formulas
can be solved, while only 698 explicit formulas are solvable in the time limit of 600 seconds. More
specifically, there are 77 more satisfiable explicit formulas and 81 more unsatisfiable explicit for-
mulas that cannot be solved. The total CPU time spent on solving all explicit and baseline formulas
are 140, 696 and 57, 121 seconds, respectively. In summary, the total CPU time is slowed 2.46 times
down by explicit. The main reason is due to the huge size of the explicit formulas. We also count
the file size of all SMT files generated by both approaches. We find that the sum size of the SMT
files generated by baseline and explicit are 14 and 114 gigabytes, respectively. The average size of
explicit formulas is 8.14 times larger than that of baseline formulas.

6.7 Threats to Validity

The main internal threats to the validity of our approach are that whether the performance
improvements are mainly due to our control flow-guided tactic, and that whether the implemen-
tation of our tactic is credible. First, we only revised two algorithms in Z3, i.e., the branching
heuristics (in Section 4.3) and the enhanced CNF conversion algorithm (in Section 4.4). Note that
the latter algorithm (in Section 4.4) is implemented as a preamble tactic. These two algorithms
are barely coupled with other modules in Z3. Meanwhile, they were implemented as clearly
as we can. Second, the adding of the control-flow information won’t affect the performance of
the original solver, since we implicitly record the decision order and the prioritized values in the
SMT file by naming the SMT variables in a special fashion, which doesn’t have any effect on the
semantics of the SMT formula. Last but not least, we conduct experiments on a large number of
benchmarks from SV-COMP’17. The experimental results show the remarkable performance of
our technique. Additionally, the analysis of the number of conflict clauses further demonstrates
that our tactic does accelerate the search procedure, which conforms to our expectations. We are
thus confident in the effectiveness of our tactic.

The external threat to the validity of our approach is whether our approach can be general-
ized to other SMT solvers than Z3. Actually, our tactic is based on the DPLL(T) framework. It has
nothing to do with the specific features of Z3 solver itself. Thus, our tactic can be implemented
in any DPLL(T) -based SMT solver for program analysis. One more external threat is whether
our approach can be generalized to other program analysis techniques, except for bounded model
checking. The answer is also yes. Actually, CBMC is only used to generate SMT instances in our
experiments, and nothing more. Our tactic can be easily applied to other program analysis tech-
niques only if they are SMT-based, i.e., they encode the verification conditions as SMT formulas
and then rely on an SMT solver to solve these formulas.

The main constructive threat to the validity of our approach is that whether our evalua-
tion metrics are sufficient to answer the research questions. Recall that all research questions
in the evaluation are about the performance comparisons of SMT solving under different ap-
proaches/heuristics/tactics. A natural metric for performance evaluation is the runtime. Therefore,
we used the SMT solving time, the numbers of solved/timeout cases as the main metrics for the
performance evaluations. Besides, we also use the number of learned clauses as an auxiliary metric
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to measure the try times in the search procedure of DPLL(T). With these evaluation metrics, the
experimental results provide sufficient views for answering the research questions.

7 RELATED WORK

There is a large body of work on improving the performance of constraint solvers, like SAT and
SMT solvers. Below, we compare our approach with the most closely related works. Since our ap-
proach is based on the decision ordering and the decision values (also named the branching heuristic)
of the DPLL search procedure, we discuss this aspect first.

7.1 Branching Heuristics

One of the most famous branching heuristics is VSIDS [30, 32]. It increases the weight values
of each literal in a newly inferred conflict clause, and also decays these values periodically. The
order and the prioritized values are based on these weight values. There are also other branching
heuristics that utilize the information from the backtrack search procedure, like MOM heuristic
[20, 40], Jeroslow-Wang heuristics [25], literal count heuristics [31], and the like. However, all
of these branching heuristics are designed for the general satisfiability problems, which can only
utilize the information from the DPLL procedure, and almost do not care about the domain-specific
knowledge from original problems modeled by the satisfiability problems. Our control flow-guided
heuristics are combined with the default branching heuristics (VSIDS-based), but focus on the
satisfiability problems derived from the program analysis. With the domain-specific knowledge of
programs, our approach significantly improves the efficiency of SMT solving.

There is some work on refining the decision ordering by the domain-specific knowledge of
transition systems. The most closely related work is [46], where the decision ordering is refined
for the satisfiability problem. More specifically, the transition variables are given higher priority
than other variables in the decision order, and among the transition variables, they are ordered
according to the transition relation of the model. Moreover, in [45], Wang et al. identify important
variables from the unsat-core of the previous unsatisfiable BMC instances, and give priority to the
same variables in the decision ordering of the current BMC instance. Shtrichman [42] suggests a
static predetermining order by following the breadth-first search on the variable dependency graph
of the transition system. In [23], Gupta et al. explore implications learned from the circuit structure
to help the SAT solving. Since there is less structure information in a CNF formula, Ostrowski et al.
[37] suggest recovering and exploiting structural knowledge by a set of equations from the initial
SAT instance to eliminate clauses and variables. All these techniques are designed for SAT solvers,
and the utilized domain knowledge is from the transition systems. Comparing these techniques to
ours, the domain knowledge is different, and the application target is also different.

7.2 Utilizing Control-Flow Information

Our tactic is based on utilizing the control-flow information of the program. We also compare our
approach with the related work on utilizing the control-flow information for program analysis.
In [29], Leino et al. split the monolithic VC of a program analysis procedure into the conjunction
of several smaller VCs according to the control-flow information. The partition results in several
smaller SMT query which could be solved more efficiently than the original one. Cimatti et al. [10]
partition the abstraction problem into the combination of several smaller abstraction problems
by exploiting the structure of the program. These approaches improve the performance by the
heuristic of partitioning the monolithic problem into several smaller problems utilizing the control-
flow information. Our approach also uses this divide-and-conquer strategy in that giving priority
to the branching variable is essential to split the whole program into several parts such that they
can be solved separately.
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Symbolic execution generates a verification condition for each path of the program. For differ-
ent paths (of the control flow of the program), it generates different SMT formulas. In this respect,
one may say that the symbolic execution also utilizes the control flow information of programs.
However, symbolic execution utilizes this information at the level of VC generation, while ours
does at the level of the SMT solver. With our approach, only one SMT formula that encodes ver-
ification conditions of all paths of the program is generated. Our tactic can use the many built-in
features of the SMT solver, including conflict clause learning, value propagation, and so on. As
a result, the intermediate results among verifying the many paths of the program can be easily
and automatically shared. Belt et al. [2] and Feist et al. [19] proposed to utilize the control-flow
information and the domain-specific knowledge of symbolic execution to reduce the times of the
SMT query, respectively. For the same reason, these works are also different from ours.

7.3 Theory-Aware Approach

The optimization of our tactic is based on the utilization of domain-specific knowledge. The exist-
ing theory-aware approaches optimize constraint solving in a similar way. These approaches dis-
cover constraints from the underlying theory by a lightweight method and utilize these constraints
to prune the conflict assignments in the DPLL procedure. Berzish et al. [3] proposed a theory-aware
branching heuristic that prioritizes simpler branches over more complex ones in string solvers.
They also proposed a theory-aware case-split to circumvent mutually exclusive assignments by
the structure of the string theory literals. Goldwasser et al. [21] proposed a theory-aware branch-
ing heuristic for linear real arithmetic based on a geometric analysis over the linear constraints.
The heuristic suggests the values, which is consistent with the current partial assignment, for the
unassigned predicates of linear constraints. Bruttomesso et al. [8] utilize the structural informa-
tion like equalities and arithmetic functions to reason at a higher level of abstraction within the
theory of bit-vectors. Each of these theory-aware approaches focuses on a specific theory, such as
string theory, linear real arithmetic theory, and bit-vector theory, and the like. Instead, our tactic
is a high-level approach based on refining the branching heuristic of the DPLL procedure, which
is independent of theories.

Moreover, in [28], Kuehlmann et al. use circuit-specific knowledge to guide the search of SAT
solving and help the solver to reason on specific logic. In [23], Gupta et al. explore implications
learned from the circuit structure to help the SAT solving. These works rely on the structural infor-
mation of the BDD representation of the circuits, and can not be applied to program verification.
In [18], [33], and [34], Nadel et al. employ the so-called decision strategy to speed up the SAT and
SMT solving for routing in physical design. However, their techniques are only suitable for the
specific optimization problem of circuit design, and also can not be applied to program verifica-
tion. Besides the DPLL-based solver, the theory-aware approach has also been adapted to other
constraint solvers. For example, Hooimeijer and Weimer [24] proposed a lazy backtracking search
algorithm for solving the regular expression constraints by utilizing the domain knowledge of the
constraint system. This work is specifically for solving regular expression constraints.

8 CONCLUSION

In this article, we presented a control flow-guided SMT solving approach for program verification.
In this approach, a decision order and a value mapping were inferred from the control-flow struc-
ture of the program, and then employed to guide the search process of the DPLL(T). An enhanced
CNF conversion algorithm was further developed to collaborate with the above tactics. With our
approach, the search space of the DPLL(T) is reconstructed continuously and dynamically by the
control-flow information, and thus a large number of redundant search paths can be pruned.
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We implemented our control flow-guided tactics in the modern SMT solver Z3, and compared
our tactics with the default heuristic in Z3. The experiments on SV-COMP’17 benchmarks showed
that each of our tactics could speed up SMT solving. Especially, the combination of all tactics
achieved orders of magnitude improvements on satisfiable benchmarks.

REFERENCES

[1] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram Schulte, and Herman Venter. 2011.
Specification and verification: The Spec# experience. Commun. ACM 54, 6 (2011), 81–91.

[2] Jason Belt, Robby, and Xianghua Deng. 2009. Sireum/Topi LDP: A lightweight semi-decision procedure for optimiz-
ing symbolic execution-based analyses. In Proceedings of the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering, 2009 (ESEC/FSE 2009). ACM,
355–364.

[3] Murphy Berzish, Yunhui Zheng, and Vijay Ganesh. 2017. Z3str3: A string solver with theory-aware branching. arXiv

preprint arXiv:1704.07935 (2017).
[4] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and Roberto Sebastiani. 2009. Software model

checking via large-block encoding. In Proceedings of Formal Methods in Computer-Aided Design, 2009 (FMCAD 2009).
IEEE, 25–32.

[5] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Symbolic model checking without BDDs.
In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 193–207.

[6] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh. 2009. Conflict-driven clause learning SAT solvers.
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications (2009), 131–153.

[7] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Peter Van Rossum, Stephan Schulz, and
Roberto Sebastiani. 2005. The mathsat 3 system. In Proceedings of the International Conference on Automated Deduction.
Springer, 315–321.

[8] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, Ziyad Hanna, Alexander Nadel, Amit
Palti, and Roberto Sebastiani. 2007. A lazy and layered SMT (BV) solver for hard industrial verification problems.
In Proceedings of the International Conference on Computer Aided Verification. Springer, 547–560.

[9] Jianhui Chen and Fei He. 2018. Control flow-guided SMT solving for program verification. In Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering. ACM, 351–361.
[10] Alessandro Cimatti, Jori Dubrovin, Tommi Junttila, and Marco Roveri. 2009. Structure-aware computation of predicate

abstraction. In Proceedings of Formal Methods in Computer-Aided Design, 2009 (FMCAD 2009). IEEE, 9–16.
[11] Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis of pro-

grams by construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages. ACM, 238–252.
[12] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1989. An efficient method of

computing static single assignment form. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. ACM, 25–35.
[13] Martin Davis, George Logemann, and Donald Loveland. 1962. A machine program for theorem-proving. Commun.

ACM 5, 7 (1962), 394–397.
[14] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 337–340.
[15] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories: Introduction and applications. Commun.

ACM 54, 9 (2011), 69–77.
[16] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer. 2011. Software verification using k-

induction. In Proceedings of the International Static Analysis Symposium. Springer, 351–368.
[17] Herbert Enderton and Herbert B. Enderton. 2001. A Mathematical Introduction to Logic. Academic Press.
[18] Amit Erez and Alexander Nadel. 2015. Finding bounded path in graph using SMT for automatic clock routing. In

Proceedings of the International Conference on Computer Aided Verification. Springer, 20–36.
[19] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. 2016. Guided dynamic symbolic execution using subgraph

control-flow information. In Proceedings of the International Conference on Software Engineering and Formal Methods.
Springer, 76–81.

[20] Jon William Freeman. 1995. Improvements to Propositional Satisfiability Search Algorithms. Ph.D. Dissertation. Uni-
versity of Pennsylvania Philadelphia, PA.

[21] Dan Goldwasser, Ofer Strichman, and Shai Fine. 2008. A theory-based decision heuristic for DPLL (T). In Proceedings

of the Formal Methods in Computer-Aided Design, 2008 (FMCAD’08). IEEE, 1–8.

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 41. Pub. date: May 2021.



41:26 J. Chen and F. He

[22] Susanne Graf and Hassen Saïdi. 1997. Construction of abstract state graphs with PVS. In Proceedings of the Interna-

tional Conference on Computer Aided Verification. Springer, 72–83.
[23] Aarti Gupta, Malay Ganai, Chao Wang, Zijiang Yang, and Pranav Ashar. 2003. Learning from BDDs in SAT-based

bounded model checking. In Proceedings of the 40th Annual Design Automation Conference. ACM, 824–829.
[24] Pieter Hooimeijer and Westley Weimer. 2010. Solving string constraints lazily. In Proceedings of the IEEE/ACM Inter-

national Conference on Automated Software Engineering. ACM, 377–386.
[25] Robert G. Jeroslow and Jinchang Wang. 1990. Solving propositional satisfiability problems. Annals of Mathematics

and Artificial Intelligence 1, 1–4 (1990), 167–187.
[26] James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (1976), 385–394.
[27] Daniel Kroening and Michael Tautschnig. 2014. CBMC–C bounded model checker. In Proceedings of the International

Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 389–391.
[28] Andreas Kuehlmann, Malay K. Ganai, and Viresh Paruthi. 2001. Circuit-based Boolean reasoning. In Proceedings of

the 38th Annual Design Automation Conference. ACM, 232–237.
[29] K. Rustan M. Leino, Michał Moskal, and Wolfram Schulte. 2008. Verification condition splitting. Technical Report.

Microsoft Research.
[30] Jia Hui Liang, Vijay Ganesh, Ed Zulkoski, Atulan Zaman, and Krzysztof Czarnecki. 2015. Understanding VSIDS

branching heuristics in conflict-driven clause-learning SAT solvers. In Proceedings of theHaifa Verification Confer-

ence. Springer, 225–241.
[31] Joao Marques-Silva. 1999. The impact of branching heuristics in propositional satisfiability algorithms. In Proceedings

of the Portuguese Conference on Artificial Intelligence. Springer, 62–74.
[32] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001. Chaff: Engineering an

efficient SAT solver. In Proceedings of the 38th Annual Design Automation Conference. ACM, 530–535.
[33] Alexander Nadel. 2016. Routing under constraints. In Proceedings of the2016 Formal Methods in Computer-Aided Design

(FMCAD). IEEE, 125–132.
[34] Alexander Nadel. 2017. A correct-by-decision solution for simultaneous place and route. In Proceedings of the Inter-

national Conference on Computer Aided Verification. Springer, 436–452.
[35] Greg Nelson and Derek C. Oppen. 1980. Fast decision procedures based on congruence closure. Journal of the ACM

(JACM) 27, 2 (1980), 356–364.
[36] Alexandru Nicolau. 1988. Loop quantization: A generalized loop unwinding technique. J. Parallel and Distrib. Comput.

5, 5 (1988), 568–586.
[37] Richard Ostrowski, Éric Grégoire, Bertrand Mazure, and Lakhdar Sais. 2002. Recovering and exploiting structural

knowledge from CNF formulas. In Proceedings of the International Conference on Principles and Practice of Constraint

Programming. Springer, 185–199.
[38] Marco Pistoia, Satish Chandra, Stephen J. Fink, and Eran Yahav. 2007. A survey of static analysis methods for identi-

fying security vulnerabilities in software systems. IBM Systems Journal 46, 2 (2007), 265–288.
[39] M. Prasanna, S. Sivanandam, R. Venkatesan, and R. Sundarrajan. 2005. A survey on automatic test case generation.

Academic Open Internet Journal 15, 6 (2005).
[40] Daniele Pretolani. 1996. Efficiency and stability of hypergraph SAT algorithms. DIMACS Series in Discrete Mathematics

and Theoretical Computer Science 26 (1996), 479–498.
[41] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004. Non-linear loop invariant generation using

Gröbner bases. ACM SIGPLAN Notices 39, 1 (2004), 318–329.
[42] Ofer Shtrichman. 2000. Tuning SAT checkers for bounded model checking. In Proceedings of the International Confer-

ence on Computer Aided Verification. Springer, 480–494.
[43] Niklas Sorensson and Niklas Een. 2005. Minisat v1. 13-a SAT solver with conflict-clause minimization. SAT 2005, 53

(2005), 1–2.
[44] G. Tseitin. 1968. On the complexity of derivation in propositional calculus. Studies in Constrained Mathematics and

Mathematical Logic (1968).
[45] Chao Wang, HoonSang Jin, Gary D. Hachtel, and Fabio Somenzi. 2004. Refining the SAT decision ordering for bounded

model checking. In Proceedings of the 41st Annual Design Automation Conference. ACM, 535–538.
[46] Liangze Yin, Fei He, and Ming Gu. 2013. Optimizing the sat decision ordering of bounded model checking by structural

information. In Proceedings of the 2013 International Symposium on Theoretical Aspects of Software Engineering (TASE),.
IEEE, 23–26.

Received February 2020; revised December 2020; accepted December 2020

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 4, Article 41. Pub. date: May 2021.


