
Efficient Summary Reuse for Software

Regression Verification

Fei He , Qianshan Yu, and Liming Cai

Abstract—Software systems evolve throughout their life cycles. Many revisions are produced over time. Verifying each revision of the

software is impractical. Regression verification suggests reusing intermediate results from the previous verification runs. This paper

studies regression verification via summary reuse. Not only procedure summaries, but also loop summaries are proposed to be reused.

This paper proposes a fully automatic regression verification technique in the context of CEGAR. A lazy counterexample analysis

technique is developed to improve the efficiency of summary reuse.We performed extensive experiments on two large sets of industrial

programs (3,675 revisions of 488 Linux kernel device drivers). Results show that our summary reuse technique saves 84 to 93 percent

analysis time of the regression verification.

Index Terms—Regression verification, program verification, abstraction refinement, summary reuse

Ç

1 INTRODUCTION

ALONG with the widespread use of software in our daily
life, there is a growing concern for software reliability.

At the same time, market pressure demands quick product
introductions. The software companies are required to
introduce new features to their software products in shorter
release cycles. Since errors may be introduced with new fea-
tures, the new products must be reverified to ensure their
correctness.

Software verification [1] has made great success in recent
years. However, it is still very time-consuming. Verifying
every revision of the software is impractical. Inspired by the
success of regression testing [2], [3], researchers in formal
verification community proposed the technique of regres-
sion verification [4], [5], [6], [7], [8]. Taking into consideration
that many intermediate results are produced during the veri-
fication, and the computation of these results is costly,
regression verification aims to make use of these intermedi-
ate results in the verification of new program revisions.

Different intermediate results have been proposed for
reuse, including abstract precisions, state-space graphs, con-
straint solver solutions, and interpolation-based procedure
summaries. Beyer et al. [7] proposed to record the final
abstract precision in the previous verification run, and reuse
it in the current verification. Henzinger et al. [9] proposed to
reuse the state-space graph for incremental checking of tem-
poral safety properties. Visser et al. [10] noticed the impor-
tant role of constraint solving in software verification, and
proposed to reuse the constraints solving results.

Procedure summaries, representing input/output behav-
iors of procedures, have been proposed in [11] to be reused
in incremental upgrade checking. Note that procedure sum-
maries are reasonably small to store, technically easy to pro-
cess, and do not require much extra computation effort to
be reused. Therefore, reusing procedure summaries is a
good choice for regression verification.

Inspired by [11], this paper studies the summary-based
regression verification for predicate analysis. In [11], the
procedure summaries are mainly constructed by interpola-
tions. In this paper, we consider the summaries constructed
using abstract states of predicate analysis. Note that these
abstract states are by-products of program analysis [12],
[13], [14]. Thus, it does not require additional computational
effort to generate these summaries. Moreover, different
from existing techniques, our approach considers the reuse
of not only procedure summaries, but also loop summaries.
We build a unified framework for reusing both of them.

Moreover, we consider regression verification in the con-
text of counter-example guided abstraction refinement
(CEGAR) [15]. Summary reuse techniques need to be adapted
to the CEGAR framework (see Section 5). A lazy counterex-
ample analysis technique is further proposed to address the
effectiveness issue of summary reuse (see Section 5.3). Con-
sidering that CEGAR is a widely-adopted technique in soft-
ware verification [16], [17], [18], [19], [20], our approach can
be applied to most state-of-the-art software verifiers. To the
best of our knowledge, our approach represents a novel
attempt to the regression verificationwith CEGAR.

We implemented our approach on top of CPAchecker
[17]. We have performed extensive experiments on two
large sets of industrial programs. The first set of programs
contains 1,119 real-world program revisions of 62 Linux
device drivers, and the second contains 2,556 artificial pro-
gram revisions (by mutation) of 426 Linux device drives. In
total, there are 6,749 verification tasks, among which 6,064
are regression verification tasks. Experimental results show
a very promising performance of our approach. With the set

� The authors are with the School of Software, Tsinghua University, Beijing
100084, China. E-mail: hefei@tsinghua.edu.cn, yuqianshan@foxmail.com,
limingcai0101@yeah.net.

Manuscript received 16 Mar. 2020; accepted 21 Aug. 2020. Date of publica-
tion 3 Sept. 2020; date of current version 18 Apr. 2022.
(Corresponding author: Fei He.)
Recommended for acceptance by C. Wang.
Digital Object Identifier no. 10.1109/TSE.2020.3021477

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022 1417

0098-5589� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4266-875X
https://orcid.org/0000-0002-4266-875X
https://orcid.org/0000-0002-4266-875X
https://orcid.org/0000-0002-4266-875X
https://orcid.org/0000-0002-4266-875X
mailto:hefei@tsinghua.edu.cn
mailto:yuqianshan@foxmail.com
mailto:limingcai0101@yeah.net

of real-world programs, in comparison to the standalone
verification without reuse, our approach solves 216 more
regression verification tasks and saves 93.1 percent of analy-
sis time. With the set of artificial programs, our approach
solves 10 more regression verification tasks and saves 84.2
percent of analysis time.

The main technical contributions of this paper are sum-
marized as follows:

� We propose a unified framework for reusing both
procedure summaries and loop summaries.

� We propose a fully automatic regression verification
technique in the context of counterexample-guided
abstraction refinement. A novel lazy counterexample
analysis technique is developed to improve the effi-
ciency of summary reuse.

� We implement our approach in the software verifica-
tion tool CPAchecker. Experimental results show the
promising performance of our approach.

The remainder of this paper is organized as follows. Section 2
introduces the necessary backgrounds. Section 3 motivates our
approach using a simple example. Section 4 reviews the
CEGAR-based program verification and the definition of pro-
gram summaries. Section 5 presents our CEGAR-based regres-
sion verification framework. Section 6 reports evaluation
results on our approach. Section 7 discusses related work and
Section 8 concludes this paper.

2 BACKGROUNDS

2.1 Abstraction and Refinement

Abstraction plays a central role in software verification.
Abstraction omits details of the system behaviors, resulting
in a simpler model. We call the model before and after
abstraction the concrete and the abstract model, respectively.
An abstraction is conservative [21] iff it does not omit any
behavior of the concrete model. Conservative abstraction
guarantees that the properties (more precisely, the ACTL�

properties [21]) established on the abstract system also hold
on the concrete system. The reverse, however, is not guaran-
teed: if the abstract model falsifies the property, the concrete
model does not necessarily falsify this property.

The abstract precision [7] (for short, precision) defines the
level of abstraction of an abstract model. The precision must
be at a proper level. A too-coarse precision may fail to verify
the property; a too-fine precision, however, may lead to
state space explosion. Finding a proper precision appears to
require ingenuity.

Counterexample-guided abstraction refinement [15] provides a
framework for automatically finding proper precisions. Start-
ing from an initial abstract precision, it iteratively checks if the
corresponding abstract model satisfies the desired property.
If the property is satisfied, it must also hold on the concrete
model, the algorithm terminates and reports “correct”. Other-
wise, the checker returns a path on the abstract model that fal-
sifies the desired property. The algorithm then checks if the
returned path is valid on the concrete model or not. If it is, the
algorithm finds a real bug, it thus terminates and reports
“incorrect”. Otherwise, the precision is too coarse, and needs
to be refined with the counterexample. Then the above pro-
cess repeats, until either “correct” or “incorrect” is reported.

The abstract precision does not necessarily keep the same
throughout the program [22]. To simplify the discussion, we
assume in this paper that the abstract precisions are defined
at the level of procedures, i.e., each procedure is associated
with a unique abstract precision.

2.2 Software Verification

Model checking and program analysis are two major
approaches for software verification. Comparing these two
techniques, model checking is more precise with fewer false
positives produced, while program analysis is compara-
tively more efficient and can be applied to more programs.
An increasing tendency to software verification is to inte-
grate these two techniques together [23], to get a good bal-
ance between accuracy and efficiency.

Predicate abstraction [22], [24] is a widely-adapted abstrac-
tion technique [1], [19] for software verification. It creates an
abstract model with respect to a set of predicates defined on
the program variables. This predicate set defines an abstract
precision for predicate abstraction. The state space of the
abstract model is only related to the number of predicates in
the abstract precision. Finding proper predicates is the key
problem for predicate abstraction. One popular technique is
based on interpolation computation on the counterexam-
ples [25], [26].

Interprocedural analysis deals with programs with multi-
ple procedures. One simple way of interprocedural analysis
is to inline a copy of the callee procedure at each of its call
sites. The inlining technique is, however, very expensive
and may lead to context explosion for recursive procedures.
Another interprocedural analysis technique is to use sum-
maries [12], [13]. A procedure summary (or shortly, a sum-
mary) describes the input/output behaviors of a procedure.
This technique plugs summaries at each call site of the pro-
cedure. Re-analysis of the procedure body at each of its call
sites can be avoided using this technique, the efficiency is
therefore improved.

There are at least two kinds of procedure summaries in
literature: the state-based summaries [12], [13], where each
summary is a pair of input and output states of the proce-
dure; and the interpolation-based summaries [11], where
the summary is an overapproximation of the procedure’s
behaviors.

In this paper, we assume a deterministic, single-threaded
program and a safety property. To specify the property, a
special error location is introduced in the program. We
say the program is correct if and only if the error location
is not reachable.

3 A MOTIVATING EXAMPLE

Fig. 1 shows a simple program that consists of two proce-
dures: main and inc. A while loop is implemented in the
main procedure, and in the loop body the inc procedure is
invoked. The inc procedure takes two input parameters: a
and sign, and outputs either aþ 1 (if sign! ¼ 0), or a� 1 (if
sign ¼ 0Þ. We want to verify that the error location (at line
6) is not reachable in any execution of this program.

Consider an invocation to the inc procedure (at line 3)
with parameters a ¼ 0 and sign ¼ 1, the returned value is
rv ¼ 1. The pair of this entry state (i.e., a ¼ 0 ^ sign ¼ 1)

1418 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

and the exit state (i.e., rv ¼ 1) summarizes this execution of
the inc procedure. Later, when the inc procedure is
invoked again, if its entry state is again a ¼ 0 ^ sign ¼ 1,
then without entering the inc procedure, we can immedi-
ately determine its exit state as rv ¼ 1.

The execution of a loop can also be summarized by a pair
of an entry state and an exit state. Consider the while loop
in the main procedure, its entry state (i.e., the state exactly
before the program enters the loop at line 1) is i ¼ 0 ^ x ¼ 0,
and its exit state (i.e., the state when the program exits the
loop at line 6) is x ¼ 6 ^ i ¼ 10. Similar to the procedure
summary, the pair of these two states also summarizes an
execution of this loop, and is called a loop summary.

Assume that the original program evolves to a new revi-
sion. Apparently, this new revision needs also to be checked
to guarantee its correctness. Assume that in the new revi-
sion, the inc procedure does not change, then the summa-
ries of this procedure, which were generated in the
previous round of verification, can be reused in the new
round of verification. Similarly, if the while loop does not
change in the new revision, the previous-generated summa-
ries for this loop can also be reused. How to efficiently reuse
the previously-generated summaries in regression verification is
the main research problem we want to solve in this paper.

Moreover, in the above discussions, the program is ana-
lyzed by tracking its concrete states. The concrete state
space of a program is, however, considerably huge and
often infinite. A practical verification technique (including
the regression verification) needs to be performed on the
abstract state space.How to efficiently combine regression verifi-
cation and abstraction techniques, especially the counterexample-
guided abstraction refinement, is another research target of
this paper.

4 CEGAR-BASED VERIFICATION

In this section, we first review the CEGAR-based program
verification, upon which our regression verification scheme
is based. We then propose a unified definition for procedure
summaries and loop summaries.

4.1 Preliminaries

We begin by introducing the necessary preliminaries for
program verification.

Control-Flow Automata (CFA) [22], [23] were adopted in
many software verification techniques (for example, BLAST
and CPAchecker) for representing programs. Given a pro-
gram P , let L be the set of program locations and St be the
set of statements of P , respectively. The CFA of P is a pair
ðL; GÞ, where L is the set of program locations, and G � L�
St�L is the set of control flow edges. The CFA is different
from the control flow graph with program statements label-
ing the edges rather than the vertices. For example, CFA of
the main procedure in Fig. 1 is shown in Fig. 2, where lerr
represents the error location, and l0, lret represent the entry
and exit locations of the main procedure, respectively.

A state of a program is a configuration of the program
location and the set of facts that we know about the program
at that location. Formally, a concrete state of the program P is
a pair ðl; uÞ, where l 2 L is a program location and u is a full
assignment to all variables of P . The assignment u is also
called the concrete data state of P . Let � be a set of predicates,
representing the current abstract precision. An abstract state
is a pair ðl; sÞ, where l is a program location, and s is a valua-
tion to all predicates in �. The valuation s is also called the
abstract data state of P . In the remainder of the paper, we
denote P� the abstract model of P with respect to �.

Consider the CFA of the main procedure in Fig. 2, with
the abstract precision �main ¼ fi < 10; x � 5; x < 5g. An
abstract data state is a valuation to the three predicates in
�main. During the procedure of the analysis, the value of a
predicate may be true (abbreviated by 0), false (abbreviated
by 1) or non-deterministic (abbreviated by �). We use a vec-
tor to denote an abstract data state. For example, the
abstract data state at l0 is ½�; �; �� (for short, written � � �),
indicating that all predicates’ values are non-deterministic
at this location. And when the program transits from l0 to l1,
the abstract data state at l1 is 111, since executing the state-
ments i=0 and x=0 can make the three predicates all true.

A path p of the program is an alternating sequence of
states and program statements, i.e.,

p ¼ ðl0; s0Þ
st0
�!ðl1; s1Þ

st1
�!	 	 	 stn�1���!ðln; snÞ:

A path p is a concrete path of P (or an abstract path of P�) iff
all states on p are concrete states of P (or abstract states of

Fig. 1. An example program.

Fig. 2. CFA of the main procedure in Fig. 1.

HE ETAL.: EFFICIENT SUMMARY REUSE FOR SOFTWARE REGRESSION VERIFICATION 1419

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

P�). A path p is called a CFA path if l0 is the entry location of
the program, and for each i with 0 � i < n there exists a
CFA edge g ¼ ðli; sti; liþ1Þ. In other words, a CFA path rep-
resents a syntactical walk through the CFA. A counterexam-
ple of P (or P�) is a CFA path of P (or P�) that ends at the
error location.

Consider the CFA in Fig. 2 with the abstract precision
�main ¼ fi < 10; x � 5; x < 5g. A possible counterexample
is shown in Fig. 3, where the abstract data states are labelled
beside the corresponding program locations.

We use the strongest post-condition operator SP to define
the semantics of a CFA path. For a formula ’ and a state-
ment st, SPstð’Þ represents the set of data states that are
reachable from any of the states that satisfy ’ after the exe-
cution of st. Let st0; st1; . . . ; stn�1 be the sequence of pro-
gram statements passed by the CFA path p. The semantics of
p is the successive application of the SP operator to each
statement of p, i.e., SPpð’Þ ¼ SPstn�1ð. . . ðSPst0ð’Þ . . .Þ.
Definition 1. A CFA path p starting from the abstract state
ðl; sÞ is feasible iff SPpðsÞ is satisfiable.
Note that a feasible path is always a CFA path. Let ðl0; s0Þ

be the initial state of P�. An abstract state ðl; sÞ of P� is reach-
able iff there exists a feasible path p of P� that ends at the
location l such that s
 SPpðs0Þ.
Definition 2. The abstract model P� is correct iff the error

location is not reachable in P�.

4.2 CEGAR

We next describe the scheme of the standalone program ver-
ification (i.e., without reuse) via predicate abstraction and
CEGAR [22], [23].

Let � be an abstract precision, and P� be the abstract
model with respect to �. Since the predicate abstraction is
conservative [24], to verify the program P , it is sufficient to
find a proper abstract precision � such that P� is correct.
This can be achieved by the scheme of the counterexample-
guided abstraction refinement (Fig. 4). Initially, the abstract

precision is set to empty. The abstract precision is then itera-
tively refined by adding new predicates, until the program
is verified.

Each iteration consists of two phases: a model validation
phase and a counterexample analysis phase. During the
model validation phase, we check if the abstract model P�

is correct or not. If P� is correct, we immediately conclude
that P is also correct. Otherwise, we get a counterexample p
that is a CFA path of P� ending at the error location.

During the counterexample analysis phase, the counter-
example p is semantically analyzed to determine whether it
is feasible or not. If it is feasible, we find a real execution of
the program P that reaches error, and we thus conclude
that P is incorrect. Otherwise, p is a spurious counterexam-
ple, and the proof of its infeasibility can be used to refine
the abstract precision [22]. The refinement is performed by
adding new predicates in the abstract precision, such to
eliminate the spurious counterexample from the refined
model. After the refinement, the next iteration continues.

4.3 Summaries

We now introduce a unified definition for the procedure
and loop summaries.

Let % be a program fragment (either a procedure or a
loop). An entry state of % is a state at the entry location of %,
and an exit state of % is a state at its exit location. A pair of an
entry state and an exit state summarizes the input/output
behavior of one execution of % [12], [13].

Definition 3. A summary of a program fragment % is a triple
h�;fin;fouti, where � is an abstract precision, fin and fout are
Boolean combinations of predicates in �, representing an entry
state and a set of exit states of %, respectively.

A summary states that if the entry state of % satisfies fin,
its exit state must satisfy fout. This definition is particularly
suitable for predicate analysis. Let � be the current abstract
precision, and P� be the abstract model of P with respect to
�. The model validation is essentially to traverse the state
space of P� [17] to find that if the error location is reach-
able or not. Let ðl; sÞ be the current abstract state, and % be
the program fragment to be executed, the model validation
algorithm needs to traverse all possible paths of % (under
the abstract precision �) to compute the set of exit states. Let
f be the formula representing the entry state ðl; sÞ, and f0 be
the formula representing the set of exit states, the triple
h�;f;f0i is a summary of %.

With the above definition, a summary corresponds to a
subset of paths in %. The main advantage of using the state-
based summaries is the efficiency. Consider a state-based

Fig. 3. A counterexample of the program in Fig. 1 with
�main ¼ fi < 10; x � 5; x < 5g.

Fig. 4. CEGAR-based verification.

1420 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

summary h�;fin;fouti, the abstract precision � is determined
at each iteration of CEGAR; the entry state fin and the set
fout of exit states are computed in the model validation pro-
cess. In conclusion, all ingredients of this summary are by-
products of CEGAR. There needs no additional computa-
tion to generate the state-based summaries.

Note that an abstract precision must be specified in the
summary, since the entry state and the exit state must both
be defined over the predicates in the abstract precision.
Recall that we assume a unique abstract precision through-
out a procedure or a loop. Thus only one abstract precision
needs to be specified here. Otherwise, if the abstract preci-
sion differs in different points of % (for example, as in the
lazy abstraction [22]), we need to specify an abstract preci-
sion for fin and fout, respectively.

All the generated summaries are maintained in a sum-
mary cache X. During the program analysis, whenever a pro-
gram fragment is encountered, the verifier seeks in X for an
applicable summary. Let �c be the current abstract preci-
sion, and sc be the current abstract data state. A summary
h�;fin;fouti of % is called applicable iff �c � � and sc) fin. If
any applicable summary exists, the verifier directly uses
fout of this summary as the exit state of %. Otherwise, the
verifier needs to conduct a heavy fix-point computation [27]
on the fragment % to compute its exit state.

5 CEGAR-BASED REGRESSION VERIFICATION

Summaries convey important information about the verifi-
cation. In this section, we propose some efficient summary
reuse techniques for regression verification.

5.1 Overview

An overview of our CEGAR-based regression verification is
shown in Fig. 5. Besides the program P , a set X0 of the previ-
ously-generated summaries is also provided for the regres-
sion verification. Note that these summaries are produced by
the previous revisions, and may not be applicable to the cur-
rent revision. Similar to [11], we propose a summary selection
step to guarantee the safe reuse of summaries (see Section 5.2).

As in a standalone verification, each iteration of CEGAR
for a regression verification also consists of two phases: a
model validation phase and a counterexample analysis phase.
The former phase is exactly the same as in the standalone veri-
fication. The counterexample analysis, however, requires more
careful handling,whichwill be discussed in Section 5.3.

Note that our summary reuse does not depend on the
verification result. A summary here represents an execution
of the corresponding program fragment. No matter whether
the verification result is “correct” or “incorrect”, as long as
the fragment does not change semantically, the summary
can be reused. This is very different from the interpolation-
based summaries [11], where the summaries are related to
the property to be verified, and can only be reused when
the verification result is “correct”.

5.2 Summary Selection

Let P 0 be the old revision of P . For each fragment % (either a
procedure or a loop) of P , let %0 be its previous version in
P 0. If %0 does not exist in P 0, i.e., % is a newly added fragment
in P , we simply let %0 ¼ NULL.

In the summary selection (Algorithm 1), we check for
each % of P if % is semantically equivalent to %0 or not. If it is,
the summaries of %0 are selected. Otherwise, these summa-
ries are abandoned. These selected summaries are then
reused in the regression verification to initialize the sum-
mary cache X.

Algorithm 1. Summary Selection

forall % 2 P do
Let %0 be its previous version in P 0;
if % � %0 then
Select summaries of %0;

end
end
Use selected summaries to initialize X;

Note that the semantic equivalence checking % � %0 is
very expensive in computation, we thus choose to perform
syntactic checking instead. The syntactic checking is less
precise, i.e., may miss some semantically equivalent frag-
ments, but preserves the soundness, i.e., the fragments that
pass the syntactic checking must be semantically equivalent.

5.2.1 Syntactic Checking

In the following,wefirst discuss twonotions, i.e., syntactically
unchanged fragments and semantically equivalent fragments,
then, we propose our syntactic checking technique.

Definition 4. Let % be a program fragment in P and %0 be its pre-
vious version in P 0, we say % is syntactically unchanged if all
statements of % and %0 are same, and syntactically changed,
otherwise.

In the following,we consider only syntactically unchanged
fragments for possible summary reuse. Note that a syntacti-
cally changed procedure may still be semantically equivalent
to its previous version. We ignore this case since the semantic
equivalence checking is too expensive.

On the other hand, a syntactically unchanged fragment is
not necessarily to be semantically equivalent. Comparing
only statements in a fragment is not enough for checking the
semantics of this fragment. For example, the call statement
in a fragment may lead the execution to a statement outside
the fragment (in the called procedure). If the called procedure

Fig. 5. CEGAR-based regression verification.

HE ETAL.: EFFICIENT SUMMARY REUSE FOR SOFTWARE REGRESSION VERIFICATION 1421

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

changes, even all statements in the fragment under consider-
ation remain the same, its semantics has changed.

Consider the program in Fig. 1, we assume that in the
new program revision the main procedure remains the
same while the inc procedure changes, then the semantics
of the main procedure is regarded as changed.

To summarize, the syntactic changes of a fragment may
lead the semantics of another fragment to be changed. We
thus have the following definition.

Definition 5. Let %1, %2 be two program fragments of P , we say
%1impacts %2, written %1 � %2, if either of the following state-
ments is satisfied:

� %1 is a procedure and is called in %2, or
� %1 is a loop and is nested in %2.

The above impact relation extends the call relation over
procedures by taking loops and their nesting structures into
consideration.

The impact relation is transitive, i.e., if %1 � %2 and %2 � %3,
then %1 � %3. Let �� be the transitive closure of � . If %1 �� %2,
i.e., there exist %i; ::; %iþk such that %1 � %i � 	 	 	 � %iþk � %2,
we call %2 is reachable from %1. Moreover, we define the set of
forward reachable fragments from %1 as FReachð%1Þ ¼ f%2 j
%1 �� %2g. Apparently, FReachð%1Þ is the maximal set of frag-
ments that %1 can impact. We also define the set of backward
reachable fragments from %1 as BReachð%1Þ ¼ f%2 j %2 �� %1g,
which is themaximal set of fragments that have impact on %1.

Consider the three fragments in the program in Fig. 1: the
main procedure (denoted as %main), the inc procedure
(denoted as %inc) and the loop in the main procedure
(denoted as %loop). They satisfy: %inc � %loop, %inc � %main and
%loop � %main. Thus we have FReachð%incÞ ¼ f%loop; %maing,
BReachð%incÞ ¼ ;. In other words, any change in %inc can
impact the semantics of %loop and %main, and no other frag-
ment can impact the semantics of %inc.

The concepts of forward/backward reachable sets can
be lifted to a fragment set. Let t be a set of fragments,
FReachðtÞ¼ S

%2tFReachð%Þ, andBReachðtÞ¼ S
%2tBReachð%Þ.

Definition 6. Let % be a program fragment in P and %0 its
previous version in P 0, we say % is globally syntactically
unchanged if

1) % is syntactically unchanged, and
2) all fragments in BReachð%Þ are syntactically

unchanged.

Lemma 1. A globally syntactically unchanged fragment is
semantically equivalent to its previous version.

Proof. This is a direct conclusion by the definition of glob-
ally syntactically unchanged fragment. tu
To find the globally unchanged fragments of P , we syntac-

tically compare each fragment of P to its previous version.
According to the comparing results, fragments in P are
divided into two parts: the syntactically unchanged set t1 and
the syntactically changed set t2. Then we have the following
lemma.

Lemma 2. Let t1 and t2 be the set of syntactically unchanged and
syntactically changed fragments of P , respectively. Fragments
in t1 n FReachðt2Þ are all globally syntactically unchanged.

Proof. Assume that the lemma does not hold, i.e., there is a
fragment %1 2 t1 n FReachðt2Þ that is not globally syntacti-
cally unchanged. By %1 2 t1 and Definition 6, there must
be a fragment %2 2 BReachð%1Þ such that %2 is syntactically
changed. By %2 2 BReachð%1Þ, we have %1 2 FReachð%2Þ.
By %2 being syntactically changed, we have %2 2 t2,
and thus %1 2 FReachðt2Þ. This is contradicted with the
assumption. Thus the assumption does not hold, and the
lemma holds. tu
Let t� ¼ t1 n FReachðt2Þ. The semantic equivalence

checking % � %0 (on Row 4 of Algorithm 1) is implemented
as checking whether % 2 t�. If % 2 t�, the summaries of % are
selected, and otherwise they are abandoned. Note that the
computations of t1, t2 and t� involve only syntactic check-
ing of P and P 0. According to Lemmas 1 and 2, all selected
summaries are semantically equivalent to its previous ver-
sion, and thus they can be safely reused in the regression
verification.

5.3 Counterexample Analysis

Given a counterexample returned by the model validation
process, we need to check if this counterexample corre-
sponds to a real bug or not. Summary reuse makes this pro-
cess intricate.

Consider the counterexample in Fig. 3 that contains two
procedure calls. During the program verification, these two
procedure calls are replaced by two abstract summaries,
which are defined over predicates and may introduce spuri-
ous behaviors over the program’s concrete semantics. There-
fore, to check the feasibility of this counterexample, the inner
paths in the inc procedure that correspond to these two
summariesmust be restored.

Consider the procedure call inc(x,1) between ðl3; 111Þ
and ðl5; 11�Þ for example. If the summary for this procedure
call is generated in the current verification run, the inner
path in inc that leads from ðl3; 111Þ to ðl5; 11�Þ is avail-
able [17]; otherwise, if the summary is inherited from the
previous verification, there is no information for the inner
path. Then, we have to rely on the heavy fix-point computa-
tion [27] to reproduce this path. In other words, with the
counterexample checking, the saved analysis on the inc

procedure is getting back. The benefits of summary reuse
are thus significantly weakened.

5.3.1 Holes

Definition 7. A summary on a path is called a hole if it is inher-
ited from the previous verification runs.

Let p be a counterexample path with holes. Replacing a hole
with the corresponding inner path is called an expansion. For
example, Fig. 6 shows the expanded version of the counter-
example in Fig. 3.We call a path holeless if it contains no hole.

Let H be the set of holes on a path p. The path p is split
by these holes into jHj þ 1 path segments. Each of these seg-
ments is a holeless path. The semantics of a path with holes
is defined as the conjunction of the semantics of its holeless
segments.

Theorem 1. Let p be a path with holes H, and P the set of seg-
ments of p split byH,

1422 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

1) if there exists any infeasible segment in P, p is infeasi-
ble; and

2) if all segments in P are feasible, p is, however, not nec-
essarily feasible.

For the latter case, if all segments of p are feasible, we call
the path p separately feasible. The above theorem states that
the separate feasibility does not imply the feasibility of the
whole path. This is obvious since the semantics of holes are
not taken into consideration in the separate feasibility.

Consider the counterexample in Fig. 3, the holes at l4 and
l5 split the path into three segments, i.e.,

s1 : ðl0; � � �Þ ! ðl1; 111Þ ! ðl2; 111Þ ! ðl3; 111Þ;
s2 : ðl5; 11�Þ;
s3 : ðl1; �1�Þ ! ðl6; 01�Þ ! ðlerr; 011Þ:

This counterexample is infeasible if any of s1, s2 and s3 is
infeasible. Reversely, even s1, s2 and s3 are all feasible, the
path is not necessarily feasible since the inner paths from l3
to l5 and from l5 to l1, that are replaced by summaries, may
be infeasible.

5.3.2 Lazy Analysis Algorithm

A brute-force algorithm for counterexample analysis is to
directly expand all holes of the counterexample, and then
check its feasibility. This algorithm is correct but inefficient.
Recall that to expand a hole, we need to perform a heavy
analysis on the program fragment, which usually costs lots
of computation. In the worst case, it needs to traverse all
paths of the fragment to reproduce the path from a given
input state to a given output state. We therefore propose a
technique to avoid unnecessary hole expansions.

Our lazy analysis algorithm is shown in Algorithm 2. The
basic idea is to expand holes on demand, so as to avoid
unnecessary hole expansions. The main body of the algo-
rithm is a while loop. At the beginning of each iteration of
the loop, the algorithm checks whether the current path is
holeless (isHolelessðpÞ), and whether the current path is

infeasible (isInfeasibleðpÞ). If both checks return false, the
loop continues by expanding one hole in p. Otherwise, the
current path p must be either infeasible or holeless. For the
former case, the algorithm returns p; and for the latter case,
the algorithm reports “incorrect”.

Algorithm 2. lazyAnalysisðpÞ
Input: A finite abstract path p

Output: The expanded path of p if it is infeasible; or
“unsafe” if it corresponds to a real path.

while :ðisHolelessðpÞ _ isInfeasibleðpÞÞ do
let h be a hole in p;
p expandHoleðp; hÞ;

end
if isInfeasibleðpÞ then return p;
else return incorrect;

Comparing to the brute-force approach, our lazy algorithm
needs more feasibility checking. However, it is still beneficial.
First, with the lazy approach, the computational efforts for
unnecessary hole expansions (which inmany cases are expen-
sive) are saved. Second and more importantly, the returned
path by the lazy approach is often much shorter than the fully
expanded one. Note that the refinement is a heavy step in
CEGAR [26].With a shorter counterexample, the computation
efforts for the refinement (for example, the interpolation-
based refinement [26]) can often be significantly reduced.

The lazy analysis algorithm can be easily adapted to the
existing CEGAR framework (for example, CPAchecker [17])
in the following way. When the verifier in the existing frame-
work returns a counterexample, our algorithm is applied to
check if this counterexample is spurious or not. In case of a
spurious counterexample, our algorithm returns a (partially)
expanded path and gives it to the existing refiner in the frame-
work. The returned path by our algorithmmay contain holes.
Treating these holes as value assignments, these paths can be
directly processed by most of the existing refinement techni-
ques, for example, the interpolation-based refinement [26].

5.4 Precision Reuse

In the beginning of the regression verification (in Fig. 5), the
abstract precision is set to be empty, which is in fact not nec-
essary. Dirk Beyer et al. [7] showed that the abstract preci-
sion can also be reused in the regression verification. To
take this idea, we simply use the final abstract precision �0

in the previous verification to initialize the current abstract
precision �, i.e., replace � ;with � �0 in Fig. 5.

With precision reuse, the amount of summaries that need
be recorded at the end of the verification run is also reduced.
Assume that the abstract precision of the regression verifica-
tion is initialized as �0. Then during the regression verifica-
tion, the abstract precision is iteratively refined by CEGAR.
In other words, summaries with a smaller abstract precision
than �0 are useless in the regression verification. Thus, we
need only to output the summaries with the final precision at
the end of each verification run.

6 EXPERIMENTAL EVALUATION

We implemented our regression verification technique on
top of CPAchecker [17]. CPAchecker provides a configurable

Fig. 6. An expanded version of the counterexample in Fig. 3, with �main ¼
fi < 10; x � 5; x < 5g and �inc ¼ fsign > 0; a < 5g.

HE ETAL.: EFFICIENT SUMMARY REUSE FOR SOFTWARE REGRESSION VERIFICATION 1423

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

framework for software verification, with both predicate
abstraction and counterexample-guided abstraction refine-
ment supported. To support regression verification, we real-
ized the following functionalities in CPAchecker :

� summary dumping, i.e., dump all summaries to an
external file at the end of the verification,

� summary selection, i.e., load and select summaries
from an external file at the beginning of the verifica-
tion (Section 5.2), and

� lazy counterexample analysis (Section 5.3).
Moreover, precision reuse (Section 5.4) was also inte-

grated into our implementation. In the following, we call
our enhanced implementation CPAcheckerþ .

Experiments are designed to answer the following
research questions:

� RQ1. Is summary reuse efficient enough for regres-
sion verification?

� RQ2. What is the impact of precision reuse on the
efficiency of our approach?

� RQ3. What is the impact of summary types on the
efficiency of our approach?

� RQ4. What is the impact of the lazy counterexample
analysis on the efficiency of our approach?

6.1 Experimental Setup

We prepared two industrial benchmarks with 3,675 pro-
gram revisions of 488 Linux device drivers to evaluate our
approach:

1) The first benchmark, obtained from [7], consists of
1,119 real-world program revisions of 62 Linux
device drivers.

2) The second benchmark, prepared by ourselves, con-
sists of 2,556 program revisions of 426 Linux device
drivers, where all drivers were collected1 from the
“SystemsDeviceDriversLinux64Reach-Safety” cate-
gory of the 6th International Competition on Software
Verification (SV-COMP’17) [28]. For each driver, we
make the program in [28] as the base revision, and
use a state-of-the-art mutation tool MiLu [29] to ran-
domly generate 5 artificial new revisions.

Recall that all program revisions in the first benchmark
were obtained from the official Linux kernel repositories [7],
and they are real revisions implemented by the experienced
programmers. We use this benchmark to evaluate our
approach on real program changes. In contrast, program
revisions in the second benchmark were obtained by adding
mutations to the base revision of each device driver. An
advantage of the second benchmark is that the mutants gen-
erated by random pattern can involve much more unpredict-
able modifications than those wirtten by human programmers.
We use the second benchmark to evaluate our approach on a
broader range of program changes.

All experiments are performed on a machine with Intel
Xeon E5-2620 CPU of 2.4 GHz 24 cores and 32 GB RAM. We

use Ubuntu 16.04 (64-bit) with Linux 4.4.0 and jdk1.8.0. The
CPAchecker is configured using the predicateAnalysis-ABE
option. Each verification run is limited to 300 seconds (total
CPU time), 6 GB of Java heap size and 6 CPU cores.

6.2 Overall Results on Real Revisions (RQ1)

This experiment evaluates our approach on real program
revisions. We compare the performance of CPAcheckerþ

with CPAchecker on the first benchmark. All regression ver-
ification techniques, including summary reuse, precision
reuse, and lazy counterexample analysis are enabled for
CPAcheckerþ in this experiment. For simplicity, in the fol-
lowing, we refer to our approach as “Reuse”, and the stan-
dard CPAchecker as “no Reuse”.

In our experiments, a verification task is to verify a pro-
gram revision against a specification. Note that a device
driver may have multiple program revisions and also multi-
ple specifications. A pair of a device driver and a specifica-
tion involves a sequence of verification tasks, where the
base revision is verified from scratch, while the other revi-
sions are verification in an incremental way, i.e., as regres-
sion verifications. In total, there are 259 driver/specification
pairs and 4,193 verification tasks in the first benchmark.
Among all tasks, 3,934 are regression verification tasks.

Experimental results are listed in Table 1. Due to page lim-
itation, we restrict this table to the 40 best and 10 worst cases
out of the total of 259 driver/specification pairs (sorted by
the “Speedup” column). The first two columns (“Driver”
and “Specification”) list the device driver name and the spec-
ification name, respectively. The third column “LoC” shows
the lines of code for the base revision of each device driver.
The fourth column (“#T”) shows the number of regression
verification tasks (i.e., the number of revisions minus 1) for
each driver/specification pair. The fifth column (“T1st”) lists
the analysis time for verifying the first revisionwhich is not a
regression verification task. This “T1st” gives us the informa-
tion on the complexity of verifying each device driver.

The following two column assemblies report the experi-
mental results by “no Reuse” and “Reuse” approaches,
respectively. For both approaches, we report the number of
successfully verified regression tasks “#solved”; the total
number of abstract successor computations “#abs_succ”2

and the total analysis time “Trv” (in seconds) for each driver/
specification pair. To conduct a fair comparison, “Trv” and
“#abs_succ” are limited to regression verification tasks that
are solved by both approaches. The “Speedup” column
shows the average speedup of “Reuse” approach over the
“no Reuse” approach, calculated by: 1� Trv2=Trv1. The last
“AvgFSize” and “RSR” columns report the average size (in
Kilobytes) of summary files, and the average reusable sum-
mary ratio, among all revisions of each driver/specification
pair, respectively. For each regression verification task, RSR
is the proportion of summaries that are kept after the sum-
mary selection.

Recall that each row in the table corresponds to a driver/
specification pair. The last two rows (“Sum” and “Avg”)

1. The selection strategy is as similar as in [7]. We limit our selection
to drivers of Linux 3.4 kernel and with the mutex lock/unlock specifica-
tions, and skipped programs whose total CPU time is less than 0.5s and
those that need no refinement.

2. An abstract successor is a successor of the current state on the
abstract model. Abstract successors computation needs to invoke a
SMT solver and is considered as the most time-costly operation in pred-
icate abstraction [23].

1424 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

take the total and average amount of all rows in the table,
respectively.

From Table 1, we observed that our method outperforms
“no Reuse” in vast majority of cases. Considering “Speed-
up” column, among 259 driver/specification pairs, only one
pair that our method is slower. Comparing “#solved” col-
umns of both approaches, 216 more regression verification
tasks were solved with our approach. This witnesses the
value of summary reuse for regression verification.

Among the common 3,581 regression verification tasks
that both approaches can verify, “no Reuse” takes 151.8 thou-
sand seconds of analysis time while our “Reuse” approach

finishes in 10.5 thousand seconds. The overall time speedup
of our approach is 93.1 percent.

Comparing the numbers of abstract successor computa-
tions (“#abs_succ.”) required by “Reuse” and “no Reuse”
for each spec/driver pair, we found that our method cuts
down the amount significantly (about 98 percent reduction),
which can explain the reason for the speedup of analysis
time.

Let us look at the “AvgFSize” column. The average size of
summary files among all regression revisions is 17.4 KB (the
median is 3.8 KB). The added overhead by our approach in
storage is acceptable.

TABLE 1
Overall Experimental Results on Real Revisions

HE ETAL.: EFFICIENT SUMMARY REUSE FOR SOFTWARE REGRESSION VERIFICATION 1425

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

6.2.1 Scaling With Larger Changes

The changes between adjacent revisions may not be very
significant. We further use the following settings to evaluate
our approach on larger changes:

� 4th: we set up a regression verification task every 4
revisions of the program, and

� 2Revs: we set up a regression verification task for the
last revision of each program.

Finally, we get respectively 898 and 259 regression verifi-
cation tasks using the above two settings.

Experimental results are listed in Table 2. The original set-
ting that incrementally verifies each adjacent revision of the
program is referred to as All in the table. The average num-
bers of changed lines for regression verification tasks using
the above three settings are 511, 1242 and 1562, respectively.
The increasing avg. diff. lines lead to decreasing RSR, which is
reasonable since more program changes can of course lead
less summaries to be reusable.

Observe that our approach can still get considerable per-
formance improvements (86.1 and 80.8 percent of speedups)
with the 4th and 2Revs settings, which show the effective-
ness of our approach on larger changes.

6.3 Overall Results on Artificial Revisions (RQ1)

The second experiment evaluates our approach on artificial
program revisions in the second benchmark. This experi-
ment contains 2,556 verification tasks, involving 426 driver/
specification pairs. Among all tasks, 2,130 are regression
verification tasks.

Results of this experiment are listed in Table 3. Again, we
limit this table to the 40 best and 10 worst cases out of all 426
driver/specification pairs (sorted by the “Speedup” col-
umn). Each column is with the same meaning as in Table 1.
Note that there is only one specification for each driver in
this benchmark, the “Spec.” column is thus skipped.

From this table, we observed similar results as in Table 1.
Among all 426 driver/specification pairs, our approach
wins on 389 pairs. In total, our approach solved 10 more
verification tasks, and the average speedup is 84.2 percent.

6.4 Comparison With Existing Tools (RQ1)

To further demonstrate the efficiency of our approach, two
more experiments were conducted to compare CPAcheckerþ

with the existing regression verification tools:

� eVolCheck [30], a regression verification tool that
implements the technique of interpolation-based
procedure summaries [11], and

� UAutomizerþ [31], a regression verification extension of
the famous software verification tool UAutomizer [19].

6.4.1 Comparison With eVolCheck

This experiment was conducted on the set of real-world
programs. Before this experiment, some of the programs
need to be modified to adapt to the input format of
eVolCheck, e.g., replacing “ldv_error()” by “assert(0)”.

Note that eVolCheck [30] is just an experimental imple-
mentation, and is not fully optimized.3 Among all 4,193
verification tasks, eVolCheck failed on 3,646 tasks due to
various parsing and runtime errors. The comparative
experiment was conducted on the remaining 547 verifica-
tion tasks.

The comparison results are listed in Table 4, where the
Trv1 and Trv2 columns report the total regression verification
timewithout andwith reuse, respectively, and the “Speedup”
is calculated by 1� Trv2=Trv1. Note that eVolCheck employs
the bounded model checking technique, and its unwinding
factor was set to 15. Among the 547 verification tasks,
eVolCheck solved (i.e., the underlying SMT solver returned
a result) 143 tasks within the time limit of 300 seconds,
whereas our CPAcheckerþ solved all. In comparison of the
efficiency of the employed reuse techniques, the speedups of
eVolCheck and CPAcheckerþ are 75.2 and 89.7 percent,
respectively. These results demonstrate the efficiency of our
summary reuse technique.

6.4.2 Comparison With UAutomizer

This experiment was conducted on the real-world bench-
mark, too. Excluding the programs that UAutomizer fails to
parse, there are totally 1,177 verification tasks that belong to
90 driver/specification pairs.4

Note that the adopted verification techniques are very dif-
ferent in these two tools: UAutomizerþ uses the trace
abstraction, while our CPAcheckerþ uses the predicate
abstraction. Moreover, the regression verification techniques
implemented in these two tools are also different: one
attempts to reuse the previously generated Floyd-Hoare
automata [31], while another attempts to reuse the previ-
ously generated state-based summaries. To compare the effi-
ciency of their adopted regression verification techniques,
we compare the speedups of these two tools (with reuse over
without reuse).

The comparison results are listed in Table 5. Note that
UAutomizerþ implements two reuse strategies, i.e., Eager
and Lazy. Results for both strategies are reported. From
Table 5, CPAcheckerþ achieves a speedup of 90.8 percent,

TABLE 2
Overall Experimental Results on Larger Changes

Revs. Avg. no Reuse Reuse Speed

#T Diff. Lines #solved Trv1 #solved Trv2 -up RSR

All 3934 511 3588 151.8K 3804 10.5K 93.1% 0.8
4th 898 1242 812 32.7K 870 4.5K 86.1% 0.6
2Revs 259 1562 240 7.7K 245 1.5K 80.8% 0.4

3. A successor version of this tool was recently released at: http://
verify.inf.usi.ch/upprover

4. In their original paper [31], the UAutomizerþ was evaluated on
the same set of programs.

1426 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

http://verify.inf.usi.ch/upprover
http://verify.inf.usi.ch/upprover

and UAutomizerþ gets a speedup of 82.8 percent or 81.4 per-
cent. This result demonstrates the efficiency of our summary
reuse technique.Note thatwe cannot conclude the superiority
of our reuse technique over UAutomizerþ from this result,
since they are used in different verification frameworks.

6.5 Impact of Reuse Strategies (RQ2)

In the former two experiments, both summary reuse and
precision reuse were enabled for our approach. In this
experiment, we switch off “precision reuse” and “summary

TABLE 3
Overall Experimental Results on Artificial Revisions

TABLE 4
Comparison of Our Approach With eVolCheck

#computable Trv1 Trv2 Speedup

eVolCheck 143 2382.7 591.9 75.2%
CPAcheckerþ 244 2074.2 213.2 89.7%

TABLE 5
Comparison of Our Approach With UAutomizerþ

Speedup

CPAcheckerþ 90.8%
UAutomizerþ-Eager 82.8%
UAutomizerþ-Lazy 81.4%

HE ETAL.: EFFICIENT SUMMARY REUSE FOR SOFTWARE REGRESSION VERIFICATION 1427

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

reuse” respectively, and evaluate the efficiency of our
approach under different reuse strategies, i.e., “no Reuse”,
“Precision Reuse”, “Summary Reuse” and “both Reuse”.
This experiment was conducted on the second benchmark.

Table 6 shows the results of this experiment. Every row
sums up results of all 2,130 regression verification tasks. For
each row, we report the total regression verification time
“Trv” (in seconds), the total number of solved regression
tasks “#solved”, and the average memory usage “Mem” (in
gigabytes). Note that we only list the time usage in “no
Reuse” row. For the other three rows, we show the speedup
against “no Reuse” approach.

From Table 6, we found that every reuse technique outper-
forms “no Reuse”. They are not surprising since the precision
reuse can significantly reduce the CEGAR iterations [7], and
thus cuts down the verification time (73.5 percent speedup);
and the summary reuse can save the repeated computation of
summaries, and thus also reduces the verification time (69.5
percent speedup). Moreover, “Summary Reuse” solves 2
more tasks than “Precision Reuse”, illustrating that the former
technique is more robust than the latter one. Precision reuse
and summary reuse are two orthogonal techniques. By inte-
grating these two techniques, “both Reuse” get the best per-
formance, not only in analysis time (84.2 percent speedup),
but also in the number of verified regression tasks.

The “Mem” column shows that all reuse strategies save
the memory usage meetly. Again, “both Reuse” saves the
most on memory consumption.

6.6 Impact of Summary Types (RQ3)

This experiment investigates the efficiency of our approach
on different types of summaries. We evaluate the efficiency
of our approach with loop summaries reused, procedure
summaries reused and all summaries reused, respectively.
Note that “precision reuse” and “lazy counterexample anal-
ysis ” are switched off in this experiment.

We accumulate the analysis time on different summary
types. Results are illustrated in Fig. 7, where the X-axis

indicates the number of device drivers, and the Y-axis rep-
resents the accumulated analysis time. From Fig. 7, we
observed that “Procedure Summaries” outperforms “Loop
Summaries”, and “All Summaries Reuse” performs the
best. The main reason is that our benchmark contains fewer
loop statements than procedures (1,273 versus 11,417).

6.7 Impact of Lazy Counterexample Analysis (RQ4)

The final experiment evaluates the efficiency of lazy coun-
terexample analysis. Note that this technique is mainly rela-
tive to the refinement process, we measure the refinement
time and counterexample length in this experiment.

Fig. 8a shows the results on counterexample length in a
scatter diagram. Note that each device driver may involve
several regression verification tasks, and each regression
verification task may require many CEGAR iterations. The
reported counterexample length is the accumulated length
of all counterexamples generated in all CEGAR iterations
among all regression verification tasks of a device driver. In
Fig. 8a, each point represents the accumulated counterex-
ample length of a device driver, the Y and X axes indicate
our approach with and without lazy counterexample analy-
sis, respectively. BothX and Y axes are logarithmic. A point
below the reference line indicates a case where the lazy
counterexample analysis is beneficial.

Fig. 8b show results on refinement time. Again, the
reported refinement time is the accumulation of time spent
on all refinement iterations among all regression verification
tasks of all the currently-tested device drivers. In Fig. 8b, the
X-axis catalogs the number of device drivers and the Y -axis
shows the accumulated refinement time.

TABLE 6
Results on Different Reuse Strategies

Trv #solved Mem

no Reuse 20898.8 2119 589
Precision Reuse 73.5% 2125 151
Summary Reuse 69.5% 2127 180
Both Reuse 84.2% 2129 137

Fig. 7. Accumulating the analysis time on different summary types.

Fig. 8. Performance of summary reuse with and without lazy counterex-
ample analysis.

1428 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

On the whole, the lazy counterexample analysis per-
forms better on refinement, saving about 29.9 percent of
time. It is also observed that for 415 of 426 device drivers,
the corresponding data points in Fig. 8a are above the refer-
ence line, indicating that the accumulated counterexample
lengths were reduced with this technique. These results
conform to our algorithmic analysis in Section 5.3. With the
lazy analysis technique, the counterexample is not necessar-
ily to be fully expanded. And a shorter counterexample can
usually reduce the refinement efforts.

7 RELATED WORK

Regression verification was investigated mainly in two
directions, the verification of differences, and the reuse of
previously computed results. We also discuss the summari-
zation and symbolic execution techniques in this section.

Verification of Differences. In this line of research, one
attempts to establish the correctness of the new program by
proving its (conditional) equivalence to an old and verified
program.

Many techniques have been proposed in this line of
research. The technique for proving conditional equiva-
lence of two programs by abstraction and decomposition
of procedures is proposed in [4], [32]. Backes et al. [5] pro-
posed to distinguish the program behaviors that are
impacted by the changes. Only the impacted program
behaviors needed to be considered during the regression
verification. Beyer et al. [33] proposed the conditional
model checking, which outputs a condition such that the
program satisfies the specification under this condition.
B€ohme et al. [6] proposed a partition-based regression veri-
fication technique. Instead of proving the absence of
regression errors for the entire input space, this approach
continuously verifies the input space in a gradual manner.
Felsing et al. [34] reduced the equivalence proving of two
related imperative integer programs to Horn constraints
over uninterpreted predicates, and then solved the con-
straints using an Horn solver.

Moreover, Rungta et al. [35] presented a technique for
interprocedural change impact analysis. Yang et al. [36] intro-
duced an incremental approach for checking the confor-
mance of code against different properties. Trostanetski et al.
[37] analyzed the semantic difference between successive
revisions. Mora et al. [38] performed modular symbolic exe-
cution to prove the equivalence between different versions
of libraries with respect to the same parts of codebase (client
program).

Reuse of Intermediate Results. In this line of research, one
studies the reuse of previously-generated results to the cur-
rent verification. A variety of information has been proposed
for reuse.

Some researchers [9], [39], [40], [41] proposed to keep the
reached state space and reuse them in the further verifica-
tion runs. The rationale of these techniques is that state
spaces of consecutive versions tend to be similar. However,
recording and reusing reached state space may be costly,
and these techniques may not be applicable to large-scale
programs. For example, [40] points out 6 times more on
memory usage in the worst case. The lines of code of single
revision of [40] are less than 1,000.

Visser et al. [10] noticed the importance of constraint
solving for symbolic execution. They proposed to cache and
reuse the results of constraint solving. This approach was
further improved in [42], [43] from different aspects. This
group of techniques is orthogonal to our approach. These
techniques can be applied to enhance our approach.

Beyer et al. [7] proposed to use abstract precisions as the
intermediate results. An abstract precision defines the level
of abstraction, which conveys important information on the
current verification. They proposed to record the final
abstract precision and to reuse it as the initial abstract preci-
sion of the current verification. With this technique, the
number of refinements can often be reduced. Note that the
precision reuse and our summary reuse are orthogonal to
each other. It is possible to combine these two reuse techni-
ques together. We have already combined this technique
with ours. The combined technique shows a very promising
performance.

Fedyukovich et al. [44] offered a regression verification
technique for checking property directed equivalence. The
safe inductive invariants across program transformations
were migrated and established. Rothenberg et al. [31] pro-
posed to reuse the sequence of Floyd-Hoare automata
learned during the trace abstraction. Two reuse strategies,
eagerly and lazily, were developed in this paper. This tech-
nique has been realized in UAutomizer, a well-known soft-
ware verification tool.

The work most relevant to ours is [11], [30], where a
regression verification technique by means of interpolation-
based procedure summaries was proposed. Our idea of
summary reuse was inspired by these two papers. The main
difference lies in the way in which the summaries are con-
structed during the verification. In [11], [30], the authors use
a logical formula ’A to encode the behaviors of the proce-
dure %, and another logical formula ’B to encode its calling
context. Then they compute the interpolation of ’A and ’B

and use that as the summary of %. In contrast, we use the
abstract states in predicate analysis to construct the pro-
gram summaries. Each summary in our paper consists of an
entry state and a set of exit states of %. Our state-based sum-
maries can be completely integrated into the framework of
CEGAR. All ingredients of a state-based summary are by-
products of CEGAR. There needs no additional computa-
tion for generating this kind of summaries. Experimental
comparison in Section 6.4 demonstrates the practicability of
our approach.

Pastore et al. [45] proposed a method to validate that
an already tested code has not been broken by an
upgrade. It maintains a test suite that can be used to
revalidate the software as it evolves. Different from our
approach, this technique is respect to regression testing.
The verification technique is used there, as an aid, to vali-
date dynamic properties (or invariants). In contrast, we
aim to provide a new regression verification technique
via reusing summaries.

Summarization. In this line of research, one tries to
replace program fragments with summaries. A summary
can usually be represented as an input-output pair of a
program fragment. Procedure summaries have been long
studied and there are also many studies on loop summa-
ries recently.

HE ETAL.: EFFICIENT SUMMARY REUSE FOR SOFTWARE REGRESSION VERIFICATION 1429

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

Many researchers [11], [30], [46], [47] proposed to use inter-
polation-based method to generate procedure summaries.
[47] combines function summaries with the expressiveness of
satisfiabilitymodulo theories (SMT),whichmakes summaries
smaller and more human-readable. [11], [30], [46] implement
a procedure summarization approach for software bounded
model checking, and uses interpolation-based procedure
summaries as over-approximation of procedure calls.

Kroening et al. [48] proposed the idea to substitute a loop
with a conservative abstraction of its behavior, constructing
abstract transformers for nested loops starting from the inner-
most loop. They also applied thismethod in termination anal-
ysis. Seghir et al. [49] used various inference rules for deriving
summaries based on control structures. However, this
approach can only compute precise loop summaries for
restricted classes of programs depending on inference rules.
Xie et al. [50] proposed a general framework for summarizing
multi-path loops. It classifies loops according to the patterns
of values changes in path conditions and the interleaving of
paths within the loop. A disjunctive summarization is con-
structed for all the feasible executions in the loop. Different
from our method, [50] cannot summarize loops containing
non-induction variables, array variables, and nested loops.
Godefroid et al. [51] investigated an alternative approach
based on automatic loop-invariant generation. This approach
can (partially) summarize a loop body during a single
dynamic symbolic execution, which can ease the path explo-
sion in dynamic test generation.

Symbolic Execution.In recent years, a great deal of effort
has been focused on regression symbolic execution, which
takes advantage of the previous analysis of symbolic execu-
tion to speedup the current analysis.

Person et al. [52] used a form of overapproximating sym-
bolic execution to skip portions of the program that are
provably identical across the versions. In [53], Person et al.
presented a regression symbolic execution technique for
Java programs, based on the Symbolic PathFinder. It ana-
lyzes the CFAs of two program versions, computes the loca-
tions affected by the program changes, and then applies the
symbolic execution to the affected code only. Further more,
Guo et al. [54] investigated the symbolic execution technique
for multi-threaded programs.

8 CONCLUSION

We proposed in this paper a fully automatic regression veri-
fication technique in the context of CEGAR. Abstract sum-
maries are reused across different abstract precisions and
different program revisions. We proposed a unified frame-
work for reusing both procedure summaries and loop sum-
maries. A lazy counterexample analysis algorithm was
further proposed to reduce the unnecessary path expansion
efforts. We implemented our approach in the software veri-
fication tool CPAchecker. Experimental results show the
promising performance of our technique.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China (61672310, 61527812), the
National Key R&D Program of China (2018YFB1308601).

REFERENCES

[1] V. D’silva, D. Kroening, and G. Weissenbacher, “A survey of auto-
mated techniques for formal software verification,” IEEE Trans. Com-
put.-Aided Design Integr. Circuits Syst., vol. 27, no. 7, pp. 1165–1178,
Jul. 2008.

[2] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rother-
mel, “An empirical study of regression test selection techniques,”
ACM Trans. Softw. Eng. Methodol., vol. 10, no. 2, pp. 184–208, 2001.

[3] G. Rothermel andM. J.Harrold, “Analyzing regression test selection
techniques,” IEEE Trans. Softw. Eng., vol. 22, no. 8, pp. 529–551,
Aug. 1996.

[4] B. Godlin and O. Strichman, “Regression verification,” in Proc.
46th Annu. Des. Autom. Conf., 2009, pp. 466–471.

[5] J. Backes, S. Person, N. Rungta, and O. Tkachuk, “Regression veri-
fication using impact summaries,” in Proc. Int. SPIN Workshop
Model Checking Softw., 2013, pp. 99–116.

[6] M. B€ohme, B. C. D. S. Oliveira, and A. Roychoudhury, “Partition-
based regression verification,” in Proc. Int. Conf. Softw. Eng., 2013,
pp. 302–311.

[7] D. Beyer, S. L€owe, E. Novikov, A. Stahlbauer, and P. Wendler,
“Precision reuse for efficient regression verification,” in Proc. 9th
Joint Meeting Found. Softw. Eng., 2013, pp. 389–399.

[8] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel,
“Differential assertion checking,” in Proc. 9th Joint Meeting Found.
Softw. Eng., 2013, pp. 345–355.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. Sanvido,
“Extreme model checking,” in Verification: Theory and Practice. Ber-
lin, Germany: Springer, 2003, pp. 332–358.

[10] W. Visser, J. Geldenhuys, and M. B. Dwyer, “Green: Reducing,
reusing and recycling constraints in program analysis,” in Proc.
ACM SIGSOFT 20th Int. Symp. Found. Softw. Eng., 2012, Art. no. 58.

[11] O. Sery, G. Fedyukovich, and N. Sharygina, “Incremental upgrade
checking by means of interpolation-based function summaries,”
in Proc. Formal Methods Comput.-Aided Des., 2012, pp. 114–121.

[12] M. Sharir and A. Pnueli, Two Approaches to Interprocedural Data
Flow Analysis. New York, NY, USA: New York Univ. Comput. Sci.
Dept., 1978.

[13] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural data-
flow analysis via graph reachability,” in Proc. 22nd ACM SIG-
PLAN-SIGACT Symp. Princ. Program. Lang., 1995, pp. 49–61.

[14] Y. Xie and A. Aiken, “Saturn: A scalable framework for error
detection using boolean satisfiability,” ACM Trans. Program. Lang.
Syst., vol. 29, no. 3, 2007, Art. no. 16.

[15] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Proc. Int. Conf.
Comput. AidedVerification, 2000, pp. 154–169.

[16] D. Beyer, “Reliable and reproducible competition results with
BenchExec and witnesses (report on SV-COMP 2016),” in Proc.
Int. Conf. Tools Algorithms Construction Anal. Syst., 2016,
pp. 887–904.

[17] D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configu-
rable software verification,” in Proc. Int. Conf. Comput. Aided Verifi-
cation, 2011, pp. 184–190.

[18] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The soft-
ware model checker BLAST,” Int. J. Softw. Tools Technol. Transfer,
vol. 9, no. 5/6, pp. 505–525, 2007.

[19] M. Heizmann, J. Hoenicke, and A. Podelski, “Software model
checking for people who love automata,” in Proc. Int. Conf. Com-
put. Aided Verification, 2013, pp. 36–52.

[20] M. Carter, S. He, J. Whitaker, Z. Rakamari�c, and M. Emmi,
“SMACK software verification toolchain,” in Proc. 38th IEEE/ACM
Int. Conf. Softw. Eng. Companion, 2016, pp. 589–592.

[21] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cam-
bridge, MA, USA: MIT Press, 1999.

[22] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy
abstraction,”ACMSIGPLANNotices, vol. 37, no. 1, pp. 58–70, 2002.

[23] D. Beyer, T. A. Henzinger, and G. Th�eoduloz, “Configurable soft-
ware verification: Concretizing the convergence of model check-
ing and program analysis,” in Proc. Int. Conf. Comput. Aided
Verification, 2007, pp. 504–518.

[24] S. Graf and H. Saı̈di, “Construction of abstract state graphs with
PVS,” in Proc. Int. Conf. Comput. Aided Verification, 1997, pp. 72–83.

[25] K. L. McMillan, “Interpolation and SAT-based model checking,”
in Proc. Int. Conf. Comput. Aided Verification, 2003, pp. 1–13.

[26] K. L. McMillan, “Lazy abstraction with interpolants,” in Proc. Int.
Conf. Comput. Aided Verification, 2006, pp. 123–136.

1430 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

[27] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge,
MA, USA: MIT Press, 2008.

[28] D. Beyer, “Software verification with validation of results (report
on SV-COMP 2017),” in Proc. Int. Conf. Tools Algorithms Construc-
tion Anal. Syst., 2017, pp. 331–349.

[29] Y. Jia and M. Harman, “MILU: A customizable, runtime-optimized
higher order mutation testing tool for the full C language,” in Proc.
Testing: Academic Ind. Conf. Practice Res. Techn., 2008, pp. 94–98.

[30] G. Fedyukovich, O. Sery, and N. Sharygina, “eVolCheck: Incre-
mental upgrade checker for C,” in Proc. 19th Int. Conf. Tools Algo-
rithms Construction Anal. Syst., 2013, pp. 292–307.

[31] B.-C. Rothenberg, D. Dietsch, and M. Heizmann, “Incremental
verification using trace abstraction,” in Proc. Int. Static Anal.
Symp., 2018, pp. 364–382.

[32] S. Chaki, A. Gurfinkel, and O. Strichman, “Regression verification
for multi-threaded programs,” in Proc. Int. Workshop Verification
Model Checking Abstract Interpretation, 2012, pp. 119–135.

[33] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler,
“Conditional model checking: A technique to pass information
between verifiers,” in Proc. ACM SIGSOFT 20th Int. Symp. Found.
Softw. Eng., 2012, Art. no. 57.

[34] D. Felsing, S. Grebing, V. Klebanov, P. R€ummer, and M. Ulbrich,
“Automating regression verification,” in Proc. 29th ACM/IEEE Int.
Conf. Automated Softw. Eng., 2014, pp. 349–360.

[35] N. Rungta, S. Person, and J. Branchaud, “A change impact analy-
sis to characterize evolving program behaviors,” in Proc. 28th
IEEE Int. Conf. Softw. Maintenance, 2012, pp. 109–118.

[36] G. Yang, S. Khurshid, S. Person, and N. Rungta, “Property
differencing for incremental checking,” in Proc. 36th Int. Conf.
Softw. Eng., 2014, pp. 1059–1070.

[37] A. Trostanetski, O. Grumberg, and D. Kroening, “Modular
demand-driven analysis of semantic difference for program
versions,” in Proc. Int. Static Anal. Symp., 2017, pp. 405–427.

[38] F. Mora, Y. Li, J. Rubin, and M. Chechik, “Client-specific equiva-
lence checking,” in Proc. 33rd ACM/IEEE Int. Conf. Automated
Softw. Eng., 2018, pp. 441–451.

[39] S. Lauterburg, A. Sobeih, D. Marinov, and M. Viswanathan,
“Incremental state-space exploration for programs with dynami-
cally allocated data,” in Proc. 30th Int. Conf. Softw. Eng., 2008,
pp. 291–300.

[40] G. Yang, M. B. Dwyer, and G. Rothermel, “Regression model
checking,” in Proc. IEEE Int. Conf. Softw. Maintenance, 2009,
pp. 115–124.

[41] C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards,
“Incremental algorithms for inter-procedural analysis of safety
properties,” in Proc. Int. Conf. Comput. Aided Verification, 2005,
pp. 449–461.

[42] A. Aquino, F. A. Bianchi, M. Chen, G. Denaro, and M. Pezz�e,
“Reusing constraint proofs in program analysis,” in Proc. Int.
Symp. Softw. Testing Anal., 2015, pp. 305–315.

[43] X. Jia, C. Ghezzi, and S. Ying, “Enhancing reuse of constraint
solutions to improve symbolic execution,” in Proc. Int. Symp. Softw.
Testing Anal., 2015, pp. 177–187, doi: 10.1145/2771783.2771806.

[44] G. Fedyukovich, A. Gurfinkel, and N. Sharygina, “Property
directed equivalence via abstract simulation,” in Proc. Int. Conf.
Comput. Aided Verification, 2016, pp. 433–453.

[45] F. Pastore et al., “Verification-aided regression testing,” in Proc.
Int. Symp. Softw. Testing Anal., 2014, pp. 37–48.

[46] O. Sery, G. Fedyukovich, and N. Sharygina, “FunFrog: Bounded
model checking with interpolation-based function summa-
rization,” in Proc. Int. Symp. Automated Technol. Verification Anal.,
2012, pp. 203–207.

[47] L. Alt et al., “HiFrog: SMT-based function summarization for soft-
ware verification,” in Proc. Int. Conf. Tools Algorithms Construction
Anal. Syst., 2017, pp. 207–213.

[48] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and
C. M. Wintersteiger, “Loop summarization using state and transi-
tion invariants,” FormalMethods Syst. Des., vol. 42, no. 3, pp. 221–261,
2013.

[49] M. N. Seghir, “A lightweight approach for loop summarization,”
in Proc. Int. Symp. Automated Technol. Verification Anal., 2011,
pp. 351–365.

[50] X. Xie, B. Chen, Y. Liu, W. Le, and X. Li, “Proteus: Computing dis-
junctive loop summary via path dependency analysis,” in Proc.
24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016, pp. 61–72.

[51] P. Godefroid and D. Luchaup, “Automatic partial loop summariza-
tion in dynamic test generation,” in Proc. Int. Symp. Softw. Testing
Anal., 2011, pp. 23–33.

[52] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Psreanu, “Differential
symbolic execution,” in Proc. 16th ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2008, pp. 226–237.

[53] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed incre-
mental symbolic execution,” ACM SIGPLAN Notices, vol. 46, no. 6,
pp. 504–515, 2011.

[54] S. Guo, M. Kusano, and C. Wang, “Conc-iSE: Incremental sym-
bolic execution of concurrent software,” in Proc. 31st IEEE/ACM
Int. Conf. Automated Softw. Eng., 2016, pp. 531–542.

Fei He received the BS degree in computer sci-
ence and technology from the National University
of Defense Technology, Changsha, China, in
2002, and the PhD degree in computer science
and technology from Tsinghua University, Beijing,
China, in 2008. He is currently an associate pro-
fessor with the School of Software, Tsinghua Uni-
versity, Beijing, China. His research interests
include formal verification and program analysis.

Qianshan Yu received the BS degree from Jilin
University, Changchun, China, in 2017. He is cur-
rently working toward the PhD degree in the
School of Software, Tsinghua University, Beijing,
China. His research interests include software
verification and regression verification.

Liming Cai received the BS degree from Xiamen
University, Xiamen, China, in 2013, and the MS
degree from Tsinghua University, Beijing, China,
in 2016. He is currently an algorithm engineer in
kwai tech.co. His research interests include for-
mal methods and program verification.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

HE ETAL.: EFFICIENT SUMMARY REUSE FOR SOFTWARE REGRESSION VERIFICATION 1431

Authorized licensed use limited to: Tsinghua University. Downloaded on April 24,2022 at 09:27:27 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2771783.2771806

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

